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PEER REVIEWED 

This collection of articles in Preventing Chronic Disease (PCD) 
brings together scientists and practitioners from the breadth of 
public health and the social sciences to demonstrate how geospa-
tial perspectives can contribute to understanding and addressing 
the intersection of chronic disease and COVID-19, a respiratory 
disease caused by the SARS-CoV-2 virus. The COVID-19 pan-
demic has affected chronic disease in many complex ways. Early 
in the pandemic, it became clear that people with chronic condi-
tions and those in older age groups were at the highest risk for 
COVID-19 hospitalization and death (1–3). Racial and ethnic 
minority populations experienced disproportionately worse health 
outcomes (4). Pandemic-related disruptions to the health care sys-
tem and individuals’ concerns about health care–related exposures 
affected chronic disease management: in-person visits for people 
with chronic conditions declined, supply chain disruptions led to 
shortages of medications, and the number of cancer screenings, 
treatments, and surgeries declined in the United States (5–7). More 
recent evidence suggests that COVID-19 may exacerbate existing 
chronic diseases and increase the risk of developing new chronic 
conditions, such as diabetes in adults (8,9), type 1 diabetes in chil-
dren (10), neurological disorders (11), dementia (12), mental ill-
ness (13), and cardiovascular disease (14). In addition, an estim-
ated one-half of COVID-19 survivors worldwide continue to have 
COVID-related health problems 6 months or more after recovery 
from the acute infection, making “long COVID” our newest and 
still largely unresearched chronic disease (15). Finally, social and 
economic inequities underlie disparities in incidence of both 
chronic diseases and COVID-19, an intersection that has been 
labeled a syndemic, defined as the “presence of 2 or more disease 
states that adversely interact with each other, negatively affecting 
the mutual course of each disease trajectory, enhancing vulnerabil-

ity, and which are made more deleterious by experienced inequit-
ies” (16). 

Space and place are key elements of individual and population 
health — social and environmental determinants of health are em-
bedded within place, and health outcomes and inequities typically 
exhibit strong geographic variation (17,18). Thus, geospatial per-
spectives, which address aspects of space and place, play a key 
role in the public health response to the COVID-19 pandemic and 
its intersection with chronic disease (19,20). Here, we consider 
geospatial perspectives to include the broad swath of geospatial 
data, analytical techniques, and technologies encompassed in the 
field of geographic information science and technology (GIS&T) 
(21). Geospatial data on disease incidence and mortality, available 
at the individual address level or aggregated to small areas, allow 
us to understand the geographic distribution of COVID-19 and the 
chronic disease burden and their spatial coincidence with other 
measures. Geospatial data can also capture community-level so-
cioeconomic characteristics, such as indicators of race, ethnicity, 
and class, which serve to illuminate interrelated disparities in the 
incidence of COVID-19 and chronic disease. 

Geospatial analytical techniques support the investigation of eco-
logical and individual-level associations among chronic diseases 
and COVID-19 outcomes. These techniques include mapping and 
computational and statistical methods adapted explicitly for spa-
tial data analysis, such as geographically weighted regression. In-
corporating geospatial data about environmental characteristics 
and human dynamics, such as local climate and human mobility 
patterns, can inform analyses of how individual and environment-
al characteristics interact to produce population-level outcomes of 
COVID-19 and chronic disease. Geospatial technologies, such as 
GPS (global positioning systems), satellite remote sensing, and 
geographic information systems (GIS) software, provide the tech-
nological infrastructure to collect and integrate these geospatial 
data, apply these geospatial analytical techniques, and publicly 
disseminate data and information through web-based mapping and 
geospatial data dashboards. 

In this collection, the commentary by Smith and Mennis provides 
an overview of the role of GIS&T in responding to the COVID-19 
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pandemic, emphasizing the use of geospatial technologies for col-
lecting data on disease prevalence, analyzing the spread of infec-
tion, communicating with the public, and optimizing the distribu-
tion of resources (22). The article is enlightening in depicting the 
use of GIS&T in the initial phase of the pandemic, when geospa-
tial data and analyses were key to understanding the spread and 
transmission of the disease and the efficacy of nonpharmaceutical 
interventions, such as business closures and government direct-
ives that limited social gatherings. 

Other contributions in this collection highlight how the authors 
used GIS&T to inform chronic disease and COVID-19–related 
policies, interventions, and public health communications. Foraker 
et al illustrate one such approach for leveraging GIS&T to support 
spatially directed interventions by developing a custom geospatial 
software application for visualizing the locations of COVID-19 
cases at the individual residence level (23). This interactive map-
ping application can target public health responses to emerging 
disease hotspots and highlights the challenge to regional analyses 
of residential address-level data, which are typically restricted to 
authorized public health officials within a single jurisdiction. The 
research brief by Moise describes a spatial interpolation method 
that disaggregates zip code–level rates of COVID-19 to the census 
block group–level to facilitate the use of consistent, small-area 
spatial support when measuring associations with selected meas-
ures of social determinants of health (24). 

Many of the contributions in this PCD collection focus on how 
GIS&T can be used to investigate the association between com-
munity attributes and health disparities, measures of social determ-
inants of health, or risk factors related to chronic disease and 
COVID-19 outcomes. For example, the GIS Snapshots article by 
DuClos et al reports on a web browser–based software application 
that displays choropleth maps of chronic disease–related risk 
factors, hospitalizations, mortality, and the Economic Hardship In-
dex at the county and zip code levels (25). This tool was designed 
to inform COVID-19 preparedness and response efforts at the loc-
al level by identifying communities particularly vulnerable to 
COVID-19. This map application provides an example of how 
state and local health departments work to provide access to 
substate-level data on chronic disease. 

Two articles in this PCD collection examined whether the preval-
ence of a chronic disease geographically coincides with the preval-
ence of COVID-19. In research by Embury et al, subcounty data 
from San Diego County, California (which includes urban and rur-
al areas), were used to explore whether spatial modeling of chron-
ic disease rates and selected social determinants of health meas-
ures could identify communities most vulnerable to COVID-19 
(26). The authors divided data on the pandemic into 5 time frames 
and examined how relationships between social determinants of 

health, chronic disease, and COVID-19 changed over time. Jansen 
et al tested whether the prevalence of respiratory illness was asso-
ciated with COVID-19 mortality rates among older adults in Con-
necticut and Rhode Island (27). Educational attainment decreased 
the strength of the association, demonstrating that our understand-
ing of COVID-19 outcomes can be improved by accounting for 
selected social determinants of health. 

The pandemic’s impact on food supply and affordability, concur-
rent with rising unemployment and mobility restrictions, made 
food access difficult for many households. Lowery et al used map-
ping to illustrate how the closure of food stores accepting Supple-
mental Nutrition Assistance Program (SNAP) via electronic bene-
fits transfer (EBT) during the pandemic reduced food access with-
in walking distance in a community in San Diego, California, 
where food insecurity was prevalent before the pandemic (28). Al-
ternatively, Beese et al showed that food access for SNAP parti-
cipants in Washington State during the pandemic was enhanced by 
expanding food delivery services (29). Their maps showed that 
online food delivery services by grocery stores accepting SNAP 
via EBT increased substantially during the pandemic, enhancing 
food access for many low-income communities in the state. 
However, certain barriers to online delivery services, such as lack 
of broadband access, remain a challenge, particularly in rural 
areas. 

Other research in this PCD collection focuses on the use of 
GIS&T to assess factors associated with the efficacy of pharma-
ceutical and nonpharmaceutical interventions to reduce transmis-
sion of SARS CoV-2 infection. In their GIS Snapshots article, Mi-
chaels et al found a significant positive correlation between house-
hold internet access and COVID-19 vaccination rates at the zip 
code–level in New York City and used bivariate choropleth map-
ping to display the areas most at risk of COVID-19 and those with 
the lowest levels of vaccination and internet access (30). When the 
analysis was conducted, many vaccine providers in New York 
City were offering only online systems to schedule appointments. 
The article highlights the importance of considering the digital 
health divide in addressing chronic disease, COVID-19, and health 
inequities. 

Li et al leveraged a large, commercial geospatial data set of mobil-
ity data collected from GPS-enabled mobile phones in a national-
level analysis of the association of COVID-19 outcomes with de-
creases in travel to common activity space locations, such as work 
and shopping (31). This research incorporated time lags in tests of 
association to investigate whether stay-at-home directives, busi-
ness closures, and related policies that restricted mobility success-
fully reduced COVID-19 prevalence. Results showed a strong as-
sociation between reductions in mobility to certain locations, such 
as workplaces, and declines in infection rates, particularly in urb-
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an areas, and demonstrated the efficacy of stay-at-home directives how COVID-19 and chronic disease intersect to produce individu-
in the early stages of the pandemic. al health outcomes. 

This PCD collection demonstrates the diverse ways that GIS&T 
can support research and policy at the intersection of COVID-19 
and chronic disease, including 1) the role of social and environ-
mental determinants of health, 2) pharmaceutical and nonpharma-
ceutical interventions to mitigate the impact of the pandemic, and 
3) data and information dissemination for public health practition-
ers and the public. However, we acknowledge certain limitations 
of the collection. These articles mainly focus on the early phases 
of the pandemic; many were written before the Delta and Omic-
ron waves. Little attention was paid to areas of the US that, as of 
the time of this writing in May 2022, have had the highest rates of 
COVID-19 mortality, such as the Southeast, regions with high 
levels of social vulnerability, and rural areas (32). In addition, the 
collection does not consider the role of GIS&T in preventing or 
mitigating future waves of COVID-19 or the impact that COVID-
19 may have on future geographic patterns of chronic disease. Fur-
thermore, only one article in this collection was authored by prac-
titioners at a public health agency (25), limiting our understanding 
of how geospatial perspectives on COVID-19 and chronic disease 
were deployed on the ground during the pandemic. 

One important lesson of the COVID-19 pandemic is that the pub-
lic health community cannot afford to continue regarding infec-
tious disease and chronic disease as separate entities. Public health 
leaders have noted that “[a] challenge related to long-term 
COVID-19 sequelae is that we do not know yet the extent that 
COVID-19 exacerbates chronic disease, causes chronic disease, or 
will be determined a chronic disease unto itself” (33). Given the 
emerging evidence that COVID-19 not only exacerbates preexist-
ing chronic disease but may also be a risk factor for developing 
heart disease, type 1 diabetes among children, depression, and oth-
er chronic diseases, geospatial approaches should be employed to 
identify areas of high rates of COVID-19 incidence that can be tar-
geted for chronic disease surveillance, prevention, and the provi-
sion of health services. 

We recognize that prevention and control of COVID-19 depend on 
prevention and management of chronic disease and vice versa, and 
the level of success in both depends on addressing the structural 
inequities in economic opportunity, racial and ethnic segregation, 
and resource accessibility that act as distal forces on more proxim-
al social and environmental determinants of health, such as those 
associated with individual health behaviors. These structural 
mechanisms that affect health outcomes typically materialize in 
differences observed among places and regions. Geospatial ap-
proaches are thus critical for ecological analyses of disease incid-
ence rates and for capturing and analyzing data on the structural 
social and environmental exposures that are key to understanding 

Another lesson from the COVID-19 pandemic is the need for in-
terdisciplinary collaboration across the fields of public health, so-
cial science, and GIS&T and across teaching, research, and prac-
tice. Only 3 articles in this collection represent collaborations 
between epidemiologists or other public health professionals and 
geographers, who often serve as key GIS&T personnel in uni-
versities (22,26,31). We recommend that medical and public 
health investigators include GIS&T experts on their research 
teams, because they can enhance the translation of complex health 
findings by contributing to geospatial data acquisition and analyt-
ical plans adapted for geospatial data analysis during the earliest 
phases of research design. These experts can also identify geospa-
tial data policies that may affect health studies, including the US 
Census Bureau’s 2020 Census differential privacy algorithm (34) 
or requirements for the maintenance of individual privacy in 
health research (35). GIS&T experts can also provide insights into 
how the axiomatic properties of spatial data (36) affect inferential 
statistical analyses, including violations of statistical independ-
ence (37), how the choice of geographic aggregation method can 
produce different results (the modifiable areal unit problem) (38), 
that statistical significance of coefficients often varies from place 
to place (spatial heterogeneity) (39), and the impact of data uncer-
tainty on health studies (40–42). 

The small number of collaborative articles in this collection also 
highlights the need for higher education to be an agent of change 
for building these collaborative networks. Academic public health 
programs can enhance the capacity for GIS&T in public health 
practice by partnering with the academic units within their institu-
tions that already have GIS&T expertise. Graduates from such 
programs will be more employable in public health fields than 
graduates trained in GIS&T or public health alone. From a practi-
tioner perspective, epidemiologists working in state and local 
health departments can benefit from continued and rigorous 
GIS&T training and resources, such as the Building GIS Capacity 
for Chronic Disease Surveillance program at the Centers for Dis-
ease Control and Prevention (43). 

The most powerful contribution that GIS&T scientists can make in 
a rapidly changing public health environment is to use sound geo-
spatial methods in the service of generating evidence-based public 
health policies. To ensure the choice of appropriate public health 
research questions and concordant analytical designs, GIS&T sci-
entists should collaborate with public health researchers and be 
aware of how issues of health disparities and legacies of discrim-
ination in health care (44) can affect geospatial health research 
designs and analyses. For example, nearly 23% of states reported 
that data on race and ethnicity were incomplete for COVID-19 
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cases in the early part of the pandemic, making it difficult to meas-
ure the pandemic’s impact on racial and minority populations (45). 
Qualitative geospatial techniques, such as those using georefer-
enced narrative data, can also play a central role in eliciting the 
lived experience of disenfranchised people and in examining how 
concentrated social and economic disadvantage, collective effic-
acy, exposure to violence, and other community-level characterist-
ics shape individual health behaviors and outcomes that produce 
observed population-level health inequities (46). 

Finally, we note that the pandemic has shed light on the need to 
strengthen national public health data infrastructures that support 
the integration of chronic and infectious disease data across vari-
ous government agencies and facilitate public health data dissem-
ination and communication for researchers, policy makers, and the 
public (47,48). This PCD collection highlights the critical need for 
incorporating a geospatial perspective into such efforts beyond the 
multiplicity of ad hoc mapping dashboards that have popped up 
over the past 2 years. Enhancing knowledge of cartography and in-
teractive geospatial data visualization among software developers 
in the public health community is key to ensuring such tools are 
effective for science communication and assisting in public health 
intervention and prevention efforts. 

In addition, eliminating barriers to the routine collection, geocod-
ing, and sharing of residential address–level data in public health 
surveillance systems would provide more actionable data in this 
pandemic and the next. More broadly, the integration of geospa-
tial perspectives into national public health data infrastructure ini-
tiatives to support future research on the intersection of chronic 
and infectious diseases can benefit from the experience of similar 
US government data infrastructure projects related to disaster and 
emergency response, where GIS&T plays a key role (49), such as 
The National Map (50), and the Disaster Risk Resilience Initiative 
(51). Data infrastructure development efforts should also be mind-
ful of the confidentiality requirements for personal health informa-
tion and incorporate recent developments in “geomasking,” which 
aims to preserve the anonymity of georeferenced observations, be-
cause location-based health data can potentially reveal personally 
identifiable information, even when aggregated over small areas 
(46). Some of these proposed efforts may present valuable oppor-
tunities for the new Center for Forecasting and Outbreak Analyt-
ics, launched by the Centers for Disease Control and Prevention in 
April 2022. 

The public health community is only beginning to understand the 
profound and ongoing consequences of the interaction of chronic 
disease and COVID-19. This collection highlights the important 
role of GIS&T in understanding the social and environmental de-
terminants of health that underlie inequities in infectious and 
chronic disease risk factors, ultimately producing the health dis-

parities observed in outcomes from the intersection of COVID-19 
and chronic disease. Interdisciplinary and collaborative efforts to 
expand geospatial perspectives in chronic disease prevention and 
treatment are crucial for responding to COVID-19 and future pan-
demics. 
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Summary 

What is already known about this topic? 

Incorporating geographic information science and technology (GIS&T) into 
COVID-19 pandemic surveillance, modeling, and response enhances un-
derstanding and control of the disease. 

What is added by this report? 

Applications of GIS&T include developing spatial data infrastructures for 
surveillance and data sharing, incorporating mobility data in infectious dis-
ease forecasting, using geospatial technologies for digital contact tracing, 
integrating geographic data in COVID-19 modeling, investigating geograph-
ic social vulnerabilities and health disparities, and communicating the 
status of the disease or status of facilities for return-to-normal operations. 

What are the implications for public health practice? 

