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Abstract
Epidemiologists are gradually incorporating spatial analysis into health-related research as geocoded cases of disease 
become widely available and health-focused geospatial computer applications are developed. One health-focused 
application of spatial analysis is cluster detection. Using cluster detection to identify geographic areas with high-risk 
populations and then screening those populations for disease can improve cancer control. SaTScan is a free cluster-
detection software application used by epidemiologists around the world to describe spatial clusters of infectious and 
chronic disease, as well as disease vectors and risk factors. The objectives of this article are to describe how spatial 
analysis can be used in cancer control to detect geographic areas in need of colorectal cancer screening intervention, 
identify issues commonly encountered by SaTScan users, detail how to select the appropriate methods for using 
SaTScan, and explain how method selection can affect results. As an example, we used various methods to detect areas 
in Florida where the population is at high risk for late-stage diagnosis of colorectal cancer. We found that much of our 
analysis was underpowered and that no single method detected all clusters of statistical or public health significance. 
However, all methods detected 1 area as high risk; this area is potentially a priority area for a screening intervention. 
Cluster detection can be incorporated into routine public health operations, but the challenge is to identify areas in 
which the burden of disease can be alleviated through public health intervention. Reliance on SaTScan’s default 
settings does not always produce pertinent results.

Introduction
Public health practitioners have mapped health data for nearly 200 years. In 1840, Robert Cowan mapped the 
relationship between overcrowding and fever, and John Snow’s 1854 cholera map remains famous today (1). Now, GIS 
(geographic information systems) is used for geocoding (assigning longitude, latitude, or other geographic indicators 
to street addresses) and for creating maps. Recently, epidemiologists augmented descriptive mapping with the 
computer applications of spatial analysis, which include 1) exploratory cluster detection; 2) adjustment for the effects 
of place to evaluate other risk factors; 3) quantification of the effect of place or community on disease risk; and 4) site 
selection for geographically targeting public health research or intervention. 

Cancer rates are routinely mapped at the county level, and visualization of geographic patterns can help researchers 
generate etiologic hypotheses. For instance, patterns in the 1960–1970 US Cancer Mortality Atlases prompted research 
that connected smokeless tobacco use with oral cancers (2) and shipyard asbestos exposure with lung cancers (3). 
Mapping areas with high cancer rates can help prioritize cancer control programs or prompt community interventions 
designed to modify risk behaviors (4). Similarly, because rates of cancer by stage can be a proxy for screening uptake, 
mapping geographic variation by stage at diagnosis can aid in targeting areas with low rates of cancer screening (4–9). 
Maps are now often used for examining geographic variation along the cancer continuum at local (ie, sub-county) 
levels (7,10–18).
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Choropleth mapping, a common method for mapping health-related data, displays ranges of rates by geographic area; 
for example, the Centers for Disease Control and Prevention’s (CDC’s) state-level, interactive Behavioral Risk Factor 
Surveillance System maps (http://apps.nccd.cdc.gov/gisbrfss/default.aspx). However, people examining these maps 
cannot quantitatively assess the data because which spatial patterns are highlighted depends upon which cut points are 
used to create categories for mapping results. In addition, data on rates in sparsely populated areas can be outliers or 
statistically insignificant, leading to unwarranted alarm or inappropriate disregard (19). One solution is to aggregate 
data, known as “regionalization” in geography, by merging proximal data to resolve both small-number instability and 
potential for loss of patient confidentiality. Tools are available that restrict aggregation across physical or political 
boundaries or that create regions of a specific population size or similar sociodemographic characteristics (20,21). 
Another approach is spatial smoothing, which (much like moving averages for trends) uses neighboring data to 
stabilize rates in sparsely populated areas (22). However, these methods can inadvertently conceal true differences in 
disease rates, make cumbersome the linking with geographic data on risk factors, and obscure boundaries for high-risk 
areas (23,24).

Spatial analysis can detect areas, regardless of size, that have significant differences in risk. One method of spatial 
analysis is cluster detection: this method detects high-risk areas and tests for significance while overcoming problems 
related to small-area rate stability. A common cluster-detection test is the spatial scan (25,26). SaTScan software (M 
Kulldorff and Information Management Services Inc, Cambridge, Massachusetts) uses the spatial scan and is routinely 
used in public health (27). The software is funded in part by the CDC and Prevention and the National Cancer Institute. 
SaTScan enables epidemiologists to detect clusters with relative ease. But results are affected by which methods and 
parameter settings are used (27), and many researchers do not account for the effect of their selections. The objective 
of this article is to describe how different methodological choices in SaTScan can lead to different outcomes. To 
illustrate our point, we used SaTScan to detect clusters of late-stage diagnosis of colorectal cancer (CRC) in Florida.

CRC is ideal for demonstrating the use of SaTScan; it is one of the most common cancers, and mortality is mitigated, in 
part, by screening. Not only can routine screening reduce mortality through early detection, but types of screening (eg, 
colonoscopy) can result in the preemptive removal of precancerous lesions, making most CRC potentially eradicable 
through secondary prevention. CRC screening rates are low in Florida. In 2010, 70% of white Floridians, 64% of black 
Floridians, and 62% of Hispanic Floridians aged 50 or older reported having had a colonoscopy or sigmoidoscopy in 
the previous 5 years; 22% of white Floridians, 24% of black Floridians, and 16% of Hispanic Floridians aged 50 or older 
reported having had a blood stool test in the previous 2 years (28).

Because overall CRC screening rates are low in Florida, all populations in the state would benefit from increased 
screening. It is likely communities at high risk for late-stage diagnosis of CRC would benefit the most. In Florida, 2 
populations with low screening rates and high rates of CRC deaths are blacks (Hispanic and non-Hispanic) and 
Hispanic whites (29), so we focus particular attention to their data in our analysis. 

Methods for Detecting Clusters of Late-Stage Diagnosis of CRC
We conducted a population-based, ecologic study on the geographic distribution of CRC diagnosed at a late stage. The 
study obtained approval under expedited review from the Florida Department of Health Institutional Review Board 
and the Florida Cancer Registry (nos. H12005 and H12010).

We analyzed cases of CRC that were diagnosed among Floridians from 1996 through 2010 and reported to the Florida 
Cancer Registry. Because guidelines recommend CRC screenings begin at 50, we excluded from analysis cases 
diagnosed before age 50. We also excluded cases for which an autopsy report did not show CRC as cause of death. To 
account for changes in routine screening practices after a diagnosis, we included only primary diagnoses of CRC; 
however, a prior diagnosis of cancer other than CRC was not grounds for exclusion. We analyzed data on 
adenocarcinomas only. Adenocarcinomas, approximately 90% of all cases of CRC, arise from adenomatous polyps, and 
some types of screening can detect these polyps, which can be removed before they progress to cancer (30). We 
classified cases as early stage or late stage. Cases diagnosed in situ or at localized stage were classified as early, and 
cases diagnosed at regional or distant stage were classified as late (according to the Surveillance Epidemiology and End 
Results Summary Staging system). Because an unknown stage has a poor prognosis (35% 5-year survival rate 
compared with a 90% for a local stage, 70% for a regional stage, and 13% for a distant stage [31]), we classified an 
unstaged or an unknown case as a late-stage diagnosis.

A proprietary vendor geocoded cases to 2010 census boundaries according to the street address at diagnosis of the 
person with CRC. Some cases were not geocodable to a street address, and the Florida Cancer Registry does not rework 
these cases to identify a geocodable address, so we could not use these cases in analysis. In all, we excluded 
approximately 5% of the cases because they were geocoded only to a zip code and 2% because they were not geocodable 
even to a zip code.
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We used SaTScan ver 9.1.1 in this study. SaTScan uses the spatial scan, which creates a theoretically limitless number 
of discreet “windows” (ie, sections) in a geographic area. The windows vary in size from the smallest (containing 1 unit 
of analysis, such as a census block group) to the largest (containing a user-defined maximum percentage of population 
to be evaluated as a cluster). Each window is evaluated as a possible cluster, and the window with the highest 
maximum likelihood of being a cluster is assigned a P value, which is adjusted for multiple testing (32). We also 
evaluated secondary clusters. We adjusted for the most likely clusters (P = .05); the maximum number of iterations, or 
number of potential secondary clusters, was set at 15. When using the option to evaluate secondary clusters, a primary 
cluster is determined and analysis is rerun, without the primary cluster data, to evaluate potential secondary clusters. 
This procedure produces geographically distinct clusters and a more homogenous cluster risk, and it detects potential 
cluster rings. For instance, the surrounding suburbs of an urban center may have lower risk than the urban center 
(hence the appearance of a ring), thus identifying the urban center as a potential target for prioritized intervention 
(33). We used circular- and elliptic-shaped scan windows simultaneously. Circular windows are best for detecting 
small, compact clusters and elliptic windows provide the greatest power for long and narrow clusters (34). Elliptic 
scans are important for states with long coastlines, like Florida, or extensive borders.

Analysis was conducted by using 2 spatial scan probability models available in SaTScan: the Poisson model and the 
Bernoulli model. The Poisson model detects late-stage risk clusters by using age-adjusted rates, and the Bernoulli 
model detects late-stage risk clusters by using a ratio of late-stage diagnoses to early stage diagnoses. We used the 
Poisson model to detect high- and low-risk clusters for blacks (Hispanic and non-Hispanic), Hispanic whites, and non-
Hispanic whites by using US Census 2010 population data and adjusting for age and sex. We used the Bernoulli model 
to detect clusters for blacks (Hispanic and non-Hispanic), Hispanics whites, non-Hispanic whites, and Cubans of any 
race. The Cuban category was not mutually exclusive from other categories; the majority of Cubans were also classified 
as Hispanic white. We evaluated Cubans separately because they are an important demographic group in Florida, and 
the Florida data shows they are at higher risk of late-stage diagnosis of CRC. Census data for the Cuban population 
from the Census were not available at the level of detail necessary for the Poisson model. The Bernoulli model requires 
only case-level (cancer registry) data, so we used the Bernoulli model for Cubans by using the variable “Hispanic 
origin.”