Protections for individual privacy and close collaboration among the fields 
of geography, medicine, public health, and public policy to use GIS&T are 
imperative. 

Abstract 
Incorporating geographic information science and technology 
(GIS&T) into COVID-19 pandemic surveillance, modeling, and 
response enhances understanding and control of the disease. Ap-
plications of GIS&T include 1) developing spatial data infrastruc-
tures for surveillance and data sharing, 2) incorporating mobility 
data in infectious disease forecasting, 3) using geospatial technolo-
gies for digital contact tracing, 4) integrating geographic data in 
COVID-19 modeling, 5) investigating geographic social vulnerab-
ilities and health disparities, and 6) communicating the status of 
the disease or status of facilities for return-to-normal operations. 

Locations and availability of personal protective equipment, vent-
ilators, hospital beds, and other items can be optimized with the 
use of GIS&T. Challenges include protection of individual pri-
vacy and civil liberties and closer collaboration among the fields 
of geography, medicine, public health, and public policy. 

Introduction 
The spread of infectious disease is inherently a spatial process; 
therefore, geospatial data, technologies, and analytical methods 
play a critical role in understanding and responding to the 
coronavirus disease 2019 (COVID-19) pandemic. Geographic in-
formation science and technology (GIS&T) is the academic field 
centered on geospatial data and analysis. The field encompasses 
geographic information systems (GIS), spatial statistics and visu-
alization, and location-based data derived from global navigation 
satellite systems (GNSS, eg, global positioning systems [GPS]) 
and remotely sensed imagery. Opportunities for incorporating 
GIS&T into COVID-19 pandemic surveillance, modeling, and re-
sponse include 1) developing spatial data infrastructures (SDI) for 
surveillance and data sharing, 2) incorporating mobility data in in-
fectious disease forecasting, 3) using geospatial technologies for 
digital contact tracing, 4) integrating geographic data in COVID-
19 modeling, 5) investigating geographic health disparities and so-
cial vulnerabilities, and 6) communicating the status of the dis-
ease or status of facilities for return-to-normal operations. Loca-
tions and availability of personal protective equipment, ventilators, 
hospital beds, and other items can be optimized with the use of 
GIS&T. 

Developing Spatial Data Infrastructures
for COVID-19 Surveillance and Data 
Sharing 
Current surveillance of COVID-19 at the national and global 
levels is built on lessons learned from maintaining previously de-
veloped databases of contamination and disease, such as FluNet 
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(1). Disease surveillance systems have been enhanced by the use 
of GIS for monitoring disease outbreaks, facilitating contact tra-
cing, and evaluating the efficacy of interventions. For example, 
Zenilman et al described the application of GIS to a surveillance 
system for sexually transmitted diseases at the Fort Bragg military 
base (2). The assessment of various potential risk factors indic-
ated that geography was the only variable positively associated 
with gonorrhea among study participants. The Connect to Protect 
program is an example of how researcher–community collabora-
tions (or community-based participatory research) can assist pro-
gram planners to efficiently use limited resources (3). Connect to 
Protect, a nongovernmental organization, uses GIS and com-
munity involvement to prioritize resources and outreach activities. 
The research team uses GIS to evaluate the geographic epidemi-
ology of sexually transmitted diseases and HIV among adoles-
cents in 15 US cities and Puerto Rico. Their work led to a shift 
from traditional evaluations of condom use, number of sex part-
ners, and demographic characteristics, to identification of socio-
physical environments. The observation of clusters of cases in 
geographic areas informed research teams on where to apply inter-
ventions. The use of GIS supports the investigation of the social 
and environmental correlates of disease clusters, thereby facilitat-
ing targeted interventions and researcher–community collabora-
tions to assist program planners to efficiently use limited re-
sources (3). 

An important aspect of monitoring the spread of infectious dis-
ease is spatial data infrastructure (SDI), composed of the human 
resources and institutions that create and maintain the foundation 
to which additional spatial data can be attached and used. Key 
components of an SDI include geospatial culture and awareness, 
resources for information and communications technology, com-
mon standards for data integration and interoperability, a legal 
framework for data security and privacy, a common lexicon, the 
use of robust statistical and epidemiological methods, and interdis-
ciplinary collaboration and partnerships (4). Along with the SDI, 
the concepts of open data, crowd sourcing, and data sharing for 
georeferenced health data are important components of real-time 
infectious disease surveillance, particularly in under-resourced set-
tings (5). 

Maps play a key role in communicating the risks and spread of 
COVID-19 (6). Interactive web-based maps and dashboards 
present near–real-time data on morbidity, mortality, and recovery, 
as well as pandemic-related factors such as supply-chain quantit-
ies of personal protective equipment or therapeutics. A dashboard 
developed by Johns Hopkins University in collaboration with 
ESRI (Redlands, California), which originally showed the number 
of COVID-19 cases, deaths, and recoveries, was updated to show 
smaller geographic areas (ie, counties) and detailed infographics 

(7). This type of infographic has been useful for tracking COVID-
19 cases globally and for allocating resources and planning for 
“return-to-normal” conditions. Location-enabled infographics also 
allow for dissemination of knowledge on, for example, the readi-
ness of facilities such as retail outlets to accept customers, or 
schools and campuses to reopen. An interactive dashboard (ESRI, 
Redlands, California), developed for faculty, staff, students, and 
administrators at the University of California, Berkeley, shows the 
status of custodians’ efforts to disinfect university buildings (Fig-
ure). The dashboard is populated in real time as custodial staff 
members complete disinfection of rooms. The room number and 
type (eg, classroom, laboratory, bathroom), the date and time com-
pleted, and the product used for disinfection appear in a pop-up on 
the dashboard when the user selects a building. 

Figure. An interactive dashboard for showing the status of disinfection of 
buildings during the coronavirus disease 2019 (COVID-19) pandemic on the 
campus of the University of California, Berkeley. 

The GIS&T community has long worked toward development of 
the National Spatial Data Infrastructure (NSDI) for the United 
States (8), an effort managed by the US Federal Geographic Data 
Committee (FGDC); facilitated by spatial data interoperability 
standards, such as those developed by the Open Geospatial Con-
sortium (OGC); and recently bolstered by the Geospatial Data Act 
of 2018, a component of H.R.302, the FAA Reauthorization Act 
of 2018. The US NSDI is typically considered an infrastructure for 
geospatial framework data (eg, cadastral and transportation) and 
not necessarily health data; however, just as the events of Septem-
ber 11, 2001, catalyzed the development of enhanced spatial data 
sharing to support disaster response in the United States, the 
COVID-19 pandemic has the potential to spark the improvement 
of health data infrastructures to facilitate spatial data sharing and 
interoperability for health crisis response. A particular challenge is 
that SDIs for responding to a crisis like COVID-19 require shar-
ing data not only among various national and international govern-
ments but, as with the US NSDI, also among various levels of 
government, including the federal, state, and county levels. Cor-
porate partners also play a pivotal role in the development of SDI 
for pandemic response, because they have large sets of spatial data 
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on the mobility, purchasing, and web browsing behaviors of indi-
viduals and other relevant place-based and georeferenced data that 
may be useful in understanding disease dynamics. In addition, re-
sponding to a rapidly evolving health crisis such as the COVID-19 
pandemic requires pipelines for supplying health and related data 
in near real time, which presents challenges. Finally, privacy pro-
tection for individuals is paramount in developing useful SDIs for 
pandemic response. As with the US NSDI, initiative and manage-
ment at the federal level is likely necessary to develop an SDI for 
pandemic response. 

Incorporating Population and Mobility
Data in COVID-19 Forecasting 
Along with handwashing and social distancing, perhaps the fore-
most mitigation strategy for reducing person-to-person contact and 
transmission of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) in the absence of pharmaceutical intervention is 
regulation restricting mobility (ie, human movement and travel be-
havior). Consequently, one key role for geospatial technologies in 
responding to the COVID-19 pandemic is monitoring population 
distribution and mobility through the use of social media and 
location-tracking applications embedded in mobile telephones that 
employ GNSS, cell phone tower connections, and/or wireless con-
nections (9). Several corporate location-data collectors and 
vendors have released spatially aggregated COVID-19 pandemic-
related data on population mobility. These data have been widely 
used by the popular media to report on the effects of jurisdictional 
stay-at-home orders on population mobility and by researchers to 
analyze the efficacy of population mobility change for altering dis-
ease dynamics (10). 

Modeling population distribution and mobility has a long history 
in GIS&T and focuses on fine-scale estimations of population dis-
tribution and mobility (11,12), most recently by using mobile tele-
phone–based location data (13,14). The scholarly response to the 
pandemic marks a major advance in the incorporation of fine-
resolution data on population and individual mobility from geo-
spatial technologies to understand disease dynamics and formu-
late effective intervention strategies. Because questions remain 
about the best way to measure and collect data on individual mo-
bility, provide such data to researchers, and incorporate such mo-
bility measures into infectious disease models, the COVID-19 
pandemic provides an opportunity for testing methods for using 
such data to evaluate and forecast the effects of nonpharmaceutic-
al interventions that restrict mobility. However, current legal 
frameworks and practices for preserving the privacy of individu-
als are obstacles to widespread adoption. 

Using Geospatial Technologies for
Digital Contact Tracing 
Monitoring mobility at the individual level, in addition to the pop-
ulation level, has also emerged as an important use of geospatial 
technologies, particularly in its application to digital contact tra-
cing. Conventional contact tracing, involving identifying, contact-
ing, and encouraging quarantine for the people with whom an in-
fected person has had close contact to mitigate disease transmis-
sion, is labor intensive. The process can be made more efficient 
and scaled up to large populations by exploiting individual digital 
mobility data, as well as data indicating proximity among mobile 
telephones using Bluetooth or related technologies, to computa-
tionally show close proximity among individuals (15). Such loca-
tion data can be combined with health and other data that might in-
dicate vulnerability to infection or disease. Individuals can then be 
contacted and given quarantine instructions automatically through 
mobile telephone text messages, or their future behavior may even 
be monitored to encourage or enforce quarantine. Such proced-
ures have been used to some degree, in combination with popula-
tion mobility restrictions, in an attempt to reduce SARS-CoV-2 
transmission in China, Israel, Singapore, and South Korea, among 
other nations, and developments for digital contact tracing techno-
logies by the largest international technology companies continue 
(16). 

Advances in GIS&T have been made in modeling the geographic 
trajectories of individuals throughout their daily lives, their inter-
actions with other people, and their immediate environment using 
geographic and computational constructs such as activity space 
and space–time prisms (17–20). However, to leverage this body of 
research for digital contact tracing, progress needs to be made in 
developing, testing, and implementing digital contact tracing ap-
plications, including evaluations of behavioral compliance, effic-
acy, and scaling. Additionally, this approach raises concerns about 
confidentiality and civil liberties that need to be addressed before 
widespread adoption (21). 

Integrating Geographic Data in COVID-
19 Modeling 
A strength of GIS is the ability to integrate diverse spatial data sets 
based on georeferencing, facilitating the integration of health data 
with contextual characteristics. Descriptive modeling research that 
leverages this capability has examined the spatial associations of 
COVID-19 with socioeconomic and environmental characteristics. 
This research found, for example, that lower income and income 
inequality (22), higher temperature and humidity (23), exposure to 
fine particulate air pollution (24), and mobility and transportation 
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networks (25,26) were associated with a higher prevalence of 
COVID-19 cases or mortality. GIS&T also offers approaches to 
investigating statistical spatial effects and spatial heterogeneity, 
such as spatial autoregressive models and geographically weighted 
regression, to account for modeling geographic processes such as 
spatial diffusion and the variation in relationships among vari-
ables over space (27,28). Recent research leveraged these ap-
proaches in demonstrating the spatial heterogeneity in the relation-
ships among observed COVID-19 cases and mortality with geore-
ferenced socioeconomic and environmental variables (22,29,30) 
and found that the influence of area-based socioeconomic status, 
pre-existing health conditions, and environmental characteristics 
on disease transmission may vary from place to place. 

Computational infectious disease models are widely used to pre-
dict or forecast the spread of COVID-19 disease and the effects of 
intervention strategies. Predictive modeling approaches can be 
generally categorized as SEIR/SIR (susceptible, exposed, infected, 
and removed/recovered) (31), agent-based (32), or statistical mod-
eling (33). Such modeling approaches are inherently geographic in 
the sense that they make predictions for certain areas or regions, 
although only some models contain an explicit spatial interaction 
component or forecast the spatial variation in disease incidence 
over small areas. Explicitly incorporating a spatial component in-
to infectious disease models attempts to account for 1) place-based 
contextual mechanisms of infection or disease related to the so-
cioeconomic, built, or natural environments, such as air pollution 
or type of employment, 2) spatial heterogeneity in the drivers of 
disease transmission, for example, where certain socioeconomic 
characteristics may be associated with disease prevalence in one 
region but not in another as a result of regional differences in cul-
ture or behavioral norms, and 3) transportation networks or pat-
terns of human mobility to better account for disease transmission 
dynamics (34,35). Such approaches have been extended to model-
ing the spread of COVID-19, providing evidence that restrictions 
on mobility have mitigated the spread of COVID-19 in different 
parts of the world and aided in forecasts of disease diffusion un-
der various scenarios of mobility restriction (36,37). 

Spatial transportation and mobility data can play an important role 
in forecasting disease prevalence, where, for example, the effect of 
nonpharmaceutical interventions (eg, restrictions on mobility) on 
city-level transmission of COVID-19 in China was analyzed us-
ing mobility data harvested from mobile telephone location-based 
services. This method allows one to parameterize the local contact 
rate and forecast the geographic distribution of disease prevalence 
under different intervention timing scenarios (37). Related ap-
proaches to modeling the spread of COVID-19 also incorporated 
airline transportation networks (38) and were extended to other 

countries with extensive COVID-19 outbreaks, such as Italy (36), 
providing substantial evidence that restrictions on mobility have 
mitigated the spread of COVID-19 in different parts of the world. 

Investigating Geographic Health
Disparities of the COVID-19 Pandemic 
Indices of social vulnerability are place-based variables that incor-
porate factors such as race/ethnicity and socioeconomic status to 
encode the vulnerability to adverse health outcomes and other 
types of hazards (39). Community social vulnerability, along with 
health care resources, plays an important role in predicting health 
care capacity in responding to the COVID-19 pandemic (40). So-
cial vulnerability can interact with pre-existing medical conditions 
and access to medical resources, such as prescription drugs, to 
produce inequities in COVID-19 outcomes (41). People with un-
derlying medical conditions, such as asthma, obesity, and diabetes, 
as well as people who are immunocompromised or aged 65 or 
older are at higher risk of serious consequences from SARS-CoV-
2 infection than their healthier or younger counterparts. Because 
such medical conditions are often concentrated geographically and 
among certain demographic groups, understanding the spatial and 
demographic distribution of these conditions is critical to investig-
ating health disparities associated with COVID-19. For example, 
COVID-19 morbidity and mortality are higher among African 
American and Hispanic people than among non-Hispanic white 
people (42). Such racial/ethnic disparities highlight the import-
ance of efficient collection of socioeconomic, demographic, and 
other data among people with COVID-19. 

Resources for investigating COVID-19-related social disparities 
include publicly available data on COVID-19 cases by small areas, 
such as zip codes (43), although such data are not widely avail-
able at a national level. The same issue exists for fine spatial resol-
ution data on social vulnerability. The Public Health Disparities 
Geocoding Project at the Harvard T.H. Chan School of Public 
Health seeks to address this latter shortcoming (44). Researchers 
should understand the geographic and historical background of 
discrimination and resource deprivation that may produce place-
based social vulnerabilities, to avoid stigmatizing or placing blame 
on certain communities. An understanding of the social determin-
ants and structural forces, such as food insecurity, housing insec-
urity, and disparities in educational or health care infrastructure, 
that can influence health outcomes such as obesity, hypertension, 
and certain types of cancer, is important. 

The multidimensional social, economic, and health consequences 
of the COVID-19 pandemic are geographically inequitable: some 
places and populations have greater social, economic, health and 
other effects than other places and populations. Beyond the need 
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to identify such factors as lack of access to resources or the preval-
ence of pre-existing health conditions is the need to recognize and 
understand the mechanisms of vulnerability that have been in 
place and led to the exacerbation of the COVID-19 crisis in some 
communities. Community recovery from the COVID-19 pandem-
ic requires incorporation of social, economic, and health compon-
ents and an emphasis on investigating how place shapes the un-
even effect of COVID-19. 