A modifiable area unit problem (MAUP) is a situation that arises when results change at different sized units of 
analysis (eg, block group, census tract, county), referred to here as aggregation, or maximum cluster size, referred to 
here as scale. MAUP can be caused by zonation effects or by regional or contextual effects. An example of a zonation 
effect is when no associations are found at the county level but are found at the smaller, demographically more 
homogenous census-tract level. An example of a regional or contextual effect is when a county analysis does not show a 
trend, but a national analysis shows a north–south trend by state. To address MAUP, we conducted a series of scans at 
different scales: 1%, 2%, and 5% to 50% (at 5% increments) of the population at risk as maximum cluster size. At 1% 
scale, the maximum cluster size (or window size) evaluated as a cluster is 1% of the total population for each 
racial/ethnic group. The largest scale possible is 50%. Evaluating a cluster larger than 50% of the population it not an 
option because such a cluster would indicate areas of statistically lower rates outside the circle rather than inside the 
circle; although both high and low rates can be evaluated. (33). We repeated these scans using 2 levels of geographic 
aggregation for which census population data was available. We used census tracts (subdivisions of counties ranging 
from about 3,000 to 7,000 people) and block groups (smallest subdivision of a tract for which the census provides 
population data by age and sex with an average of 1,500 people).

We evaluated sensitivity by using a known cluster in rural Union County, Florida. A correctional facility in Union 
County processes new inmates from 2 of 3 state regions and provides medical care to the inmates. The constant influx 
of inmates into the numerator (due to daily prisoner intake) but not the denominator (which is based on the decennial 
census and is a “snapshot” of the population at one point in time) generates high rates of cancer. In 2011, the rate of 
CRC in Union County was 182.7 per 100,000, far exceeding the state average of 32.7 (35).

Comparison of Results According to Methods Used
We analyzed 36,094 cases of CRC: 3,780 were black; 3,488 were Hispanic white; 28,826 were non-Hispanic white; and 
1,501 were Cuban (Table 1). Multiple, iterative scans were computer and time intensive. The block group analysis 
exceeded the computing capacity of a 2GB-RAM computer. To complete analysis, we used a computer with an 8GB-
RAM memory and 64-bit Java (instead of the 32-bit default). The differences in P values resulting from 999 versus 
9,999 simulations were inconsequential, so we used 999 simulations to reduce analysis time. We also compared Monte 
Carlo and Gumbel-based P values and found minimal differences (Appendix). The use of Gumbel distributions 
produces more precise P values, increases power (36), and reduces analysis time.

Table 2 summarizes cluster results by race/ethnicity, method, scale, and aggregation. For areas with identified clusters, 
Table 2 identifies a generic location label and reports the relative risk and P value for each cluster. Table 2 also reports 
a range and standard deviation for the magnitude of relative risk for the individual census tracts contained in the 
clusters — an indication of how homogenous the risk is throughout the cluster.
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For each racial/ethnic category, we found similar clusters across scales, aggregation, and methods (Table 2). All 
analyses identified an area in South Florida, Area A, as high risk for late-stage diagnosis of CRC. However, the 
magnitude of risk was generally slightly higher at the smaller scales and at the lower levels of aggregation and often 
comprised greater homogeneity in local rates. For instance, for Hispanic whites, using the Poisson model, the range of 
relative risk for the individual census tracts that the cluster comprises is 0 to 10 at a scale of 10% with a combined risk 
for the cluster of 1.41. At the scale of 25%, however, the range of relative risk for the comprising tracts is 0 to 10.04 
with a combined cluster risk of 1.38 and, at the scale of 30%, the range of relative risk is 0 to 42.1 with a combined 
cluster risk of 1.36. P values varied by scale, aggregation, and method, indicating clusters may be missed when a single 
approach is used. Using only the 50% SaTScan default or the 20% scale is often suggested, but for Hispanic whites, 
high-risk Area A is split into 2 smaller clusters at 20%, and low-risk Area I was significant only at the 10% scale. All 
scales, aggregation, and models detected high-risk clustering in Area A for all race/ethnicities, but the cluster for non-
Hispanic whites extended far beyond Area A, as did the cluster for blacks found by the Bernoulli method. (Table 3, 
Figure 1). The Bernoulli results for Hispanic whites and Cubans were not significant, although they persisted at 
multiple scales and aggregations.

Figure 1. Using census tract analysis as an example, the area of persistent clusters (Area A) is indicated for all 

race/ethnicities and was identified by both the Bernoulli and Poisson models. A, analysis of black population; B, 

analysis of Cuban population; C, analysis of Hispanic white population; D, analysis of non-Hispanic white population. 
To preserve confidentiality, maps are presented without points of reference.

At the same 50% scale for blacks, the Bernoulli method detected a cluster in South Florida that was much larger than 
the cluster in Area A detected by the Poisson method (Figure 2). The Bernoulli method also detected a secondary 
cluster in Central Florida. At the same 40% scale for Hispanic whites, both levels of aggregation detected the same high
-risk cluster in the Tampa area, but only the block group analysis detected the low-risk regional cluster surrounding it. 
We found significant overlap between the 2 levels of aggregation in a southeast cluster, but the census tract analysis 
detected an adjacent, small, low-risk cluster, and the high-risk cluster detected by census tract analysis was larger. 
Although we detected clusters consistently at multiple scales, we also found variation, particularly for small clusters. 
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The Bernoulli method detected clusters for blacks that had an exact overlay at the 20% and 50% scales, but the 5% 
scale detected only 1 partial overlay, and the 2% scale detected a small, disconnected cluster in the general area. All of 
these clusters were significant. The largest relative risk was at the 2% scale, and the most local risk homogeneity was at 
the 5% scale. Figure 2 also shows the benefit of evaluating secondary clusters; we found a significant island of high risk 
surrounded by a large area of low risk for Hispanic whites at the 40% scale, block group level of analysis.

Figure 2. The difference in results between the Poisson and Bernoulli methods, aggregation at the census tract and 

block group level, and scale at 50% and 1%. A, comparison of results from Poisson vs Bernoulli methods; B, 

comparison of results from different units of analysis (census tracts vs block group); C, comparison of results at 
different scales: D, secondary cluster evaluation with an island of high risk in a region of low risk. To preserve 

confidentiality, maps are presented without points of reference.

The Union County cluster was identified only at the block group level for non-Hispanic whites. Block group analysis at 
the scales of 10%, 15%, and 20% identified the location of the correctional facility in a significant cluster (relative risk, 
2.0–4.7).

Discussion
All analyses detected an area in South Florida, Area A, as a high risk area for late-stage diagnosis of CRC and, 
therefore, an area that should be a high priority area for CRC screening interventions. Because both the Poisson 
method and Bernoulli method (which does not require population data) detected a cluster in the same general area, 
this cluster is unlikely to be a spurious result of denominator problems. 

Some clusters were detected consistently but were not statistically significant by any method or at any aggregation or 
scale. A sample size of 10,000 cases would be needed in elliptic scans to detect a significant result of a relative risk of 
1.2 (25), leading us to believe that much of our analysis was underpowered. Non-significant cluster areas consistently 
detected at multiple scales and by multiple methods, such as the areas detected by analyzing data on the Cuban 
population, are commonly disregarded on statistical grounds but may warrant epidemiologic attention, particularly if 
the demographic composition of the population matches known risk profiles.
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Incorporating cluster detection into disease surveillance can detect areas of high risk 1) to target for intervention and 
2) to drive etiologic research. For screenable cancers, the Bernoulli method should be ideal for detecting communities 
for intervention because it detects areas at risk for late-stage diagnosis regardless of underlying rates of disease. 
However, using only case-level data reduces power and may miss important clusters. Evaluating the results of the 
Poisson and Bernoulli methods together may help detect areas with low screening rates. Communities with clusters of 
low risk for late-stage incidence but high risk for the ratio of late- to early-stage diagnoses may identify areas of public 
health importance; the low rates may be artificial, due to limited population-based screening, and these areas could be 
missed by using the Poisson analysis alone. However, we found this scenario only in our analysis of non-Hispanic 
whites.

Only the analysis of data on non-Hispanic whites detected the known cluster in Union County. That other analyses did 
not detect this cluster may also be a function of low power. Using higher P values would increase sensitivity, but 
ascertaining whether a non-significant cluster has public health importance may not be feasible.

Our study had numerous limitations in addition to low power. We were unable to address lag time from screening to 
diagnosis or any misclassification errors that may have resulted from inaccurate geocoding. We also used real-world 
data (not simulated data with known clusters) so we could not compare our results with a known right answer, except 
for the Union County cluster. Improving the quality of geocoding could reduce the rate of misclassification and 
increase the number of cases in the analysis, thereby reducing the potential for bias and amplify power. Correctional 
facilities often report cases by using post office boxes as addresses, but we excluded cases not geocoded to a street 
address. A review of case-level address data and eliminating duplicate records could correct this problem (an 
institution’s street address can be identified through Internet search). This method could improve geocoding from 
other reporting institutions with high rates of post office boxes, such as nursing homes, as well as inform researchers 
which clusters might be institutionally based clusters, that is, driven by the location of group-living facilities.

Another potential limitation is the classification of Cubans in the Florida Cancer Registry data. Cancer registries 
supplement the field “Hispanic origin” with information on place of birth, which is found on death certificates. Florida 
data on Hispanic origin has been documented to be 97% accurate (37). In our data, the percentage of people who died 
from CRC was highest among Cubans (33%); this rate was higher than the rate for Hispanic and non-Hispanic blacks 
(32%), Hispanic whites (26%), and non-Hispanic whites (32%); 18% of Cubans died from early-stage CRC, compared 
with 44% from late-stage CRC. Therefore, cases of early-stage CRC may have been misclassified as unknown or as 
general Hispanic ethnicity more often than late-stage cases. 