Implications for Public Health 
We have outlined how GIS&T can be used for understanding and 
responding to the COVID-19 pandemic and future infectious dis-
ease epidemics and pandemics. Central to this understanding and 
response is a commitment for the use of GIS and geospatial tech-
nologies as the platform for collecting, integrating, and analyzing 
georeferenced data on the locations and characteristics of individu-
als and the spatial distribution of socioeconomic, health, and built 
and natural environmental characteristics. Geospatial resources for 
COVID-19 response are available through several organizations, 
including the University Consortium for Geographic Information 
Science  (www.ucgis.org/covid-19-resources),  the  OGC  
(www.ogc.org/resources-for-COVID-19-from-ogc), and the Na-
t i o n a l  A l l i a n c e  f o r  P u b l i c  S a f e t y  G I S  F o u n d a t i o n  
(www.napsgfoundation.org/resources/covid-19). 

Leveraging GIS&T for responding to the COVID-19 pandemic re-
quires a close and extensive collaboration between researchers in 
the fields of geography, medicine, public health, and public policy. 
The field of GIS&T has a long history of research in data synthes-
is, statistical modeling, and computational simulation for spatial 
data and applications. Recognizing that GIS&T is a theoretical and 
scientific approach rather than simply a set of analytical tools will 
facilitate transdisciplinary collaboration. Advances in preserving 
individual privacy and civil liberties in the age of big spatial data, 
where geospatial technologies generate massive repositories of 
individual-level data on movement, health, and behavior widely 
available, are also necessary. These advances will likely require 
enhanced government regulations, corporate policies, and techno-
logical innovations in data sharing and privacy protection. 

The COVID-19 pandemic is still in the beginning phase, and the 
research community is continuing to learn and revise the best way 
to respond to this global public health crisis. Geospatial data, 
methods, and technologies have a crucial role to play in under-
standing and responding to the pandemic, and the lessons learned 
on the use of GIS&T for pandemic response at this time should 
enhance preparedness and response for future public health crises. 
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Summary 

What is known on this topic? 

Having detailed geographic information on patients affected by the COVID-
19 pandemic would allow public health professionals to tailor their efforts 
and improve future outcomes. 

What is added by this report? 

We built a real-time, interactive, street-level visualization of patients with a 
COVID-19–positive test to show emerging patterns in relation to disease 
prevalence and demographic characteristics of patients. 

What are the implications for public health practice? 

We expect this tool to aid public health professionals in mapping disease 
cases with more granularity and gaining real-time insight into COVID-19 
hotspot development. 

Abstract 

Introduction 
Public-facing maps of COVID-19 cases, hospital admissions, and 
deaths are commonly displayed at the state, county, and zip code 
levels, and low case counts are suppressed to protect confidential-
ity. Public health authorities are tasked with case identification, 
contact tracing, and canvasing for educational purposes during a 
pandemic. Given limited resources, authorities would benefit from 
the ability to tailor their efforts to a particular neighborhood or 
congregate living facility. 

Methods 
We describe the methods of building a real-time visualization of 
patients with COVID-19–positive tests, which facilitates timely 
public health response to the pandemic. We developed an interact-
ive street-level visualization that shows new cases developing over 
time and resolving after 14 days of infection. Our source data in-
cluded patient demographics (ie, age, race and ethnicity, and sex), 
street address of residence, respiratory test results, and date of test. 

Results 
We used colored dots to represent infections. The resulting anima-
tion shows where new cases developed in the region and how pat-
terns changed over the course of the pandemic. Users can enlarge 
specific areas of the map and see street-level detail on residential 
location of each case and can select from demographic overlays 
and contour mapping options to see high-level patterns and associ-
ations with demographics and chronic disease prevalence as they 
emerge. 

Conclusions 
Before the development of this tool, local public health depart-
ments in our region did not have a means to map cases of disease 
to the street level and gain real-time insights into the underlying 
population where hotspots had developed. For privacy reasons, 
this tool is password-protected and not available to the public. We 
expect this tool to prove useful to public health departments as 
they navigate not only COVID-19 pandemic outcomes but also 
other public health threats, including chronic diseases and commu-
nicable disease outbreaks. 

Introduction 
Public-facing maps of COVID-19 cases, hospital admissions, 
deaths, and vaccination rates are commonly displayed at the state, 
county, and zip code levels, and low case counts are suppressed to 
protect confidentiality (1). Although state laws and public health 
departmental regulations vary, a standard approach is used to sup-
press case counts of fewer than 10 (2). Geographically, this ap-
proach applies to areas smaller than a county (ie, zip codes and US 
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Census tracts), and case counts are not typically suppressed at the 
county or state level. 

An exception to this rule can be made if data are to be used for 
quality improvement purposes. Public health departments may 
prepare reports for internal use that do not suppress case counts. 
However, such reports cannot be publicly disclosed without ap-
proval from a public health authority. Small case counts may be 
released during a public health emergency, in which, for example, 
a threat of person-to-person transmission of a communicable dis-
ease exists and action must be taken to protect public health. 

Public health authorities at the local, regional, and state levels are 
tasked with case identification, contact tracing, and canvasing for 
educational purposes during a pandemic. Such authorities have 
been asked to track vaccination implementation geographically to 
help ensure equitable distribution of vaccines. Given limited re-
sources, conducting these activities across an entire jurisdiction 
(ie, a county) or zip code area can be daunting. Rather than being 
assigned to a high-risk zip code in which to perform public health 
activities associated with the pandemic, authorities would benefit 
from the ability to tailor their efforts to a particular neighborhood 
or congregate living facility. 

To address the immediate needs of public health authorities to ef-
fectively respond to hotspots of infection in real time, we de-
veloped an interactive street-level visualization that shows new 
cases developing over time and resolving after 14 days of infec-
tion. The Health Insurance Portability and Accountability Act 
(HIPAA) considers residential address to be a direct identifier that 
must be removed for data to be considered de-identified (3). Thus, 
access to the identifiable data and visualizations must be restricted 
to authorized personnel who are proficient data stewards, espe-
cially given that such data could be used in harmful ways (4). For 
privacy reasons, this tool is password-protected and not available 
to the public. In this article, we describe the methods of building a 
real-time visualization of patients with COVID-19–positive tests, 
which facilitates timely public health response to the pandemic. 

Methods 
We programmed the disease visualization tool using Data-Driven 
Documents (D3, version 6, d3js.org). We chose D3 for its flexibil-
ity and ability to create an animated, interactive map. Our source 
data for the visualization included patient demographics (ie, age, 
race and ethnicity, and sex), street address of residence, respirat-
ory test results for influenza and SARS-CoV-2, and date of test. 
Our case data were provided by regional health systems (5). 
Project  source code is  available at  https://github.com/i2-
wustl/visualization-ui. 

Additional data that could easily be linked and integrated by zip 
code included that from the US Census Bureau’s decennial census 
or estimates from the American Community Survey (6) to provide 
sociodemographic and socioeconomic context to the visualization, 
as well as county-level data on prevalence of chronic disease from 
the Behavioral Risk Factor Surveillance System (7). We also en-
abled the use of cancer surveillance and diabetes data, of most in-
terest to stakeholders in our region. Although our goal was to 
present data at a more granular geographic level, many publicly 
available sources of data limit our ability to present data at smal-
ler units of geography (ie, US Census tract or block group). 

Two-dimensional density plots of case counts were computed us-
ing kernel density estimation with empirically chosen values for 
bandwidth and cell size for each zoom level. The resulting visual-
ization was optimized to balance visual comprehension, aesthetics, 
and computational performance. The density is presented as cases 
per square kilometer (cases/km2) around the census tract centroid. 
We preprocessed the residential address data using ArcGIS ver-
sion 10.8.1 (Esri), yielding longitude and latitude coordinates for 
each record. 

For the publication figures, locations underwent 2 masking steps 
that are described by Haley et al (8). First, a uniform random per-
turbation was applied in which we added random numbers 
between −0.01 and 0.01 to each point’s latitude and longitude, 
which corresponds to approximately 1.7 km2. Next, we performed 
point aggregation in which each point’s latitude and longitude 
were rounded to the nearest 0.01 km2, corresponding to an approx-
imately 0.85 km2–spaced grid. However, the points are not 
shuffled in the tool when authorized users are logged in. 

Results 
The resulting visualization (Figure 1) used colored dots to repres-
ent influenza (purple) and SARS-CoV-2 (red) infections. Each dot 
corresponded to a positive case. Fourteen days after the date of the 
respiratory test, we considered the case resolved and removed the 
dot from the visualization. The visualization is activated with a 
play button and can be paused, rewound, or fast-forwarded to a 
specific date. The resulting animation shows where new cases de-
veloped in the region and how patterns changed over the course of 
the pandemic. Blue dots corresponded to a hospital (dark blue) or 
testing site (light blue). The screen shot of the animation shown in 
Figure 1 has case coordinates shuffled for privacy protection. 
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Figure 2. Screenshot of a heatmap animation of the disease visualization tool, Figure 1. Screenshot of an animation of the disease visualization tool, showing respiratory virus infection (ie, influenza or SARS-CoV-2) hotspots showing influenza (purple dots) and SARS-CoV-2 (red dots) infections developing and resolving over time. Case coordinates are shuffled for privacy developing and resolving over time. Dark blue dots correspond to hospitals, protection.and light blue dots correspond to testing sites. Case coordinates are shuffled 
for privacy protection. 

The display of case coordinates as well as hospitals and testing 
sites can be switched on and off (left margin of the visualization) 
to see only cases of COVID-19 or influenza, for example. Of note, 
the design of the application is flexible to incorporate other types 
of health outcomes such as admissions, deaths, and vaccinations. 
Layers can be added (left margin of the visualization) to show pre-
valence of chronic disease, sociodemographic characteristics, or 
socioeconomic characteristics of the zip code or county across the 
region. 

Another view of the visualization (Figure 2) uses a heatmap to 
show how the density of cases per population changes over time. 
Darker shades correspond to a higher density of cases. As in Fig-
ure 1, we resolved cases after 14 days, and the visualization is set 
in motion with a play button and can be paused, rewound, or fast-
forwarded to a specific date. The resulting animation shows where 
hotspots of COVID-19 developed in the region and how patterns 
changed over the course of the pandemic. The screen shot of the 
animation, shown in Figure 2, is based on Figure 1, which had 
case coordinates shuffled for privacy protection. 

We created a secure, password-protected web portal by which ap-
proved users can access the application. Users are able to enlarge 
specific areas of the map and see detail on street-level residential 
location of each outcome. Tools can be programmed to allow 
users to select from demographic overlays and contour mapping 
options to see high-level patterns and associations as they emerge. 
Additional functionality allows the user to select specific areas on 
the map to find out more about the demographic distribution of 
age, race and ethnicity, and sex among outcomes in a particular 
geographic area. 

Conclusion 
Our efforts are critical given that the COVID-19 pandemic and 
other public health threats are not respectful of geopolitical bound-
aries. Publicly available and easily sharable data at the zip code, 
county, and state levels are not sufficient to enable a precise pub-
lic health pandemic response. We demonstrated that an open-
source solution can be applied to support public health authorities 
in conducting their case identification and contact tracing activit-
ies in the midst of a crisis. 

Before the development of this tool, local public health depart-
ments did not have a means to map cases of disease to the street 
level and gain real-time insights into the underlying population 
where hotspots had developed. The data visualization tool we cre-
ated addresses this gap and is expected to provide the necessary 
data-driven insights that will facilitate a timely public health re-
sponse to the pandemic. 

Feasibility assessments should be conducted to evaluate whether 
the tool meets the needs of the end users and to ensure that suffi-
cient resources are available to act on the disease hotspots that are 
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detected by the tool. Following implementation of the data visual-
ization tool, its utility should be assessed to determine if addition-
al functionality is needed or if the tool can be expanded or in some 
cases simplified to meet the demands of stakeholders during a 
pandemic. 

A strength of our visualization is that it can be programmed to dis-
play other types of public health and COVID-19 outcomes such as 
hospital admissions, deaths, and vaccinations. We created a light-
weight, secure application to address the immediate needs of our 
region in terms of case identification and contact tracing. We ex-
pect this tool to prove useful to public health departments as they 
navigate not only the COVID-19 pandemic but also other public 
health threats and communicable disease outbreaks. 

Realizing the potential benefits of mapping infections to the street 
level requires attending to legal issues and ethical responsibilities 
and mitigating potential risks. Tracking infection at this level of 
granularity could infringe on individual rights to privacy and con-
fidentiality, which must be balanced by the benefits of this activ-
ity for public good (9). As previously stated, HIPAA specifies res-
idential address as a direct identifier (3), and only authorized per-
sonnel should have access (4). Data accuracy and validation must 
be addressed for the tool to realize its intended utility (10). Given 
that many data sets are incomplete and that data sharing among in-
stitutions remains a challenge, this should be monitored going for-
ward (5). Public health practitioners should evaluate for benefits 
and harms to safeguard trustworthiness, while being mindful that 
harms could be unevenly distributed among different communit-
ies (11). 

In conclusion, we aim to share these insights in support of a preci-
sion public health approach to an ongoing pandemic. This tool 
could also be scaled in response to other health outcome tracking 
needs. Legal and ethical considerations must be aligned with this 
effort to ensure that data are accessed and used appropriately while 
protecting privacy and confidentiality. 
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Summary 

What is already known about this subject?

 Coronavirus disease 2019 (COVID-19) continues to have a disproportion-
ate impact on certain populations in the United States, particularly racial 
and ethnic minorities and people with underlying medical conditions. 

What is added by this report? 

By August 19, 2020, Miami–Dade County accounted for 25% of all new 
COVID-19 cases reported in Florida. The positive association between a so-
cial disadvantage index and COVID-19 rates reflects the localized social 
networks and neighborhood social disadvantage. In addition, in 
Miami–Dade County, Florida, COVID-19 is localized to specific geographic 
areas. 

What are the implications for public health practice? 

COVID-19 infections are associated with socioeconomically vulnerable 
groups or areas, indicating a need for place-based and policy-level 
strategies or social protection policies that protect vulnerable social 
groups (eg, children, older adults, and single parent households). 

Abstract 
Miami–Dade County zip code–level (N = 91 zip codes) coronavir-
us disease 2019 (COVID-19) cases (N = 89,556 as of July 21, 
2020) reported from the Florida Department of Health were used 
to estimate rates of COVID-19 per 1,000 population at the census 
block group level (N = 1,594 study block groups). To identify as-
sociations between rates of COVID-19 infections and multidimen-
sional indexes of social determinants of health (SDOH) across 
Miami–Dade County, Florida, I applied a global model (ordinary 
least squares) and a local regression model (geographically 
weighted regression). Findings indicated that a social disadvant-

age index positively affected COVID-19 infection rates, whereas a 
socioeconomic status and opportunity index and a convergence of 
vulnerability index had an inverse but significant connection to 
COVID-19 infection rates over the study area. Rates of COVID-
19 infections were localized to specific geographic areas and 
ranged from 0 to 60.75 per 1,000 population per square mile. 

Objective 
By August 19, 2020, Miami–Dade County accounted for 25% 
(148,093) of all new coronavirus disease 2019 (COVID-19) cases 
(N = 584,047) reported in Florida (1). Of particular concern is 
COVID-19’s effect on vulnerable populations, such as minorities 
and people with chronic disease, and its linkage to social determ-
inants of health (SDOH) (2,3). According to Healthy People 2030, 
SDOH (poverty, unequal access to health care, lack of education, 
and social conditions) affects a wide range of health, functioning, 
and quality of life outcomes (4). The SDOH also exacerbate health 
outcomes for vulnerable populations (5–7). The Centers for Dis-
eases Control and Prevention reported that almost all people 
(94%) who died of COVID-19 in the United States had at least 1 
underlying medical condition (8). A recent study also found over-
laps in rates of COVID-19 infection and chronic disease (9). 
Therefore, finding effective ways to recognize the features that in-
fluence disadvantaged populations during a pandemic and to inter-
vene is a persistent problem facing public health. The objective of 
this study is to quantify different SDOH indexes, examine the 
measures of these indexes on rates of COVID-19 infections, and 
determine the spatial variation in COVID-19 risk across census 
block groups in Miami–Dade County, Florida. 

Methods 
Confirmed data on the number of COVID-19 cases at the zip code 
level (N = 91 Miami–Dade County zip codes) as of July 21, 2020, 
were obtained from the Florida Department of Health COVID-19 
Data and Surveillance Dashboard (1). COVID-19 data are repor-
ted only at large geographic levels (city, zip code, or county), 
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which can mask small area variations (10) such as those occurring 
at the census block group level where improvements in health out-
comes are most needed. Therefore, I used areal interpolation, a 
kriging-based disaggregation technique. A major advantage of 
areal interpolation is that it estimates data across different spatial 
aggregation units (eg, zip codes) and across units missing data (eg, 
census block groups) to produce a smoothed surface map of 
COVID-19 infection rates (11). I used the following parameters: a 
spherical model, a lag distance of 1,000 meters, and I limited the 
number of block groups in the prediction to 4 neighbors. The pre-
dicted data fit best when the model type was K-Bessel and the 
number of lags was 12, and all other inputs were set to default. 
Rates of COVID-19 infections per zip code per 1,000 population 
were calculated before areal interpolation. 