And, most challenging, using an iterative, multimethod approach delivered varying results. The default software 
setting of a 50% scale often 1) results in large clusters that are not useful for prioritizing public health resources and 2) 
masks small clusters that may have public health significance. But using a multimethod approach leaves the researcher 
without an answer to this question: where should we target screening interventions? One tactic is to target areas 
consistently detected through visual inspection of the maps of clusters and to use GIS overlay functions (eg, intersects) 
to identify areas that are consistently identified as a high-risk cluster across multiple scales, aggregation, and methods. 
Another tactic is to use the Gini coefficient (a measure of statistical dispersion) available in SaTScan. The larger the 
Gini coefficient, the greater the heterogeneity of the population; it can be applied in the same way that the coefficient 
of determination (R ) is applied to aid model selection (38). Unfortunately, how to employ the Gini coefficient is not 
described in the SaTScan user guide. Another tactic is to use Visual Inquiry Toolkit, free software that assists SaTScan 
users in choosing quantitatively appropriate areas through geovisual analytics (www.geovista.psu.edu/VIT/). 
Unfortunately, the lack of user support and routine maintenance renders this software inappropriate for wide-scale 
use. 

Our study had numerous strengths. We demonstrated several methods for finding suitable locations for intensive 
screening for CRC. We tested those methods on a large, diverse, real-world data set, and evaluated one of the most 
commonly used cluster-detection software products: SaTScan. This software’s spatial scan is one of the best for power, 
and although it has low levels of sensitivity, it is comparable with other similar products and results in fewer false 
positives (25,26). SaTScan is free, was developed partially with funding from the CDC and Prevention and the National 
Cancer Institute, has a detailed manual and strong user support, and is maintained financially — making it an 
appropriate and conservative public health application for identifying target communities for enhanced screening for 
CRC.

No single scale or method in our study detected all significant clusters of late-stage diagnosis of CRC, and significance 
depended on the population size, the level of risk, and the population density of the demographic group examined. 
However, a perfunctory PubMed review (conducted June 30, 2013; keyword “SaTScan”; English language only; 
spatiotemporal scans excluded) of the 20 most recent studies that used SaTScan showed that only 3 studies used a 
range of scales; more than half omitted details on the scale used and any other methods used; and only 3 provided a 
rationale for the scale selected. This review suggests that many health researchers are unaware of the influence on 
results of the choice of method used for spatial analysis. Combining multiple models at different scales is appropriate 
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for detecting areas of public health importance, but there remains a need to establish best practices for a systematic 
approach. Such an approach would help to ensure that clusters are “real” (ie, that the clusters are amenable to public 
health intervention or will contribute to etiologic knowledge). A protocol should be established so that analysis is 
replicable and the potential for false positives is reduced.
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Tables

Table 1. Case Characteristics, Colorectal Cancers Diagnosed 2006–2010 
Among Florida Residents

Characteristic

Cuban Hispanic White Non-Hispanic White
Hispanic and Non-

Hispanic Black

Total 
Cases in 
Registry

Cases 
Selected 
for Study

Total 
Cases in 
Registry

Cases 
Selected 
for Study

Total 
Cases in 
Registry

Cases 
Selected 
for Study

Total 
Cases in 
Registry

Cases 
Selected 
for Study

Total no. of cases 2,036 1,501 4,938 3,488 39,028 28,826 5,688 3,780

Men, % of cases 53.3 54.8 51.9 51.6 52.1 51.9 49.8 49.4

Stage at diagnosis, % of cases

Late stage 56.8 54.3 51.9 51.3 49.5 52.1 52.7 59.0

Unknown or 

unstaged

6.8 3.5 10.1 5.0 9.0 4.8 9.1 4.9

Mean age of cases, 
y

69.2 71.6 67.2 70.6 70.3 72.4 63.7 67.4

Age, % of cases

≥50 91.9 NA 88.0 NA 92.7 NA 85.4 NA

≥65 67.8 74.6 61.8 70.3 68.4 74.0 48.3 57.4

≥75 39.4 43.5 34.5 38.8 42.4 45.8 23.5 27.5

Diagnosis of 
adenocarcinoma, 

%

92.2 NA 90.0 NA 90.0 NA 88.9 NA

Autopsy did not 
indicate colorectal 

cancer, %

<.001 NA <.001 NA <.001 NA <.001 NA

Year of diagnosis, % of cases

2006 23.1 24.5 19.7 19.6 21.5 21.4 19.8 19.3

2007 21.6 21.7 19.4 19.4 21.1 21.0 19.3 19.0

2008 21.4 20.5 20.6 19.8 20.6 20.6 20.5 21.3

2009 17.9 18.2 20.4 20.7 19.0 19.0 21.1 20.0

2010 16.0 15.2 19.7 20.4 17.8 18.0 19.3 20.3

Abbreviations: NA, not applicable because of case selection criteria.
This racial/ethnic category is not mutually exclusive from the other racial/ethnic categories in this table. Most Cubans in 

this study were white, white Cubans were counted also as Hispanic whites, and black Cubans were counted as Hispanic 
blacks.
Includes white Cubans.
Includes black Cubans.