Census block group level indicators were obtained from the US 
American  Communi ty  Survey  (ACS)  5-year  es t imates  
(2014–2018) (12). The 15 measures of social and neighborhood 
factors commonly reported as influencing health outcomes and 
common to several SDOH frameworks (12) were reduced to 3 in-
dexes by using a principal components analysis (PCA) interpreted 
as signs of socioeconomic status and opportunity index (SESOI), 
social disadvantage index (SDI), and convergence of vulnerability 
index (CVI) (Table). The benefit of PCA is that it produces a new 
set of uncorrelated measures as a linear grouping of the initial 
measures and describes as much of the initial variation as possible. 
Contrary to a similar index construction study (13), this study’s 
results were not consistent with a hypothesis of equal significance 
of measures in the indexes (eg, predefined measure set). Such 
measures, for example, did not adequately represent SES for the 
study area. 

The eigenvalue for the SESOI was 6.266, and it explained 41.8% 
of the variance. The eigenvalue for the SDI was 1.83, and for the 
CVI was 1.61. The SDI and CVI indexes explained 12.2% and 
10.7% of the variance, respectively. To determine the dominant 
measures in each principal component, the cutoff measure loading 
of 0.30 for the component was used, which is common practice in 
the literature. Quintiles maps were generated by using the ArcGIS 
software version 10.5 (Esri) to visualize census block group level 
COVID-19 infection rates compared with zip code–level rates 
(Figure 1) and composite measures (Figure 2). I used ordinary 
least squares (OLS) for global regression rather than geographic-
ally weighted regression (GWR) by using the MGWR version 2.2 
software (Microsoft Corp) to identify associations between rates 
of COVID-19 infections and the SDOH multidimensional indexes 
across Miami–Dade County, Florida. The model was set as 
COVID-19 rates = β0 + β1 SESOI + β2 SDI + β23 CVI + ɛ. β0 and 
β1 were the regression coefficients and ɛ was the model random 

error. The Akaike information criterion (AIC) was used to assess 
goodness of fit between the 2 models. 

Figure 1. Map A shows estimated census block group level COVID-19 rates per 
1,000 population for Miami–Dade County, Florida (generated with areal 
interpolation) based on zip code level rates. Map B is the same map as A but 
at a larger geographic area of zip codes. Data are for the 89,556 confirmed 
cases of COVID-19 reported as of July 21, 2020, in the Florida Department of 
Health COVID-19 Data and Surveillance Dashboard. Maps show rates (by 
quintiles) per 1,000 population. 
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Figure 2. Maps of selected composite measures of 3 social determinants of 
health indexes for census block groups in Miami–Dade County, Florida: 
socioeconomic status and opportunity index, social disadvantage index, and 
convergence of vulnerability index. Abbreviation: SES, socioeconomic status. 

Results 
A total of 89,556 confirmed COVID-19 cases were reported in 
Miami–Dade County during the study period. The social disad-
vantage index was a better predictor of COVID-19 infections (F2, 

1,584 = 75.83; P < .001) compared to the SESOI or the CVI, which 
suggests a need for policy-level strategies or social protection sys-
tems for vulnerable social groups (eg, children, older adults, single 
parent households). When comparing the OLS model with GWR 
AIC values, the AIC values show that both models perform 
roughly the same (GWR, 4,326.972 vs OLS, 4,327.199; adjusted 
R2, 0.120 vs 0.122), with the GWR model being slightly favored. 
Therefore, reported results are from the global model, which show 
that a 1-unit increase in social disadvantage is associated with a 
0.279% increase in the rates of COVID-19 (P < .001).  In contrast, 
the SESOI and convergence of vulnerability index had a negative 

relationship with rates of COVID-19 infection. The SDI has more 
spatial heterogeneity than the SESOI or the CVI (Figure 2). Rates 
of COVID-19 infections were localized to specific Miami–Dade 
census block groups and ranged from 0 to 60.75 per 1,000 popula-
tion per square mile. 

Discussion 
With the increasing number of COVID-19 cases in Miami–Dade 
County (from 62,430 cases on July 21, 2020, to 164,299 on 
September 15, 2020), a central focus of public health efforts 
should be limiting fatalities. In addition, exploring the heterogen-
eity of spatial relationships could provide more insights into place-
based and policy-level strategies that protect vulnerable social 
groups. A limitation of this study is its reliance on the Florida De-
partment of Health COVID-19 Dashboard; therefore, the reported 
cases may be an underestimation. Regardless, the methods used in 
this study demonstrate that geospatial analyses are powerful tools 
for estimating health events. 
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Table 

Measure SES and SESOI Social Disadvantage Index Convergence of Vulnerability Index 

Component variancea 41.78 12.2 10.7 

No vehicle .839 — — 

Renter .803  —  — 

Rent burden .793  —  — 

Limited English proficiencyb .679 .570 — 

Median household income −.675 — — 

Living in poverty .586 — .544 

People with disabilities .478 — .436 

Crowding — — — 

Single parent–headed households — .885  — 

Households with children aged <18 y — .742 .464 

Households with one or more people aged ≥65 — .725 — 

No high school diploma — .628 — 

Uninsured people .439 .529 .518 

Race/ethnicity (all people except non-Hispanic White) — — .862 

Unemployed, aged ≥16 — — .720 

Table. Component Loadings for the 15 Census Block Group Measures Included in 3 SDOH Components, Miami–Dade County, Florida, 2020 

Abbreviation: SDOH, social determinants of health; SES, socioeconomic status; SESOI, socioeconomic status opportunity index; —, excluded low values (below 
0.30). 
a Values are percentage variance. Extraction method: principal component analysis. Rotation method: Varimax with Kaiser Normalization (rotation converged in 6 it-
erations). Data source: US Census American Community Survey 5-year Estimates (2014–2018) (12). The 3 components reflect the convergence of predisposing, 
enabling, and need attributes of COVID-19 infection risk across census block groups in Miami–Dade County. SES and Opportunity Index include socioeconomic 
measures of poverty, income, person with limited English proficiency, and physical measures of housing characteristics (eg, renters, rent burden, and crowding) in-
cluding vehicle access that have been linked to distinct health behaviors and outcomes. The Social Disadvantage Index includes demographic measures of so-
cioeconomically vulnerable groups or areas with a high percentage of people with limited English proficiency, single parent households, households with children 
aged younger than 18 years, older adults (aged ≥65 y), people with less than a high school education, and uninsured people, which reflect localized social net-
works and neighborhood social disadvantage. The Convergence of Vulnerability Index includes measures of service environment or areas with a high proportion of 
people living in poverty, people with disabilities, children aged younger than 18 years, uninsured people, people with minority status, and unemployed people aged 
16 or older. These measures compound already poor health profiles of vulnerable groups, increasing their risk of morbidity and mortality from COVID-19.
b Limited English proficiency crossed the SES and Opportunity Index and the Social Disadvantage Index. Living in poverty and people with disability crossed the SES 
and Opportunity Index and Convergence of Vulnerability Index. Households with children aged 18 years or younger crossed both the Social Disadvantage Index and 
the Convergence of Vulnerability Index. Uninsured people crossed all indexes. 
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Static display of spatial variability in diabetes, which may increase the risk of severe illness from COVID-19, by Florida zip code and county. In the
corresponding interactive map (https://arcg.is/1D0Lz4), 16 measures of chronic disease–related morbidity, mortality, and population health were aggregated to
5-year rates and stratified by age. The map application is used by local county health departments to inform COVID-19 response and identify communities at
increased risk of COVID-19. Data on zip codes with <5 health events or <20 residents were suppressed.
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Background 
The public health emergency caused by COVID-19 demonstrated 
that some populations are at increased risk of complications from 
COVID-19 infection and are at higher risk of death (1). The Flor-
ida Department of Health (FDOH) Environmental Public Health 
Tracking (EPHT) Program and Division of Public Health Statist-
ics and Performance Management collaborated to create a Florida 
mapping resource to illustrate county and subcounty variability in 
chronic conditions and related factors that may increase the risk of 
severe illness from COVID-19. The degree of risk of COVID-19 
varies by geography in Florida, and this variability has implica-
tions for public health practice as the state seeks to control the 
pandemic and limit severe health outcomes. 

Florida is home to more than 21 million residents from diverse ra-
cial/ethnic and cultural backgrounds, approximately 20% of whom 
are adults aged 65 or older. The proportion of Florida’s older pop-
ulation grew more rapidly than any other age group in the past 
decade (2). Older adults and people of any age with underlying 
medical conditions appear to be at higher risk for developing 
severe illness from COVID-19 than their younger and less medic-
ally compromised counterparts (3–5). Cardiovascular conditions, 
respiratory complications, and diabetes make up a substantial pro-
portion of health conditions and contributing causes in deaths in-
volving COVID-19 (6). 

The aims of our mapping project were to describe the spatial vari-
ability in populations at particular risk of COVID-19, illustrate 
patterns of chronic disease at the county and subcounty level, and 
communicate this information to county health departments and 
other community members in Florida. Our goal is to reduce severe 
illness and premature death resulting from COVID-19 among 
Florida residents and visitors. 

We used measures of illness and death resulting from cardiovascu-
lar conditions, respiratory conditions, diabetes, and cancer as in-
dicators of increased risk (7–12). We also used county prevalence 
estimates of chronic disease–related risk factors (tobacco use and 
obesity) and zip code calculations of economic hardship. We in-
cluded economic hardship because it is associated with lower rates 
of health insurance and reduced access to health care services, 
both of which could lead to COVID-19 complications (5,12). 

Data and Methods 
We used 4 data sources for our map. We obtained hospitalization 
records from the Florida Agency for Health Care Administration 
to capture data on chronic disease–related morbidity, death data 
from the FDOH Bureau of Vital Statistics, and data on chronic 
disease–related risk factors from the 2016 Florida Behavioral Risk 
Factor Surveillance System (BRFSS) (13). In addition, we calcu-

lated the Economic Hardship Index (EHI) by using variables from 
the 2014–2018 American Community Survey (14). We developed 
16 subcounty measures from the hospitalization and death data 
and aggregated these data to 5-year rates according to zip code. 
We also mapped the EHI according to zip code. We mapped 
BRFSS data at the county level, the smallest level of geography 
available for this data set. We stratified all measures, except EHI, 
by age to illustrate increases in risk by age. We developed a web-
based mapping application in ArcGIS Online and linked this ap-
plication to existing web data portals at floridatracking.com (the 
EPHT portal) and FLHealthCHARTS.com. Because we derived 
the data measures from different sources, we developed a user 
guide and linked it to the ArcGIS mapping application. This user 
guide discusses data limitations and the need to interpret data with 
caution at the subcounty level because of small population sizes. 
To promote the new mapping application, we added prominent 
links to the EPHT portal and FLHealthCHARTS.com, which is the 
most widely used publicly available FDOH data repository and 
query system (with thousands of visitors per day). 

Highlights 
The output of this mapping project is a publicly available online 
interactive map (https://arcg.is/1D0Lz4) that depicts 5-year trends 
at the zip code and county levels in Florida. This ArcGIS Online 
application allows users to easily visualize geographic areas at in-
creased risk of COVID-19. The following indicators of risk of 
COVID-19 are included on the mapping website: hospitalization 
and death rates resulting from cardiovascular conditions, respirat-
ory conditions, diabetes, and cancer; the prevalence of tobacco use 
and obesity; and economic hardship scores. 

Action 
The ArcGIS Online interactive map went live in April 2020 and 
increased access to data measures for chronic conditions and re-
lated risk factors that could lead to COVID-19 complications. The 
use of zip code geography provides for community-level input on 
populations disproportionately affected by severe outcomes of 
COVID-19. The mapping application is used by the public and by 
the state health office and local county health departments to speak 
with communities about COVID-19 response and to identify areas 
of Florida at greatest risk for severe outcomes of COVID-19. In 
addition, the map informed hospital demand planning for the 
FDOH Bureau of Preparedness and Response, as concerns grew 
about exceeding hospital bed capacity in Florida. As of February 
2021, the map had more than 4,500 views. Other public health 
programs could use our mapping application as a template for de-
veloping a similar application. 
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Summary 

What is already known on this topic? 

Social determinants of health are positively correlated with prevalence of 
both COVID-19 and chronic disease. Communities characterized by low so-
cioeconomic status and high chronic disease rates may be vulnerable to 
COVID-19. 

What is added by this report? 

Socioeconomic variables identified as potential social determinants of 
health contextualize COVID-19 health disparities by race and ethnicity. 
Spatial models of chronic disease and COVID-19 highlight the spatial vari-
ability of COVID-19 population vulnerability. 

What are the implications for public health practice? 

Through insight into socioeconomic conditions and chronic disease distri-
bution, demonstrated spatial approaches support equitable COVID-19 re-
sponses at the community level. 

Abstract 

Introduction 
During the COVID-19 pandemic, health and social inequities 
placed racial and ethnic minority groups at increased risk of severe 
illness. Our objective was to investigate this health disparity by 
analyzing the relationship between potential social determinants of 
health (SDOH), COVID-19, and chronic disease in the spatial con-
text of San Diego County, California. 

Methods 
We identified potential SDOH from a Pearson correlation analysis 
between socioeconomic variables and COVID-19 case rates dur-
ing 5 pandemic stages, from March 31, 2020, to April 3, 2021. We 
used ridge regression to model chronic disease hospitalization and 
death rates by using the selected socioeconomic variables. 
Through the lens of COVID-19 and chronic disease, we identified 
vulnerable communities by using spatial methods, including Glob-
al Moran I spatial autocorrelation, local bivariate relationship ana-
lysis, and geographically weighted regression. 

Results 
In the Pearson correlation analysis, we identified 26 socioeconom-
ic variables as potential SDOH because of their significance (P ≤ 
.05) in relation to COVID-19 case rates. Of the analyzed chronic 
disease rates, ridge regression most accurately modeled rates of 
diabetes age-adjusted death (R2 = 0.903) and age-adjusted hospit-
alization for hypertensive disease (hypertension, hypertensive 
heart disease, hypertensive chronic kidney disease, and hypertens-
ive encephalopathy) (R2 = 0.952). COVID-19 and chronic disease
rates exhibited positive spatial autocorrelation (0.304≤I≤0.561, 
3.092≤Z≤6.548, 0.001≤P≤ .002), thereby justifying spatial models 
to highlight communities that are vulnerable to COVID-19. 

Conclusion 
Novel spatial analysis methods reveal relationships between 
SDOH, COVID-19, and chronic disease that are intuitive and eas-
ily communicated to public health decision makers and practition-
ers. Observable disparity patterns between urban and rural areas 
and between affluent and low-income communities establish the 
need for spatially differentiated COVID-19 response approaches 
to achieve health equity. 
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Introduction 
As the novel coronavirus spread throughout the US in early 2020, 
reports of health disparity challenged claims that COVID-19 was 
society’s “great equalizer” (1,2). As of September 2021, non-
Hispanic Black Americans, non-Hispanic American Indians, and 
Hispanic Americans experienced higher rates of COVID-19 infec-
tion (1.1, 1.7, 1.9 times higher, respectively), hospitalization (2.8, 
3.5, 2.8 times higher, respectively), and death (2.0, 2.4, 2.3 times 
higher, respectively) than non-Hispanic White Americans (3). This 
observed health disparity stems from widespread structural dis-
crimination and its effects on people of color. 

Social determinants of health (SDOH) are socio-environmental 
conditions that dictate how people live and age, whereas differ-
ences in these conditions define socioeconomic status (SES) (4). 
Low SES is directly linked to poor health outcomes for commu-
nicable and noncommunicable diseases alike (5,6). In a study of 
COVID-19 outcomes in a New York City hospital, Black and His-
panic patients were more likely than White patients to present with 
comorbidities, such as cardiovascular disease or diabetes, that 
were strongly associated with mortality (7). Dr Anthony Fauci, the 
immunologist leading the US COVID-19 response, said that the 
comorbidities that negatively affect COVID-19 outcomes “relate 
to the social determinants of health dating back to disadvantage-
ous conditions that some people of color find themselves in from 
birth” (8). Existing research confirms the associations between the 
disproportionate impact of COVID-19 and chronic disease in so-
cially disadvantaged communities (6,9,10). The compounding ef-
fect of low SES, comorbidities, and COVID-19 demands immedi-
ate action to support communities vulnerable to COVID-19. 