a b c

a

b

c 
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Table 2. Example Summaries of Clusters of Late-Stage Diagnosis of 
Colorectal Cancer, by Method, Scale, and Aggregation, Florida 2006–2010

Scale, 
(%)

Location

Cluster Local P Value

Block 
Group

Census 
Tract

Block Group, 
Range (SD)

Census Tract, 
Range (SD)

Block 
Group

Census 
Tract

Black Cluster Summary (Bernoulli Method)

1

Area A

No 
cluster

1.60 No cluster 0–1.7 (0.8) No 
cluster

.18

2 1.55 1.48 0–1.7 (0.6) 0–1.7 (0.8) .10 .06

5 1.37 1.43 0–1.7 (0.7) 0–1.7 (0.8) .04 .05

10 1.37 1.43 0–1.7 (0.7) 0–1.7 (0.8) .04 .05

15 1.37 1.43 0–1.7 (0.7) 0–1.7 (0.8) .04 .05

20 1.37

No cluster

0–1.7 (0.7)

No cluster

.04 .05

25 1.37 0–1.7 (0.7) .04

No cluster

30 1.37 0–1.7 (0.7) .04

35 1.37 0–1.7 (0.7) .04

40 1.37 0–1.7 (0.7) .04

45 1.37 0–1.7 (0.7) .04

50 1.38 0–1.7 (0.7) .04

20

Area A, plus a 
significantly larger 

region

No 
cluster

1.19

No cluster

0–1.7 (0.7)

No 
cluster

.05

25 1.19 0–1.7 (0.7) .05

30 1.19 0–1.7 (0.7) .05

35 1.19 0–1.7 (0.7) .05

40 1.19 0–1.7 (0.7) .05

45 1.19 0–1.7 (0.7) .05

50 1.19 0–1.7 (0.7) .05

50 Area B No 
cluster

1.59 No cluster 0–1.7 (0.8) No 
cluster

.56

Black Cluster Summary (Poisson Method)

1

Area A subsection 1

No 
cluster

4.00 No cluster 1.7–6.4 (1.7) No 
cluster

.03

2 No 
cluster

4.00 No cluster 1.7–6.4 (1.7) No 
cluster

.03

5 Area A 1.55 1.43 0–45.3 (4.1) 0–1.7 (0.8) .27 .05

10 1.55 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

15 1.51 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

20 1.55 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

25 1.55 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

25 1.55 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

30 1.55 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

35 1.55 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

40 1.51 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

a
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Scale, 

(%)

Location

Cluster Local P Value

Block 

Group

Census 

Tract

Block Group, 

Range (SD)

Census Tract, 

Range (SD)

Block 

Group

Census 

Tract

45 1.51 1.53 0–45.3 (4.6) 0–33.3 (4.2) .12 .03

50 No 
cluster

1.53 No cluster 0–33.3 (4.2) No 
cluster

.03

1 Area G subsection 1 No 
cluster

0 No cluster 0 No 
cluster

.26

1
Area G subsection 2

0 No cluster 0 No cluster .48 No cluster

2 0 No cluster 0 No cluster .48 No cluster

2 Area H 0.35 No cluster 0–32.4 (2.0) No cluster .32 No cluster

5

Area G

0.38 No cluster 0–32.4 (2.1) No cluster <.001 No cluster

10 0.38 0.42 0–32.4 (2.1) 0–11.2 (1.2) <.001 <.001

15 0.38 0.42 0–32.4 (2.1) 0–11.2 (1.2) <.001 <.001

20 0.38 0.42 0–32.4 (2.1) 0–11.2 (1.2) <.001 <.001

25 0.38 0.42 0–32.4 (2.1) 0–11.2 (1.2) <.001 <.001

35 0.38 0.42 0–32.4 (2.1) 0–11.2 (1.2) <.001 <.001

40 0.38 0.42 0–32.4 (2.1) 0–11.2 (1.2) <.001 <.001

45 0.38 0.42 0–32.4 (2.1) 0–11.2 (1.2) <.001 <.001

50 0.38 0.42 0–32.4 (2.1) 0–11.2 (1.2) <.001 <.001

Cuban Cluster Summary (Bernoulli Method)

1 Area A subsection 1 1.61 1.61 0–1.6 (0.72) 0–1.6 (0.76) .40 .95

2

Area A subsection 2

1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .61 .48

5 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .68 .53

10 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .70 .56

15 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .70 .56

20 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .70 .57

25 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .71 .57

30 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .71 .57

35 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .71 .57

40 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .71 .58

45 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .70 .58

50 1.61 1.62 0–1.6 (0.56) 0–1.6 (0.76) .90 .58

Hispanic White Cluster Summary (Bernoulli Method)

1 Area A 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .24 .12

2 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .27 .14

5 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .29 .16

10 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16

15 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16

20 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16

25 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16

30 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16
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Scale, 

(%)