Our goal was to classify the relationships between COVID-19, 
chronic disease, and socioeconomic variables to promote local-
ized public health policies. We used a spatially explicit modeling 
approach to meet our 2 study objectives: 1) to determine which so-
cioeconomic variables, correlated with COVID-19 and chronic 
disease rates, are potential SDOH, and 2) whether spatial model-
ing of chronic disease rates can identify communities most vulner-
able to COVID-19. 

Methods 
Study area 

Our research area was San Diego County, a culturally diverse area 
well suited to investigation of the various effects of socioeconom-
ic factors and chronic disease on population vulnerability to 
COVID-19. The county is located in southwestern California 

along the US–Mexico border. Its western portion is largely urban 
and densely populated, and its eastern portion lightly populated 
and rural. The county is divided into 41 subregional areas (SRAs), 
a geographic division frequently used to report COVID-19 and 
other health-related data. 

Data collection 

We obtained data sets from the San Diego County Open Data 
Portal (11), aggregated to SRAs, containing 2017 rates for hospit-
alization, emergency department discharge, and death per 100,000 
residents for coronary heart disease (CHD), diabetes, hypertens-
ive diseases (hypertension, hypertensive heart disease, hypertens-
ive chronic kidney disease, and hypertensive encephalopathy), 
mental illness, and pulmonary disease. We included mental illness 
in our study because of the toll that COVID-19 has had on mental 
health (12) and because of the association between mental illness, 
other chronic diseases, and low SES (13,14). 

Socioeconomic data related to age, race and ethnicity, language, 
housing, income, education, and employment were retrieved from 
the San Diego Association of Governments (SANDAG) Data 
Surfer (15) and the US Census Bureau’s application programming 
interface (16). Data were then normalized by SRA population size 
or number of households. Along with socioeconomic variables, we 
included 4 health care access variables: health care clinics per 
SRA population, health care clinics per SRA square mile, hospit-
als per SRA population, and hospitals per SRA square mile. We 
calculated values for these health care access variables by using 
GIS analysis in ArcGIS Pro (Esri) and spatial data from SAND-
AG. 

The County of San Diego Health and Human Services Agency 
provided COVID-19 rates (17) and aggregated most of the rates to 
SRA. However, confirmed case rates had zip code aggregations. 
We converted these confirmed case rates (per 100,000 residents) 
to the SRA extent with a 2019 population-based crosswalk from 
SANDAG that used dasymetric techniques to determine the pro-
portion of residents in each zip code that live within the boundar-
ies of an SRA. A similar crosswalk was used to aggregate the US 
Census Bureau socioeconomic data from census tract to SRA. 

Characterization of COVID-19 pandemic stages 

We considered 5 pandemic stages in our analysis to better under-
stand the relationships evolving over time between COVID-19, 
chronic disease, and socioeconomic variables. On the basis of 
COVID-19 case trends in San Diego County (7-day averages), we 
divided the pandemic into 5 distinct stages over an approximate 
12-month period, from March 31, 2020, through April 3, 2021 
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(18): March 31, 2020, to June 24, 2020 (Stage 1, 85 days); June 
25, 2020, to August 18, 2020 (Stage 2, 54 days); August 19, 2020, 
to October 31, 2020 (Stage 3, 73 days); November 1, 2020, to 
January 23, 2021 (Stage 4, 83 days); and January 24, 2021, to 
April 3, 2021 (Stage 5, 69 days) (Figure 1). 

Figure 1. Trends in confirmed cases of COVID-19 over time, San Diego County, 
California, March 31, 2020, to April 3, 2021. The graph illustrates how the 
number of county-wide confirmed cases varied during the study period. 
Observed confirmed case trends were used to define 5 pandemic stages: 
March 31, 2020, to June 24, 2020 (Stage 1, 85 days); June 25, 2020, to 
August 18, 2020 (Stage 2, 54 days); August 19, 2020, to October 31, 2020 
(Stage 3, 73 days); November 1, 2020, to January 23, 2021 (Stage 4, 83 
days); and January 24, 2021, to April 3, 2021 (Stage 5, 69 days). 

During Stage 1, the March 19, 2020, California stay-at-home or-
der along with local restrictions enacted from March 29 through 
April 4, 2020 (eg, regarding face coverings, cruise ships) kept 
COVID-19 rates low and stable (19). Stage 2 covered San Diego 
County’s first wave of increased COVID-19 rates, which fol-
lowed the reopening of many of the county’s businesses, between 
June 13 and June 25, 2020 (the indoor operation of some business 
sectors reclosed on July 3, 2020) (19). Stage 3 was a period of rel-
ative stability in response to additional public health restrictions 
that followed the first wave. Stage 4 was characterized by a second 
wave of dramatic rate surges, possibly related to gatherings for the 
2020 Presidential election and winter holidays. A regional stay-at-
home order began on December 6, 2020, and continued through 
January 25, 2021 (19). Stage 5 was marked by steadily decreasing 
rates as the holiday season ended and county residents were vac-
cinated. By March 5, 2021, 1 million vaccines had been admin-
istered (19). Throughout all stages, COVID-19 confirmed case 
rates were highest in SRAs located in the southern portion of the 

county (Figure 2). Although the pandemic continues, we stopped 
our analysis at the end of Stage 5 to analyze and interpret existing 
data. 

Figure 2. Spatial distribution of confirmed cases of COVID-19 by subregional 
area, San Diego County, California, March 31, 2020, to April 3, 2021. Maps 
show the spatial distribution of average daily COVID-19 case rates by 
subregional area for each of the 5 pandemic stages. Stages were determined 
by 7-day average case trends. All rates are per 100,000 residents. 

Statistical methods 

To address our first objective — to determine which socioeconom-
ic variables, correlated with COVID-19 and chronic disease rates, 
were potential SDOH — we analyzed Pearson correlation coeffi-
cients, calculated with the SciPy Python package (SciPy–Python), 
to determine a set of potential SDOH from significant socioeco-
nomic variables to the average confirmed daily COVID-19 case 
rates across the 5 pandemic stages. Socioeconomic variables were 
chosen for further analysis if the Pearson correlation P values were 
less than or equal to 0.05 for all stages, with 2 exceptions for vari-
ables with P values equal to 0.07 during 1 or 2 of the stages. The 
Pearson correlation coefficient is commonly used in medical re-
search to test the strength of linear relationships between 2 vari-
ables (20). Next, we identified potentially meaningful relation-
ships between COVID-19 and chronic disease comorbidities 
through a data-driven review of their Pearson correlation coeffi-
cients (18). We considered COVID-19 in the contexts of con-
firmed cases (total, and by race or ethnicity), total hospitalizations, 
and total deaths across the pandemic stages. For consistency, we 
selected a minimum of 1 rate, age-adjusted hospitalizations, for 
each of the chronic diseases. 

To assess our potential SDOH, we conducted ridge regression ana-
lysis using a Python package, scikit-learn (Python), to evaluate 
how well the selected socioeconomic variables depicted actual dis-
tribution of COVID-19 and chronic disease. Ridge regression, a 
variant of linear regression, performs model regularization with a 
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tuning parameter (α) and assigns coefficients to the explanatory 
variables to minimize the effects of the multicollinearity that is 
common among sociodemographic indicators (21). We chose the 
chronic disease rates with the most accurate ridge regression mod-
els for spatial analysis of COVID-19 case rates. 

For our second objective, to determine whether spatial modeling 
of chronic disease rates can identify communities most vulnerable 
to COVID-19, we used 3 spatial techniques to model COVID-19 
case rates and find vulnerable communities. Spatial autocorrela-
tion (Global Moran I) tests of COVID-19 confirmed case rates and 
chronic disease rates assessed the overall appropriateness of spa-
tial modeling. Spatial autocorrelation indicates the similarity of 
data values across space for a single variable, gauging whether 
data are clustered, dispersed, or randomly distributed (22). With 
local bivariate analysis and geographically weighted regression 
(GWR) modeling, we investigated the relationships between 
chronic disease rates (independent) and COVID-19 case rates (de-
pendent). Local bivariate analysis tests for significant relation-
ships between two variables within a spatial neighborhood (23). 
GWR is a regression technique that considers spatial nonstationar-
ity and variable local relationships in the prediction model (24,25). 
We used Esri’s ArcGIS Pro 2.8 software (Esri) to conduct the 
study’s spatial analysis. Together, we synthesized the collective 
modeling and analysis results to propose links between COVID-
19, chronic disease, and SDOH in the context of San Diego 
County. 

Results 
COVID-19 correlations with potential SDOH and
chronic disease 

From an initial data set of 79 socioeconomic variables, 26 vari-
ables were recognized as potential SDOH because of their signi-
ficant linear relationships (P ≤ .05) to COVID-19 case rates dur-
ing all 5 stages (Table 1). Two extra variables were included in the 
subset because at least 1 P value was significant (P ≤ .05) during 1 
of 5 stages: household income of $60,000 to $75,000 during 
Stages 1 (P = .07) and 2 (P = .07), and household income above 
$200,000 for Stage 5 (P = .07). We discovered that some of the 
variables in the socioeconomic variable subset exhibited multicol-
linearity, such as English and Spanish as home languages, White 
and Hispanic race or ethnicity, and various industries of employ-
ment. 

In preparation for further evaluation of the socioeconomic vari-
able subset, we reviewed Pearson correlation coefficients for 113 
chronic disease rates and 85 COVID-19–related rates and identi-
fied important relationships between COVID-19 and comorbidit-
ies. The analyzed chronic disease rates (total, age-adjusted, by sex, 

by race or ethnicity, by age group) included hospitalizations, 
emergency department discharges, and deaths related to CHD, dia-
betes, hypertensive disease, mental illness, and pulmonary disease 
with sample sizes of 30 SRAs or more. Similarly, we considered 
rates of COVID-19 cases, hospitalizations, and deaths (total, age-
adjusted, by sex, by race or ethnicity, by age group) in sample 
sizes of at least 30 SRAs. Ten of the most highly correlated rates, 
with at least 1 for each chronic disease, were selected for regres-
sion modeling: CHD age-adjusted hospitalization, diabetes age-
adjusted hospitalization, diabetes age-adjusted death, diabetes hos-
pitalization among patients aged 65 years or older, diabetes emer-
gency department discharge among patients aged 65 years or 
older, age-adjusted hospitalization for people with hypertensive 
disease, hospitalization of Hispanic patients with hypertensive dis-
ease, mental illness age-adjusted hospitalization, pulmonary dis-
ease age-adjusted hospitalization, and pulmonary disease hospital-
ization of patients aged 65 years or older (Table 2). 

In general, highly positive correlations were observed for chronic 
disease and COVID-19 rates. Key temporal patterns included: 

• Decreasing correlation coefficients between COVID-19 case rates among 

Hispanic residents and age-adjusted hospitalizations for CHD (Stage 1: r = 

0.80, P ≤ .001; Stage 5: r = 0.66, P ≤ .001), age-adjusted hospitalizations 

for diabetes (Stage 1: r = 0.79, P ≤ .001; Stage 5: r = 0.70, P ≤ .001), hos-
pitalizations for diabetes among residents aged 65 years or older (Stage 1: r 
= 0.93, P ≤ .001; Stage 5: r = 0.74, P ≤ .001), and age-adjusted hospitaliza-
tions for hypertensive disease (Stage 1: r = 0.86, P ≤ .001; Stage 5: r = 

0.61, P ≤ .001) 

• High coefficients between COVID-19 death rates and diabetes death rates 

(eg, Stage 5, r = 0.86, P ≤ .001), emergency department discharges for pa-
tients aged 65 or older with diabetes (eg, Stage 5, r = 0.87, P ≤ .001) 

• Decreasing correlation coefficients for hypertensive disease hospitalization 

rate and total COVID-19 case rates for Hispanic patients (Stage 1: r = 0.89, 
P ≤ .001; Stage 5: r = 0.79, P ≤ .001) 

• Increasing correlation coefficients for age-adjusted hospitalizations for men-
tal illness and COVID-19 case rates (Stage 1: r = 0.36, P ≤ .03; Stage 5: r = 

0.58, P ≤ .001) 

• High correlation coefficients between case rates among Asian residents and 

age-adjusted hospitalizations for pulmonary disease (eg, Stage 5: r = 0.89, P 

≤ .001) 

• High correlation coefficients between COVID-19 case rates among Black res-
idents and hospitalizations for pulmonary disease among residents aged 65 

years or older (eg, Stage 5: r = 0.71, P ≤ .001) 

These findings suggest how the influence of medical comorbidit-
ies might have shifted as the pandemic progressed. 
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Socioeconomic disease models 

Ridge regression modeling showed that the potential SDOH most 
accurately estimated COVID-19 case rates during Stage 1 (R2 = 
0.893, root-mean-square deviation [RMSE] = 0.91, α = 0.01) and 
Stage 5 (R2 = 0.875, RMSE = 2.26, α = 0.01). Elevated errors and 
decreased fit correspond to models of pandemic Stage 2 (R 2 = 
0.685, RMSE = 3.43, α = 1.0) and Stage 4 (R2 = 0.809, RMSE = 
10.17, α = 1.0) while infection rates surged, as well as to the inter-
im period of relative stability (Stage 3, R2 = 0.789, RMSE = 1.94, 
α = 0.1). Ridge regression for the 10 selected chronic disease rates 
showed that 2 of the rates, diabetes age-adjusted death (diabetes 
death: R2 = 0.903, RMSE = 3.15, α = 0.01) and hypertensive dis-
ease age-adjusted hospitalization (hypertensive disease hospitaliz-
ation: R2 = 0.952, RMSE = 21.10, α = 0.01), had R2 values great-
er than 0.900. All other chronic disease rates had R2 values below 
0.810. 

Although ridge regression’s regularization process limits interpret-
ation of the effect of specific socioeconomic variables on the mod-
el, coefficients of greater magnitude (positive or negative) relative 
to the model run can generally be viewed as important in determ-
ining rates of COVID-19 and chronic disease. Variables corres-
ponding to English or Spanish as home language and Hispanic 
ethnicity were consistently assigned coefficients of relatively high 
magnitude (Table 3). 

Spatial analysis of COVID-19 and chronic disease 

The COVID-19 case rates in the 5 stages, diabetes deaths, and hy-
pertensive disease hospitalizations exhibited significant positive 
spatial autocorrelation (Global Moran I) indicating that rates geo-
graphically nearby tend to be similar. Of note, the strength of spa-
tial autocorrelation decreased for COVID-19 case rates during 
pandemic Stage 1 (I = 0.561, z = 6.548, P ≤ .001) and Stage 2 (I = 
0.485, z = 5.486, P ≤ .001) before stabilizing during Stages 3 
through 5 (0.304 ≤ I ≤0.347, 3.511 ≤ z ≤3.934, P ≤ .001). Spatial 
autocorrelation results for 2017 hypertensive disease hospitaliza-
tion rates (I = 0.413, z = 4.912, P ≤ .001) were greater than those 
for the 2017 diabetes death rates (I = 0.345, z = 3.092, P = .002). 
Subsequent spatial analysis determined the accuracy with which 
the rate of diabetes deaths or hypertensive disease hospitalizations 
could be independently used to model COVID-19 case rates, 
thereby avoiding the multicollinearity problems inherent in the se-
lected socioeconomic variables. 

Although diabetes death rates were well estimated by ridge regres-
sion by using the potential SDOH variables, data were suppressed 
for most of the lightly populated (rural) SRAs. Spatial analysis 
with the COVID-19 case rates produced interesting results, such 
as a linear bivariate relationship during all stages, but the reliabil-

ity of our findings is challenged by the small sample size. Visual-
ization of diabetes deaths and COVID-19 cases with layered 
quantile classes separated the urban portion of the county into 3 
zones: high–high positive correlations to the south, low–low posit-
ive correlations in the center, and higher than expected COVID-19 
cases in the north. Also, GWR standard residuals depict the emer-
gence of a clear spatial pattern characterized by under-predictions 
along major transportation corridors to the south, over-predictions 
in the county’s center, and under-predictions in the north. 

Hypertensive disease hospitalization rates were available for all 
SRAs except Camp Pendleton, a military base in the northwest 
corner of the county. Visualization of the hypertensive disease 
hospitalization and COVID-19 case rates using layered quantile 
classification symbology showed a positive correlation, with sev-
eral exceptions in northern SRAs, where northeast SRAs had high-
er hypertensive disease hospitalizations and northwest SRAs had 
higher COVID-19 cases (Figure 3A). The local bivariate analysis 
confirmed this observation with linear positive relationships that, 
in southern SRAs, shifted to concave relationships over time (Fig-
ure 3B). GWR standard residuals (prediction errors) divided the 
county into overpredicted SRAs to the east and underpredicted (or 
accurately predicted) SRAs to the west (Figure 3C). This demarca-
tion roughly matches the county’s rural–urban divide, although 
rural SRAs along the US–Mexico border were also under-
predicted. 
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Figure 3. Bivariate visualizations of the age-adjusted hospitalization rate 
(independent) for hypertensive disease (hypertension, hypertensive heart 
disease,  hypertensive  chronic  k idney  disease,  and  hypertensive  
encephalopathy) and the daily average stage case rates (dependent) for 
COVID-19 in San Diego County subregional areas. Stages were determined by 
7-day average case trends: Stage 1: March 31, 2020, to June 24, 2020; 
Stage 2: June 25, 2020, to August 18, 2020; Stage 3: August 19, 2020, to 
October 31, 2020; Stage 4: November 1, 2020, to January 23, 2021; and 
Stage 5: January 24, 2021, to April 3, 2021. Hospitalization rates for 
hypertensive disease (hypertension, hypertensive heart disease, hypertensive 
chronic kidney disease, and hypertensive encephalopathy) are for 2017 and 
consider the annual, age-adjusted rate per 100,000 residents. COVID-19 case 
rates consider the average daily rates per 100,000 residents for the stage. A. 
Layered  quant i le  c lassi f icat ion  method  for  hypertensive  disease  
hospitalization rates and the COVID-19 case rates. B. Type of local bivariate 
relationship for hypertensive disease hospitalization rates and COVID-19 case 
rates (rates not calculated for fewer than 5 events). C. Geographically 

weighted regression standardized residuals (prediction errors) as SDs for 
hypertensive disease hospitalization rates and COVID-19 case rates. Negative 
SD values indicate overpredicted COVID-19 case rates whereas positive SD 
values indicate underpredicted COVID-19 case rates. 

Discussion 
Although the effect of socioeconomic factors on health equity is 
well established (5,8), spatial approaches are required to respond 
to known COVID-19 health disparities in regions of varied SES. 
We analyzed the relationships between socioeconomic variables, 
COVID-19, and chronic disease rates to identify a set of potential 
SDOH related to disproportionate disease spread. In a linear ridge 
regression model, variables across the categories of age, race and 
ethnicity, language, housing, income, education, and employment 
provide insight into the distribution of COVID-19. Reported 
health disparities related to race and ethnicity in San Diego County 
(27) are contextualized through the selection of related variables 
(eg, Hispanic ethnicity, Spanish home language) in the potential 
SDOH subset and their relative coefficient magnitudes during 
ridge regression. However, the highly related nature of the selec-
ted socioeconomic variables, such as high percentage of racial or 
ethnic minorities in lower-income neighborhoods (28), presents 
challenges to comprehensive spatial analysis. 

As observed by others (7,29,30), people with preexisting chronic 
health conditions appear to be at increased risk of severe or fatal 
COVID-19 disease outcomes. As others have shown, in many 
cases those with an existing condition would not have died in the 
absence of a COVID-19 infection at the given time point (31). The 
strong correlations observed in our study are important in consid-
erations related to limiting exposure for people with comorbidities, 
ensuring prompt vaccination to decrease biological susceptibility 
and providing prompt treatment if infected. 

Because of the importance of comorbidities to COVID-19 out-
comes and the observed correlations, we performed spatial model-
ing (GWR) of COVID-19 rates by using hypertensive disease hos-
pitalization and diabetes death rates as explanatory variables. Not 
only can these comorbidity rates be well estimated by using the 
socioeconomic variables chosen to model COVID-19, but they 
also share similar spatial distributions to COVID-19, as determ-
ined through local bivariate analysis. Given these factors, the 
chronic disease rates should provide reasonable estimates of 
COVID-19 case rates. The GWR standard residuals indicate SRAs 
that have higher (underpredictions) or lower (overpredictions) 
COVID-19 case rates than expected by their comorbidity rates. 

We propose that, in certain contexts, the GWR standard residuals 
highlight communities that are either notably vulnerable (under-
predictions) or resilient (overpredictions) to COVID-19. When the 
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hypertensive disease hospitalization rate is used as the explanat-
ory variable, differences between low- and high-population SRAs 
become apparent, delineating the county’s rural–urban divide. 
When the diabetes death rate is the explanatory variable, urban 
subtleties reveal population vulnerabilities that can be further ex-
plained by socioeconomic variables and local area knowledge. 
However, because of suppressed values in the diabetes death rate 
data set, these findings require further investigation with addition-
al data. 

Through a spatial lens, the many interrelated factors that lead to 
vulnerability to COVID-19 can be better understood and clearly 
communicated to pandemic response decision makers and other 
involved planners. Spatially differentiated public health ap-
proaches are needed to overcome health disparity. The most ef-
fective policies for lightly populated communities will not work in 
densely populated areas. More importantly, culturally relevant and 
sensitive policies are needed to address COVID-19 in accordance 
with community demographics, preferences, and prevailing so-
cioeconomic status. A disproportionately high number of COVID-
19 cases in low-income communities might indicate low access to 
health care, poor communication of public health information, or 
unsustainable COVID-19 policies. 

Our study had limitations. Data limitations posed major chal-
lenges. Health data are frequently aggregated to relatively large 
geographic units (ie, SRAs) and suppressed when rates are below 
a threshold, which ultimately resulted in a small number of large, 
varied areas to analyze. COVID-19 data scaled up from the zip 
code level are susceptible to errors related to the population-based 
conversion method and modifiable areal unit problem. Findings 
from our research are applicable only at the level of analysis and 
cannot be scaled down to make inferences about smaller geo-
graphic areas or individuals. Furthermore, because the temporal 
periods for data about the chronic disease rates (2017, annual) and 
COVID-19 case rates (2020–2021, 54–85 days) are not the same, 
uncertainties about variable correlations and temporal dependen-
cies remain. Additional uncertainty relates to health care access in 
terms of who can, or will, get tested for COVID-19 or seek hospit-
alization and emergency services for chronic disease. 

Limitations also exist in the analysis techniques used for our re-
search. Although ridge regression regularization accommodates 
multicollinearity, the specific relationships between explanatory 
and dependent variables become obscured. In addition, our data 
and results suggest spatial dependency; thus, nonspatial linear 
models, such as ridge regression, are not reliable because they as-
sume independence of data observations. The algorithms for 
neighborhood selection and prediction during the local bivariate 

analysis and GWR might introduce error due to varied SRA sizes. 
We expect that access to fine-scale data, enabling analysis with 
more features, would increase the accuracy of our models and en-
hance the overall value of the research. 

Our analysis demonstrates the value of novel spatially informed 
approaches to COVID-19 responses and epidemiologic policy. In-
vestigation of potential SDOH provides better understanding of 
the underlying reasons for COVID-19 and chronic disease distri-
bution patterns. Socioeconomic variable analysis can help de-
cision makers develop relevant pandemic response measures. Loc-
ation unites different health and socioeconomic variables in sup-
port of clear communication about COVID-19, population vulner-
ability, and public health decisions. Spatial analysis is needed to 
develop effective policy targeted to diverse communities, such as 
those found in San Diego County. 

Future research is needed to determine causal relationships 
between potential SDOH, COVID-19, and chronic disease. Ac-
cess to fine-scale data and additional demographic and health care 
access variables, either in San Diego County or elsewhere, would 
permit the detailed analysis required to establish causal relation-
ships between potential SDOH and health data. Our findings 
provide a basis for hypothesis formation and a framework for on-
going spatial analysis. The heterogenous nature of San Diego 
County is ideal for investigating how correlations differ across 
space and inspires ongoing research to address these differences. 
The promising spatial approaches discussed in this article benefit 
the continuing development of geographically diverse and so-
cially equitable epidemiologic responses. 
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Tables 

Socioeconomic variabled Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Average number of residents per household 0.444 (.004) 0.495 (.001) 0.412 (.007) 0.593 (<.001) 0.576 (<.001) 

Education 

Below 9th grade 0.712 (<.001) 0.688 (<.001) 0.743 (<.001) 0.731 (<.001) 0.651 (<.001) 

Bachelor’s degree or higher −0.530 (<.001) −0.537 (<.001) −0.499 (<.001) −0.680 (<.001) −0.604 (<.001) 

Master’s degree −0.492 (.001) −0.495 (<.001) −0.463 (.002) −0.625 (<.001) −0.574 (<.001) 

Health clinics per square milee 0.614 (<.001) 0.545 (<.001) 0.553 (<.001) 0.356 (.02) 0.451 (.003) 

Language spoken at home 

English −0.804 (<.001) −0.717 (<.001) −0.734 (<.001) −0.632 (<.001) −0.582 (<.001) 

Spanish 0.859 (<.001) 0.797 (<.001) 0.833 (<.001) 0.773 (<.001) 0.677 (<.001) 

Other Indo-European language −0.380 (.01) −0.425 (.006) −0.377 (.02) −0.528 (<.001) −0.466 (.002) 

Annual household income, $ 

Household income below the federal poverty level 0.556 (<.001) 0.434 (.005) 0.548 (<.001) 0.418 (.006) 0.305 (.05) 

60,000–75,000f 0.285 (.07) 0.433 (.005) 0.290 (.07) 0.426 (.005) 0.587 (<.001) 

>200,000f −0.398 (.01) −0.318 (.04) −0.330 (.04) −0.362 (.02) −0.289 (.07) 

<15,000 0.550 (<.001) 0.483 (.001) 0.543 (<.001) 0.424 (.006) 0.328 (.04) 

Households receiving cash or food assistance 0.725 (<.001) 0.665 (<.001) 0.585 (<.001) 0.630 (<.001) 0.642 (<.001) 

Foreign-born residents 0.584 (<.001) 0.518 (<.001) 0.527 (<.001) 0.421 (.006) 0.393 (.01) 

Households with married parents of children aged <18 years −0.590 (<.001) −0.544 (<.001) −0.550 (<.001) −0.518 (<.001) −0.550 (<.001) 

Residents with physical disability 0.507 (<.001) 0.436 (.004) 0.500 (<.001) 0.586 (<.001) 0.562 (<.001) 

Residents aged 0–9 years 0.508 (<.001) 0.563 (<.001) 0.582 (<.001) 0.636 (<.001) 0.626 (<.001) 

Race or ethnicity 

Hispanic 0.823 (<.001) 0.808 (<.001) 0.833 (<.001) 0.806 (<.001) 0.703 (<.001) 

White −0.765 (<.001) −0.740 (<.001) −0.720 (<.001) −0.648 (<.001) −0.602 (<.001) 

Other −0.408 (.008) −0.422 (.006) −0.415 (.007) −0.569 (<.001) −0.455 (.003) 

Households with ≥1 rooms per person −0.710 (<.001) −0.715 (<.001) −0.700 (<.001) −0.677 (<.001) −0.640 (<.001) 

Uninsured residents 0.511 (<.001) 0.699 (<.001) 0.638 (<.001) 0.652 (<.001) 0.686 (<.001) 

Employment, by industry 

Management, business, science, arts −0.564 (<.001) −0.500 (<.001) −0.497 (<.001) −0.649 (<.001) −0.564 (<.001) 

Manufacturing, transportation 0.571 (<.001) 0.681 (<.001) 0.661 (<.001) 0.744 (<.001) 0.749 (<.001) 

Table 1. Pearson Correlation Coefficients for Socioeconomic Variablesa and COVID-19 Daily Average Case Rates, by Stageb, San Diego County Subregional Areasc , 
March 31, 2020–April 3, 2021 

a 2019 American Community Survey 5-year estimates (16) unless otherwise noted. 
b COVID-19 rates per 100,000 residents. Stages were determined by 7-day average case trends (1–5): March 31, 2020, to June 24, 2020 (Stage 1); June 25, 
2020, to August 18, 2020 (Stage 2); August 19, 2020, to October 31, 2020 (Stage 3); November 1, 2020, to January 23, 2021 (Stage 4); and January 24, 2021, 
to April 3, 2021 (Stage 5). 
c San Diego County is divided into 41 subregional areas (SRAs), a geographic division frequently used to report COVID-19 and other health-related data. 
d Selected from an initial data set of 79 socioeconomic variables recognized as potential social determinants of health because of their significant linear relation-
ships (P ≤ .05) to COVID-19 case rates during all 5 pandemic stages. Values are r (P) and are per 100,000. 
e Values were determined by using spatial data from the San Diego Association of Governments and GIS analysis (26). 
f Variable included with P > .05 was due to significance (P > .05) during other pandemic stages. 
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(continued) 

Socioeconomic variabled Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Service 0.611 (<.001) 0.506 (<.001) 0.521 (<.001) 0.553 (<.001) 0.486 (.001) 

Management and administration, professional, science, waste
management services 

−0.449 (.003) −0.438 (.004) −0.392 (.011) −0.593 (<.001) −0.507 (<.001) 

Table 1. Pearson Correlation Coefficients for Socioeconomic Variablesa and COVID-19 Daily Average Case Rates, by Stageb, San Diego County Subregional Areasc , 
March 31, 2020–April 3, 2021 

a 2019 American Community Survey 5-year estimates (16) unless otherwise noted. 
b COVID-19 rates per 100,000 residents. Stages were determined by 7-day average case trends (1–5): March 31, 2020, to June 24, 2020 (Stage 1); June 25, 
2020, to August 18, 2020 (Stage 2); August 19, 2020, to October 31, 2020 (Stage 3); November 1, 2020, to January 23, 2021 (Stage 4); and January 24, 2021, 
to April 3, 2021 (Stage 5). 
c San Diego County is divided into 41 subregional areas (SRAs), a geographic division frequently used to report COVID-19 and other health-related data. 
d Selected from an initial data set of 79 socioeconomic variables recognized as potential social determinants of health because of their significant linear relation-
ships (P ≤ .05) to COVID-19 case rates during all 5 pandemic stages. Values are r (P) and are per 100,000. 
e Values were determined by using spatial data from the San Diego Association of Governments and GIS analysis (26). 
f Variable included with P > .05 was due to significance (P > .05) during other pandemic stages. 
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Chronic disease ratesc Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Coronary heart disease, age-adjusted hospitalizations 0.792 (<.001) 0.746 (<.001) 0.719 (<.001) 0.745 (<.001) 0.748 (<.001) 

Diabetes, age-adjusted hospitalizations 0.695 (<.001) 0.712 (<.001) 0.690 (<.001) 0.773 (<.001) 0.786 (<.001) 

Diabetes, age-adjusted deaths 0.825 (<.001) 0.838 (<.001) 0.806 (<.001) 0.819 (<.001) 0.824 (<.001) 

Diabetes, hospitalizations, patients aged ≥65 years 0.933 (<.001) 0.924 (<.001) 0.889 (<.001) 0.877 (<.001) 0.876 (<.001) 

Diabetes, emergency department discharges, patients aged ≥65 years 0.822 (<.001) 0.798 (<.001) 0.760 (<.001) 0.749 (<.001) 0.749 (<.001) 

Hypertensive diseases (hypertension, hypertensive heart disease, hypertensive
chronic kidney disease, and hypertensive encephalopathy), age-adjusted
hospitalizations 

0.823 (<.001) 0.781 (<.001) 0.750 (<.001) 0.710 (<.001) 0.712 (<.001) 

Hypertensive diseases, hospitalizations of Hispanic residents 0.887 (<.001) 0.867 (<.001) 0.833 (<.001) 0.793 (<.001) 0.790 (<.001) 

Mental illness, age-adjusted hospitalizations 0.354 (.03) 0.411 (.008) 0.447 (.004) 0.571 (<.001) 0.578 (<.001) 

Pulmonary disease, age-adjusted hospitalizations 0.680 (<.001) 0.657 (<.001) 0.651 (<.001) 0.704 (<.001) 0.706 (<.001) 

Pulmonary disease hospitalizations, patients aged ≥65 years 0.779 (<.001) 0.771 (<.001) 0.754 (<.001) 0.810 (<.001) 0.814 (<.001) 