Location

Cluster Local P Value

Block 

Group

Census 

Tract

Block Group, 

Range (SD)

Census Tract, 

Range (SD)

Block 

Group

Census 

Tract

35 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16

40 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16

45 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16

50 1.55 1.53 0–1.7 (0.80) 0–1.7 (0.71) .30 .16

Hispanic White Summary (Poisson Method)

10

Area A

No 

cluster

1.41 No cluster 0–10.0 (1.70) No 

cluster

<.001

25 1.41 1.38 0–50.7 (3.67) 0–10.04 (1.46) <.001 <.001

30 1.41 1.36 0–50.7 (3.67) 0–42.1 (2.72) <.001 <.001

35 1.40 No cluster 0–10.0 (1.29) No cluster <.001 No cluster

40 1.41 No cluster 0–42.1 (2.71) No cluster <.001 No cluster

45 1.40 No cluster 0–82.7 (3.85) No cluster <.001 No cluster

50 1.40 1.37 0–82.7 (3.85) 0–104.4 (4.72) <.001 <.001

25
Area a (high risk)

1.54 No cluster 0–5.0 (1.02) No cluster .07 No cluster

30 1.54 No cluster 0–5.0 (1.02) No cluster .07 No cluster

2

Area A subsection 1

No 
cluster

2.00 No cluster 0–10.0 (2.48) No 
cluster

.05

5 1.57 1.51 0–27.2 (3.41) 0–10.0 (1.90) .02 <.001

10 1.46 No cluster 0–27.2 (3.18) No cluster <.001 No cluster

15 1.37 1.43 0–50.7 (3.57) 0–10.0 (1.52) <.001 <.001

20 1.43 1.36 0–50.7 (4.29) 0–10.0 (1.50) <.001 <.001

35 No 
cluster

1.31 No cluster 0–121.4 (7.77) No 
cluster

.15

40 No 
cluster

1.49 No cluster 0–25.7 (2.89) No 
cluster

.33

45 No 
cluster

1.49 No cluster 0–25.7 (2.89) No 
cluster

.33

5

Area A subsection 2

1.58 1.49 0–52.2 (6.34) 0–6.6 (1.27) .02 .26

10 1.58 No cluster 0–41.1 (5.10) No cluster .48 No cluster

15 1.39 1.41 0–44.64 (3.43) 0–6.79 (1.09) <.001 <.001

20 1.41 1.40 0–16.2 (1.91) 0–4.92 (0.79) .04 .06

35 No 
cluster

1.36 No cluster 0–10.0 (1.29) No 
cluster

<.001

40 No 

cluster

1.37 No cluster 0–10.0 (1.25) No 

cluster

<.001

45 No 
cluster

1.37 No cluster 0–10.0 (1.25) No 
cluster

<.001

5 Area A subsection 3 1.71 No cluster 0–44.4 (5.52) No cluster .03 No cluster

15 Area C 1.56 1.68 0–21.7 (2.96) 0–15.3 (1.05) .12 .08

20 1.68 No cluster 0–22.11 (3.02) No cluster .04 No cluster

25 No 
cluster

1.53 No cluster 0–15.0 (2.01) No 
cluster

.17

b
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Scale, 

(%)

Location

Cluster Local P Value

Block 

Group

Census 

Tract

Block Group, 

Range (SD)

Census Tract, 

Range (SD)

Block 

Group

Census 

Tract

30 No 
cluster

1.55 No cluster 0–22.0 (3.01) No 
cluster

.09

35 1.72 1.58 0–15.2 (2.04) 0–15.4 (2.07) .05 .04

40 1.61 1.61 0–47.3 (3.97) 0–15.7 (2.10) .04 .01

45 1.67 1.61 0–48.7 (4.08) 0–15.7 (2.10) <.001 .01

50 1.67 1.69 0–48.7 (4.08) 0–16.2 (2.17) <.001 <.001

20

Area a (low risk)

0 No cluster 0–0 (0) No cluster .62 No cluster

50 No 
cluster

0.17 No cluster 0–1.5 (0.35) No 
cluster

.87

1

Area I

0.23 0.24 0–142.5 (6.31) 0–227.5 (12.96) .28 .32

2 0.32 0.25 0–142.5 (5.73) 0–230.4 (13.10) .06 .41

5 0.34 No cluster 0–153.6 (6.18) No cluster .32 No cluster

10 0.61 0.65 0–148.7 (5.38) 0–234.5 (7.47) <.001 .06

40 0.68 No cluster 0–169.70 

(6.31)

No cluster .13 No cluster

45 0.71 No cluster 0–176.7 (6.57) No cluster .74 No cluster

50 0.71 No cluster 0–176.6 (6.57) No cluster .74 No cluster

10 Area J 0.66 No cluster 0–34.4 (2.41) No cluster .05 No cluster

Non-Hispanic whites are excluded from table for simplicity.
Lower case “a” indicates a smaller risk cluster adjacent to a larger cluster.