Table 2. Pearson Correlation Coefficients for 2017 Chronic Disease Rates and COVID-19 Cumulative Case Rates, by Stagea, San Diego County Subregional Areasb , 
March 31, 2020–April 3, 2021 

a COVID-19 rates per 100,000 residents. Stages were determined by 7-day average case trends (1–5): March 31, 2020, to June 24, 2020 (Stage 1); June 25, 
2020, to August 18, 2020 (Stage 2); August 19, 2020, to October 31, 2020 (Stage 3); November 1, 2020, to January 23, 2021 (Stage 4); and January 24, 2021, 
to April 3, 2021 (Stage 5).
b San Diego County is divided into 41 subregional areas (SRAs), a geographic division frequently used to report COVID-19 and other health-related data. 
c All rates are per 100,000 residents. Values are r (P value). 
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Socioeconomic variabled Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
Diabetes 
deaths 

Hypertensive disease
hospitalizations 

Average number of residents per
household 

0.32 2.45 0.48 15.65 7.64 7.48 65.29 

Education 

Below 9th grade −11.75 −0.11 0.57 0.89 0.83 −2.02 −1,756.88 

Bachelor’s degree −6.19 −0.42 −1.36 −3.39 −19.34 −17.08 725.68 

Master’s degree −3.90 −0.02 −1.41 −0.75 −14.34 −6.19 −502.36 

Health clinics per square milee 0.26 1.13 1.00 −11.54 0.30 4.75 63.04 

Language spoken at home 

English −12.42 −1.81 −2.95 −3.76 −12.72 −16.87 132.43 

Spanish 12.43 2.72 8.25 7.80 8.22 −9.77 803.00 

Other Indo-European language −0.03 −0.39 −0.56 −0.96 8.59 3.68 −731.42 

Annual household income, $ 

Below the federal poverty rate 2.76 −0.62 2.92 −1.34 −1.53 −12.91 −518.46 

<15,000 5.61 0.11 2.09 −0.14 1.96 −3.67 561.30 

60,000–75,000 3.95 0.51 0.73 1.38 36.42 21.29 −386.59 

>200,000 2.97 0.99 2.56 3.24 23.98 −12.98 −428.05 

Households receiving cash or food
assistance, per 100,000 

9.30 0.33 −2.63 −1.37 −1.43 28.82 248.10 

Foreign-born residents −7.52 0.21 −2.94 0.58 −5.96 −32.69 −210.04 

Households with married parents of
children aged <18 years 

0.58 −0.18 2.15 −0.36 −26.78 13.95 275.00 

Resident with physical disability 0.32 0.91 0.70 6.24 0.88 3.97 35.86 

Residents aged 0–9 years −5.01 0.14 0.18 1.31 17.13 −11.52 −179.35 

Race or ethnicity 

Hispanic −3.00 2.75 8.33 7.66 −1.39 −15.47 −896.04 

White 2.62 −2.29 0.49 −1.24 16.73 −22.86 −522.40 

Other 0.23 0.00 0.05 −0.01 1.09 0.15 −48.32 

Households with ≥1 rooms per person 0.03 −0.53 −0.17 −2.25 −0.07 −1.11 −9.77 

Uninsured −7.17 0.88 1.05 1.59 20.78 −4.46 602.68 

Employment, by industry 

Management, business, science, arts 5.88 1.71 5.95 0.91 27.65 26.45 −794.44 

Manufacturing, transportation 2.40 0.61 3.77 2.01 17.01 4.43 114.61 

Table 3. Ridge Regression Model Coefficients for COVID-19 Daily Average Case Rates by Stagea, Diabetes Age-Adjusted Death Rateb, and Hypertensive Disease 
Hospitalization Rateb, San Diego County Subregional Areasc, March 31, 2020–April 3, 2021 

a COVID-19 rates per 100,000 residents. Stages were determined by 7-day average case trends (1–5): March 31, 2020, to June 24, 2020 (Stage 1); June 25, 
2020, to August 18, 2020 (Stage 2); August 19, 2020, to October 31, 2020 (Stage 3); November 1, 2020, to January 23, 2021 (Stage 4); and January 24, 2021, 
to April 3, 2021 (Stage 5).
b Chronic disease rate for 2017 per 100,000 residents. Hypertensive disease includes hypertension, hypertensive heart disease, hypertensive chronic kidney dis-
ease, and hypertensive encephalopathy. 
c San Diego County is divided into 41 subregional areas (SRAs), a geographic division frequently used to report COVID-19 and other health-related data. 
d Measures are per 100,000 unless otherwise indicated. 
e Values were determined by using spatial data from the San Diego Association of Governments and GIS analysis (26). 
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(continued) 

Socioeconomic variabled Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
Diabetes 
deaths 

Hypertensive disease
hospitalizations 

Service 2.51 −0.61 −2.16 −1.27 11.86 −19.62 −128.65 

Management and administration,
professional, science, waste management
services 

9.67 0.46 3.27 0.46 10.39 14.19 687.10 

Table 3. Ridge Regression Model Coefficients for COVID-19 Daily Average Case Rates by Stagea, Diabetes Age-Adjusted Death Rateb, and Hypertensive Disease 
Hospitalization Rateb, San Diego County Subregional Areasc, March 31, 2020–April 3, 2021 

a COVID-19 rates per 100,000 residents. Stages were determined by 7-day average case trends (1–5): March 31, 2020, to June 24, 2020 (Stage 1); June 25, 
2020, to August 18, 2020 (Stage 2); August 19, 2020, to October 31, 2020 (Stage 3); November 1, 2020, to January 23, 2021 (Stage 4); and January 24, 2021, 
to April 3, 2021 (Stage 5).
b Chronic disease rate for 2017 per 100,000 residents. Hypertensive disease includes hypertension, hypertensive heart disease, hypertensive chronic kidney dis-
ease, and hypertensive encephalopathy. 
c San Diego County is divided into 41 subregional areas (SRAs), a geographic division frequently used to report COVID-19 and other health-related data. 
d Measures are per 100,000 unless otherwise indicated. 
e Values were determined by using spatial data from the San Diego Association of Governments and GIS analysis (26). 
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Summary 

What is already known on this topic? 

Chronic lung diseases, such as chronic obstructive pulmonary disease 
(COPD) and asthma, are among the top preexisting conditions identified by 
the Centers for Disease Control and Prevention that increase the risk for 
severe COVID-19 illness and death. 

What is added by this report? 

Town-level factors (African American race and Hispanic ethnicity, age ≥65 
y, and low educational attainment) were significant predictors of COVID-19 
death rates, adding to the current understanding of the impact of social 
determinants of health on outcomes. 

What are the implications for public health practice? 

Public health policy makers could focus on communities reporting high 
rates of chronic lung conditions among the older adult population to 
provide more testing and access to vaccinations. 

Abstract 

Introduction 
As of November 2021, older adults (aged ≥65 y) accounted for 
81% of all deaths from COVID-19 in the US. Chronic lung dis-
eases increase the risk for severe COVID-19 illness and death. The 
aim of this research was to examine the association between town-
level rates of asthma and chronic obstructive pulmonary disease 
(COPD) and deaths from COVID-19 in 208 towns in Connecticut 
and Rhode Island. 

Methods 
We conducted a multistep analysis to examine the association 
between town-level chronic lung conditions and death from 
COVID-19. Pairwise correlations were estimated and bivariate 
maps were created to assess the relationship between COVID-19 
deaths per 100,000 people and 1) asthma prevalence and 2) COPD 
prevalence among adults aged 65 years or older. We used mul-
tiple linear regression models to examine whether chronic lung 
conditions and other town-level factors were associated with 
COVID-19 death rates in Connecticut and Rhode Island. 

Results 
Initial bivariate correlation and mapping analyses suggested posit-
ive correlations between asthma and COPD prevalence and 
COVID-19 death rates. However, after controlling for town-level 
factors associated with chronic lung conditions and COVID-19 
death rates, multiple linear regression models did not support an 
association, but town-level factors (African American race and 
Hispanic ethnicity, age ≥65 y, and low educational attainment) 
were significant predictors of COVID-19 death rates. 

Conclusion 
We found significant associations between town-level factors and 
COVID-19, adding to the current understanding of the impact of 
social determinants of health on outcomes. 

Introduction 
As of November 2021, 81% of all US deaths caused by COVID-
19 occurred among people aged 65 years or older (1). Chronic 
lung diseases, such as asthma and chronic obstructive pulmonary 
disease (COPD), are among the top preexisting conditions that in-
crease the risk for severe COVID-19 illness and death (2). Pa-
tients with preexisting lung conditions, including asthma and 
COPD, are more likely than people without these conditions to be 
hospitalized and die of COVID-19 (3–6). Even after controlling 
for sex, race and ethnicity, body mass index, and 10 prevalent co-
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morbidities, a study found that people with chronic lung condi-
tions were significantly more likely to be admitted to intensive 
care units, require mechanical ventilation, and die of COVID-19 
(3). Although the association between chronic lung conditions and 
COVID-19 has been established at the individual level (3–6), in-
formation about town-level associations is lacking. Thus, the ob-
jective of this study was to examine this town-level association 
measured by the prevalence of asthma and COPD among the pop-
ulation aged 65 years or older per town in Connecticut and Rhode 
Island. 

We addressed the following research questions: 1) Are town-level 
prevalence rates of asthma and COPD among adults aged 65 years 
or older associated with town-level COVID-19 death rates? 2) 
After controlling for other confounding town-level factors associ-
ated with the study variables, is there an association between the 
town-level prevalence of chronic lung conditions among adults 
aged 65 years or older and COVID-19 death rates? 

Connecticut and Rhode Island have higher rates of asthma and 
similar rates of COPD compared with average rates among the US 
population aged 65 years or older (7). Additionally, more than 
90% of COVID-19 deaths in these 2 states have been among 
adults aged 60 years or older (8,9), making this study population 
an appropriate sample to investigate the association between rates 
of chronic lung conditions and COVID-19 death rates. 

Methods 
We used data from several publicly available data sets: the Con-
necticut Department of Public Health and Office of Policy and 
Management (8), the Rhode Island Department of Public Health 
(9), the 2021 Connecticut Healthy Aging Data Report (HADR) 
(10), the 2020 Rhode Island HADR (11), and the US Census Bur-
eau’s 2014–2018 American Community Survey (12). Institutional 
review board approval was not required because no individual-
level data were used. 

Measures 

COVID-19 deaths. The outcome of interest was the total number 
of COVID-19 deaths from March 2020 through October 7, 2021, 
for each reported geographic unit (towns and cities; hereinafter, 
towns) in Rhode Island (n = 39) and Connecticut (n = 169). We 
obtained these data from the Connecticut Open Data Portal (8) and 
the Rhode Island Department of Health (9). If a town reported 
fewer than 5 deaths but more than 0 deaths, the data were sup-
pressed for reasons of confidentiality (9); data for 6 towns in 
Rhode Island were suppressed. Because each of these towns repor-
ted 1 to 4 deaths, we recoded them as having 1 death to represent 

towns with any reported deaths to distinguish them from towns 
with no deaths. We calculated population-adjusted COVID-19 
death rates to account for differences in the population size of each 
town (N = 208 towns; total population range, 827–179,435). 

Chronic lung conditions. Chronic disease measures reported in the 
HADR were obtained and estimated from the annual summaries of 
Medicare claims of beneficiaries aged 65 years or older in the 
2016–2017 Medicare Beneficiary Summary Files (13). The 
HADR calculates chronic condition prevalence rates through clin-
ical algorithms applied to individual Medicare fee-for-service 
claims (13,14). If a beneficiary 65 years or older in 2017 ever met 
the claims-based diagnostic criteria for asthma or COPD since 
1999, they were considered ever diagnosed with the chronic con-
dition. Criteria were having at least 1 Medicare claim for an inpa-
tient, skilled nursing facility, or home health care or at least 2 hos-
pital outpatient or Part B Medicare claims with appropriate dia-
gnosis codes during a 1-year period. Thus, the prevalence rates of 
chronic conditions reported in the HADR may be slightly higher 
than the current prevalence rates among beneficiaries reported by 
other Centers for Medicare & Medicaid Services sources, because 
the HADR includes beneficiaries who were ever diagnosed since 
1999 (14). 

The asthma measure was coded as the prevalence rate of asthma 
among residents 65 years or older who ever met diagnostic criter-
ia (14). COPD is a group of lung diseases that includes em-
physema and chronic bronchitis, characterized by causing airflow 
blockage and breathing-related problems (15). The COPD meas-
ure was coded as the prevalence rate of COPD among residents 65 
years or older who ever met diagnostic criteria (14). 

Covariates. We obtained data on all covariates from the 2021 Con-
necticut HADR (10), the 2020 Rhode Island HADR (11), and the 
2014–2018 American Community Survey (12). Previous research 
(16,17) identified factors associated with high COVID-19 death 
rates at the town and county levels. At the town level, increased 
household size and proportion of non–US-born residents and 
African Americans independently predicted increased COVID-19 
death rates (16). County-level factors associated with increased 
COVID-19 infection and death were increases in household size 
and proportion of non–US-born residents, African American resid-
ents, low educational attainment, and the proportion of all com-
muters using public transportation (17). Thus, to account for po-
tential confounding factors associated with town-level COVID-19 
death rates, we included the following covariates: the average 
household size in each town, the percentage of the town popula-
tion aged 65 years or older that was African American or Hispan-
ic, the percentage of the town population aged 65 years or older 
that had less than a high school diploma, the percentage of all 
commuters using public transportation, and the proportion of 
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non–US-born residents. In addition, poverty, obesity, smoking, 
and proportion of African Americans are community-level risk 
factors associated with asthma prevalence (18). Therefore, we ad-
ded the following covariates: among residents aged 65 years or 
older, the percentage living in poverty, the percentage with 
obesity, and the percentage with tobacco use disorder. Finally, rur-
ality was identified as a community-level factor associated with 
COPD (19); therefore, we included rural status as a covariate. 

The HADRs include more than 190 indicators drawn from more 
than 20 data sources and reported at local levels (ie, zip codes, 
neighborhoods, towns, cities) (20). The HADR recodes and cat-
egorizes the race and ethnicity of the state population aged 65 
years or older as White, African American, Asian, “other” race, 
and Hispanic/Latino. The HADR defines “other” race as persons 
reporting their race as Native Hawaiian or Other Pacific Islander, 
American Indian or Alaskan Native, other tribal entities, 2 or more 
races, or any other category not captured in previous categories 
(14). Educational attainment of the state population aged 65 years 
or older was coded into less than a high school diploma or GED 
(General Educational Development), high school diploma or some 
college, college degree, and graduate or professional degree. The 
percentage of the state’s population 65 years or older living in 
poverty is defined by the American Community Survey as the per-
centage of people aged 65 years or older reporting an annual 
household income at or below the federal poverty level. The aver-
age household size is defined by the American Community Sur-
vey as the average number of persons per household. We obtained 
data on the non–US-born population from the 2014–2018 Americ-
an Community Survey (12); we recoded these data as the percent-
age per town. We obtained data on the rate of a town’s population 
that commutes to work and the percentage of all commuters using 
public transportation from the 2014–2018 American Community 
Survey (12). Town prevalence of obesity and tobacco use disorder 
among the population aged 65 years or older was obtained from 
the 2016–2017 Master Beneficiary Summary File (9) and coded as 
the prevalence rate among residents 65 years or older who ever 
met the diagnostic criteria (14). Towns were considered rural if 
they were inside a rural county as defined by the Office of Man-
agement and Budget (21). 

Analytic strategy 

We combined data on all towns in both states for a total study 
sample of 208 towns. We conducted a multistep analysis to exam-
ine the association between the independent variables (town-level 
prevalence of asthma and COPD) and the dependent variable, 
COVID-19 death rates. First, we conducted pairwise correlations 
between the rate of COVID-19 deaths per 100,000 people and 1) 
asthma prevalence and 2) COPD prevalence. We calculated ter-
tiles of asthma prevalence, COPD prevalence, and the population-

adjusted COVID-19 death rates to represent low, medium, and 
h i g h  r a t e s  f o r  a s t h m a  ( l o w ,  9 . 5 % – 1 2 . 8 % ;  m e d i u m ,  
12.9%–14.71%;  high,  14.72%–19.1%);  for  COPD (low,  
11.1%–18.9%; medium, 19.0%–22.8%; high, 22.9%–33.7%); and 
COVID-19 death rate per 100,000 people (low, 0–101.8; medium, 
103.2–237.8; high, 239.3–1,694.7). Next, we created 2 bivariate 
choropleth maps in ArcMap version 10.8.2 (Esri) to visualize the 
intersection of low, medium, and high levels of asthma, COPD, 
and COVID-19 death rates. Finally, to account for confounding 
factors influencing COVID-19 death rates and chronic lung condi-
tions at the town level, we estimated a series of multiple linear re-
gression models. We used the variance inflation factor (VIF) be-
fore estimating the linear regression models to test for multicollin-
earity among the study variables. The VIF for all study variables 
was less than 4.07, below the standard threshold of less than 10, 
suggesting that study variables were not significantly correlated 
with one another. In preliminary analyses (Models 1 and 2), we 
examined the main effects of the independent variables (the pre-
valence of asthma and the prevalence of COPD in the population 
aged ≥65 y) separately. Model 3 estimated the main effects of both 
chronic lung conditions together. Model 4 estimated the main ef-
fect of asthma alone on COVID-19 death rates controlling for 
factors found in previous literature to predict county-level 
COVID-19 (16,17) and asthma (18). Finally, Model 5 added in the 
main effect of COPD and rural status as a covariate to Model 4. 
We conducted all statistical analyses in Stata version 17 (Stata-
Corp LLC). P values of ≤.05 were considered significant. 