Table 3. Characteristics of Persistent Cluster Area A, Cluster-Detection 
Analysis of Late-Stage Diagnosis of Colorectal Cancer, by Method, Scale, 
and Aggregation, Florida, 2006–2010

Characteristic Black Cuban White Hispanic

Significant at P <.10

No. of scales 11 of 12 0 of 12 11 of 12

Unit of aggregation (block group or census tract) Both Neither Both

Method used (Bernoulli or Poisson) Both Bernoulli Both

Area selected based on

Scale, % of population 40 NA 50

Aggregation (unit of analysis) Census tract NA Census tract

Method used Poisson NA Poisson

Relative risk 1.53 NA 1.36

P value .03 NA <.001

County Miami-Dade NA Miami-Dade and Broward

No. of late-stage cases 197 NA 1,652

Demographics

Population total in 2010 17,036 NA 72,967

b

a

b

a
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Characteristic Black Cuban White Hispanic

Significant at P <.10

Hispanic, % 14 NA 17

Non-white, % 50 NA 54%

Below poverty, % 40 NA 31%

Selection of area of geographic interest was based on P value, magnitude of risk, overlap, and evaluation of other 
persistent, significant clusters at that scale. Tract-level aggregation was selected to match with available area-based, 
sociodemographic information.

Appendix. Sample of Comparisons of P Values Generated 
by Using 9,999 versus 999 Iterations and P Values 
Generated by Using Monte Carlo versus Gumbel-based 
Iterations

Cluster 
No.

Race and 
Ethnicity Model Scale Unit

Itera-
tions

Time P Value

(8GB-RAM, 64-
Bit Java)

Standard Monte 
Carlo

Gumbel Based

1 HW BM 50% BG 9,999 8 h, 57 s .2955000000000 .3017234034163

1 HW BM 50% BG 999 49 m, 3 s .2900000000000 .3015861971047

1 HW BM 50% BG 999 47 0, 7 s Gumbel only .3015861971047

1 HW PM 20% BG 9,999 14 h, 46 m, 20 
s

.0001000000000 .0000000321690

2 HW PM 20% BG 9,999 14 h, 46 m, 20 

s

.0332000000000 .0339398662811

3 HW PM 20% BG 9,999 14 h, 46 m, 20 
s

.0450000000000 .0454292744735

4 HW PM 20% BG 9,999 14 h, 46 m, 20 
s

.6302000000000 .6253564438889

1 HW PM 20% BG 999 2 h, 9 m, 46 s .0010000000001 .0000000447739

2 HW PM 20% BG 999 2 h, 9 m, 46 s .0350000000001 .0386860985062

3 HW PM 20% BG 999 2 h, 9 m, 46 s .0460000000001 .0440007774959

4 HW PM 20% BG 999 2 h, 9 m, 46 s .6350000000001 .6173587281736

1 HW PM 20% BG 999 2 h, 6 m, 8 s Gumbel only .0000000447739

2 HW PM 20% BG 999 2 h, 6 m, 8 s Gumbel only .0386860985062

3 HW PM 20% BG 999 2 h, 6 m, 8 s Gumbel only .0440007774959

4 HW PM 20% BG 999 2 h, 6 m, 8 s Gumbel only .6173587281736

1 Black BM 30% CT 9,999 59 m, 56 s .0206000000000 .0239400635312

2 Black BM 30% CT 9,999 59 m, 56 s .7421000000000 .7373982545068

1 Black BM 30% CT 999 8 m, 43 s .0230000000000 .0233393051534

2 Black BM 30% CT 999 8 m, 43 s .7420000000000 .7335625961962

1 Black BM 30% CT 999 8 m, 37 s Gumbel only .0233393051534

2 Black BM 30% CT 999 8 m, 37 s Gumbel only .7335625961962

1 Black PM 10% CT 9,999 39 m, 50 s .0060000000000 .0057729635603

2 Black PM 10% CT 9,999 39 m, 50 s .0340000000000 .0326087958460

a

a
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Cluster 

No.

Race and 

Ethnicity Model Scale Unit

Itera-

tions

Time P Value

(8GB-RAM, 64-

Bit Java)

Standard Monte 

Carlo
Gumbel Based

3 Black PM 10% CT 9,999 39 m, 50 s .1540000000000 .1454212632260

1 Black PM 10% CT 999 7 m, 47 s .0060000000001 .0057729635604

2 Black PM 10% CT 999 7 m, 47 s .0340000000001 .0326087958465

3 Black PM 10% CT 999 7 m, 47 s .1540000000001 .1454212632261

1 Black PM 10% CT 999 7 m, 45 s Gumbel only .0057729635604

2 Black PM 10% CT 999 7 m, 45 s Gumbel only .0326087958465

3 Black PM 10% CT 999 7 m, 45 s Gumbel only .1454212632261

Abbreviations: HW, Hispanic white; BM, Bernoulli model; PM, Poisson model, BG, block group; CT, census tract.
“Gumbel only” means only Gumble-based were run; otherwise both the default and Gumbel were run simultaneously. 

Times varied with network traffic as well as concurrent stand-alone computer use.

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. 
Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, 
or the authors' affiliated institutions.
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