Results 
Across all towns in both states, the average rate of COVID-19 
deaths per 100,000 people was 200.2 deaths per town (Table 1). 
The prevalence of asthma was 13.8%, and the prevalence of 
COPD was 21.2%. The average town population was 22,299 
people and 3,662 people aged 65 years or older. Most of the over-
all sample was White (93.9%) and had attained some college 
(53.5%). Of the population aged 65 years or older, 23.5% had 
obesity and 10.1% had tobacco use disorder. In addition, 11.5% of 
the overall sample were not US born, 2.5% commuted to work us-
ing public transportation, and 6.0% of the population aged 65 
years or older were living in poverty. The average household size 
was 2.5 people per home and did not differ across the 2 states. Fi-
nally, 19.7% of the overall sample lived in rural counties; 24.3% 
of the sample in Connecticut lived in rural counties, whereas 
Rhode Island had no rural counties (P < .001 for difference 
between 2 states). 

Overall, the Connecticut sample was slightly more diverse, health-
ier, and wealthier than the Rhode Island sample. Connecticut had 
an average of 196.9 deaths per 100,000 people from COVID-19 
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per town (vs 214.4 in Rhode Island and 200.2 overall). In bivari-
ate analyses, we found a significant difference in the prevalence of 
asthma among adults aged 65 years or older by state (Connecticut, 
13.7%; Rhode Island, 14.5%) and in the overall sample (13.8%). 
Compared with Rhode Island, Connecticut had a lower rate of 
COPD (20.9%) and a higher rate of people aged 65 years or older 
with a graduate or professional degree (18.1%). The average town 
population aged 65 years or older in Connecticut (n = 3,477) was 
lower than in Rhode Island (n = 4,467) and overall (n = 3,662). 
We found a significant difference between states for rates of 
obesity and poverty; among residents aged 65 years or older, Con-
necticut had a lower prevalence of obesity (22.3%) and a lower 
rate of residents aged 65 years or older living in poverty (5.3%). 
Finally, Connecticut had a lower rate of non–US-born residents 
(9.0%). 

Rhode Island had a higher prevalence than Connecticut of asthma 
(14.5%), COPD (22.2%), and obesity (28.3%) among people aged 
65 years or older. Towns in Rhode Island had worse health, were 
poorer, older, and less educated than towns in Connecticut. In 
Rhode Island, of the population aged 65 years or older, 8.7% lived 
in poverty and 16.3% had less than a high school diploma. Finally, 
Rhode Island had more than twice as many non–US-born resid-
ents as Connecticut (22.4% vs 9.0%). 

We found significant correlations between town-level asthma pre-
valence among people aged 65 years or older and rate of COVID-
19 deaths per 100,000 people (r[206] = 0.15; P = .03) and town-
level COPD prevalence among residents aged 65 years or older 
and rate of COVID-19 deaths per 100,000 people (r[206] = 0.15; P 
= .03). Medium and high rates of chronic lung conditions and 
COVID-19 overlapped mainly in southwestern, central, and east-
ern Connecticut and in central and northern Rhode Island (Figure 
1 and Figure 2). 

Figure 1. Town-level prevalence of asthma among population aged 65 years or 
older and COVID-19 death rates per 100,000 people, Connecticut and Rhode 
Island. Data sources: Connecticut Department of Public Health (8), Rhode 
Island Department of Public Health (9), HealthyAgingDataReports.org (10,11), 
CT DEEP GIS (22), and RIGIS (23). 

Figure 2. Town-level prevalence of COPD among population aged 65 years or 
older and COVID-19 death rates per 100,000 people, Connecticut and Rhode 
Island. Data sources: Connecticut Department of Public Health (8), Rhode 
Island Department of Public Health (9), HealthyAgingDataReports.org (10,11), 
CT DEEP GIS (22), and RIGIS (23). 

In Model 1, the main effect of town-level prevalence of asthma 
among residents aged 65 years or older was significant, and the 
model positively predicted COVID-19 death rates (β = 0.15, SE, 
619.02; 95% CI, 111.79–2,552.62; P = .03). Model 2 found a sig-
nificant, positive association between town-level prevalence of 

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services, 
the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions. 

Centers for Disease Control and Prevention • www.cdc.gov/pcd/issues/2022/21_0421.htm 4  

www.cdc.gov/pcd/issues/2022/21_0421.htm
https://111.79�2,552.62
https://HealthyAgingDataReports.org
https://HealthyAgingDataReports.org


 

 

 

 

 
 

 

 

 
 

PREVENTING CHRONIC DISEASE VOLUME 19, E34 

PUBLIC HEALTH RESEARCH, PRACTICE, AND POLICY  JUNE 2022 

COPD among residents aged 65 years or older and COVID-19 
death rates per 100,000 people (β = 0.15; SE, 298.12; 95% CI, 
48.78–1,224.3; P = .03). In Model 3, the significant effect disap-
peared (Table 2). Model 4 did not demonstrate a significant main 
effect for asthma (β = 0.02; SE, 860.31; 95% CI, −1,525.4 to 
1,868.2; P = .84), but it did show a positive, significant effect in 
towns with a higher percentage of African American residents 
aged  65  years  or  older  (β  =  0.23;  SE,  254.11;  95% CI,  
191.86–1,194.26; P = .01) and residents aged 65 years or older 
without a high school diploma (β = 0.42; SE, 285.49; 95% CI, 
454.55–1,580.72; P = .001). Model 5 also did not find a signific-
ant main effect between asthma (β = 0.04; SE, 893.12, 95% CI, 
1,436.41–2,086.86; P = .72) or COPD (β = 0.02; SE, 568.27; 95% 
CI, −1,036.83 to 1,204.94; P = .99) and COVID-19 death rates, 
but multiple covariates had significant effects. Like Model 4, 
Model 5 showed that towns with a higher percentage of African 
American residents aged 65 years or older (β = 0.19; SE, 249.18; 
95% CI, 83.8–1,066.8; P = .02) and residents aged 65 years or 
older without a high school diploma (β = 0.45; SE, 278.98; 95% 
CI, 529.06–1,629.6; P = .001), reported positive associations with 
COVID-19 death rates. In Model 5, which added COPD, a negat-
ive, significant effect was found for the Hispanic population aged 
65 years or older (β = −0.23; SE, 407.43; 95% CI, −1,652.8 to 
−45.52; P = .04) and the population living in rural areas (β = 
−0.13; SE, 809.17; 95% CI, −184.92 to −55.95; P = <.001). These 
findings suggest that in our sample, as rurality and the percentage 
of residents who are Hispanic increased, COVID-19 death rates 
decreased. 

Discussion 
This study advanced the research by examining the association 
between town-level chronic lung conditions and mortality from 
COVID-19. First, pairwise correlations and bivariate mapping 
suggested an association between town-level chronic lung condi-
tions (asthma, COPD) and death from COVID-19. The bivariate 
maps demonstrated multiple clusters in Connecticut and Rhode Is-
land where the prevalence of asthma and COPD among residents 
aged 65 years or older overlapped with the rate of COVID-19 
deaths at the town level. In a comparison of our bivariate maps 
and maps of variables from the 2021 Connecticut (10) and 2020 
Rhode Island HADRs (11), the clusters in southwestern and cent-
ral Connecticut in both maps are in an area of Connecticut with 
high proportions of people who are aged 65 years or older, Afric-
an American, or Hispanic, or have low income and low education-
al attainment. Additionally, eastern Connecticut is largely rural 
and has high rates of asthma, COPD, obesity, tobacco use dis-
order, and older adults living in poverty. Northern Rhode Island 
also has high proportions of people aged 65 years or older, Afric-
an American, or Hispanic, or who have low income, obesity, or 

low educational attainment (10,11). Although our bivariate maps 
demonstrated an association, a comparison of these maps with oth-
er maps of variables in the 2021 Connecticut and 2020 Rhode Is-
land HADRs (10,11) showed that this association may be driven 
by other town-level factors. 

In Model 4, although we found no significant effect for asthma 
prevalence predicting COVID-19 death rates among the popula-
tion aged 65 years or older, the percentage of the population that 
was African American and aged 65 years or older and the popula-
tion with less than a high school education had a positive, signific-
ant association with COVID-19 death rates. Furthermore, towns 
with a high proportion of older adults with low educational attain-
ment were also more likely than towns without these characterist-
ics to report higher rates of COVID-19 death rates. A previous 
study (17) also found that less than a high school education inde-
pendently predicted at the county level a higher rate of COVID-19 
deaths per 100,000 people across the US. Our study also found 
this effect at the town level among the population aged 65 years or 
older, underlining the robustness of this association. Thus, this 
finding suggests that towns with large populations of older adults 
with low levels of education are especially vulnerable to death 
from COVID-19. 

The final model included both chronic lung conditions and rural-
ity as the final covariate. Although we found no significant main 
effects, we found that the following covariates were significantly 
associated with COVID-19 death rates: percentage of population 
that was African American or Hispanic, aged 65 years or older, or 
had less than a high school education; average household size; and 
rurality. The positive, significant association between the African 
American population aged 65 years or older and mortality was 
slightly reduced, but the association became slightly stronger 
between the population that was aged 65 years or older with less 
than a high school education and COVID-19 death rates. Further-
more, we found a negative, significant effect between 1) the asso-
ciation between rurality and COVID-19 death rates and 2) the His-
panic population aged 65 years or older and mortality. These data 
suggest that rural towns and towns with large populations of His-
panic people aged 65 years or older had lower rates of COVID-19 
deaths per 100,000 people than urban towns without large popula-
tions of Hispanic people aged 65 years or older. This finding is 
confounding because CDC reports that African American and His-
panic people are 1.9 and 2.1 times, respectively, more likely than 
White people to die of COVID-19 (24). Yet, the “Hispanic para-
dox” (25) indicates that although older Hispanic people are not 
healthier than older non-Hispanic people, they have lower rates of 
mortality and the highest life expectancy in the US (26). Future re-
search could examine this relationship more closely. Finally, our 
study found that living in a rural county protected against COVID-
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19 death rates in Connecticut. However, previous research found 
that rurality is associated with higher rates of COVID-19 deaths at 
the county level (27). Our study used a population-adjusted indic-
ator of COVID-19 death rates; only 2 counties in our sample were 
defined as rural, and both were in Connecticut. Population density 
may affect the transmission of highly contagious airborne viruses, 
and living in urban, densely populated areas may increase the 
everyday risk of COVID-19 exposure (28). 

This study has several potential limitations. Although we found 
that more than 90% of COVID-19 deaths in Connecticut and 
Rhode Island were among the population aged 60 years or older, 
the measures of chronic conditions and population characteristics 
used represented the population aged 65 years or older, and the 
COVID-19 death rates data were reported for all ages in these 
states; thus, the age groups do not align exactly across data 
sources. Additionally, the research design was cross-sectional, so 
causation could not be determined. Furthermore, this study ex-
amined only asthma and COPD; perhaps the study of other com-
mon chronic lung conditions would show different results. 

Our research fills a gap in the knowledge base of the association 
between town-level rates of asthma and COPD among older adults 
and COVID-19 death rates. Our analysis did not find that the pre-
valence rates of asthma and COPD among the population aged 65 
years or older predicted COVID-19 death rates. Yet it did find sig-
nificant associations between town-level factors and COVID-19 
death rates, adding to the knowledge base indicating that large 
proportions of racial and ethnic minority groups and low educa-
tional attainment among the population aged 65 years or older are 
significant predictors of town rates of COVID-19 deaths. 

Future research could examine how demographic indicators most 
relevant to older adults are associated with COVID-19 death rates 
at the town level and whether the indicators found for the overall 
population are the same for the older adult population. Finally, this 
research identified communities in Connecticut and Rhode Island 
at the highest risk for hospitalization and mortality from COVID-
19. These communities would benefit from additional policy ef-
forts that promote and provide COVID-19 testing and access to 
vaccination. 
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Tables 

Factor Both states Connecticut Rhode Island t Statistic 

No. of communities 208 169 39  — 

Variable 

Population aged ≥65 y with asthma, % 13.8 13.7 14.5 −2.29a 

Population aged ≥65 y with COPD, % 21.2 20.9 22.2 −1.69 

COVID-19 death rates per 100,000 people 200.2 196.9 214.4 −0.53 

Characteristic 

Total population, no. (SD) 22,299 (26,832) 21,192 (25,564) 27,093 (31,679) −1.24 

Population aged ≥65 y, no. (SD) 3,662 (3,591) 3,477 (3,463) 4,467 (4,051) 1.56 

Race and ethnicity of population aged ≥65 y, %

 African American 2.9 3.2 1.7 1.40

 Asian 1.5 1.6 1.1 1.70

 Hispanic/Latino 2.9 2.9 2.8 0.11

 Otherb 1.6 1.5 2.1 −1.17

 White 93.9 93.6 95.2 −1.05 

Education of population aged ≥65 y, %

 Less than high school diploma 12.3 11.4 16.3 −3.68c

 High school diploma or some college 53.5 53.9 51.7 1.23

 College degree 16.5 16.6 16.3 0.11

 Graduate or professional degree 17.7 18.1 15.7 1.73 

Population aged ≥65 y with obesity, %d 23.5 22.3 28.3 −7.66c 

Population aged ≥65 y with tobacco use disorder, %d 10.1 10.1 10.4 −0.56 

Population aged ≥65 y living at or below federal poverty level, % 6.0 5.3 8.7 −5.26c 

Population not US born, % 11.5 9.0 22.4 −3.39c 

Commute to work using public transportation 2.5 2.7 1.7 1.47 

Average household size (SD) 2.5 (0.2) 2.5 (0.2) 2.5 (0.2) 1.92 

Rurale 19.7 24.3 0 3.52c 

Table 1. Descriptive Statistics for Study Sample and Bivariate Analyses, by State, Study of Town-Level Prevalence of Chronic Lung Conditions and Death From 
COVID-19 Among Older Adults in Connecticut and Rhode Island 

Abbreviation: —, does not apply; COPD, chronic obstructive pulmonary disease. 
a P < .05. 
b Other race is defined in the Health Aging Data Report as Native Hawaiian or Other Pacific Islander, American Indian or Alaskan Native, and other tribal entries, ≥2 
races, or any other race not represented in previous categories (10,11). 
c P < .001. 
d Prevalence of the condition is defined as being ever diagnosed with the condition in the Medicare Beneficiary Summary File since 1999 (13,14). 
e Living in a town in a rural county as defined by the Office of Management and Budget (21). 
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Variable Model 3,a β (SE) [95% CI] Model 4,b β (SE) [95% CI] P value Model 5,c β (SE) [95% CI] P value 

Main effects 

Prevalence of asthma among population
aged ≥65 yd 

0.09 (807.37) [−769.22 to
2,414.39] 

0.02 (860.31) [−1,525.4 to
1,868.2] 

.84 0.04 (893.12) [1,436.41 to
2,086.86] 

.72 

Prevalence of COPD among population
aged ≥65 yd 

0.09 (388.77) [−384.22 to
1,148.77]

 — — 0.02 (568.27) [−1,036.83 to
1,204.94] 

.99 

Covariates 

Percentage of residents aged ≥65 y that
are African American

 — 0.23 (254.11) [191.86 to
1,194.26] 

.01 0.19 (249.18) [83.8 to
1,066.8] 

.02 

Percentage of population aged ≥65 y that
are Hispanic

 — −0.19 (411.05) [−1,524.17
to 97.28] 

— −0.23 (407.43) [−1,652.8 to
−45.52] 

.04 

Percentage of population aged ≥65 y
without a high school diploma

 — 0.42 (285.49) [454.55 to
1,580.72] 

.001 0.45 (278.98) [529.06 to
1,629.6] 

.001 

Prevalence of obesity among population
aged ≥65 yd

 — 0.13 (376.24) [−246.84 to
1,237.28] 

— — — 

Prevalence of tobacco use disorder 
among population aged ≥65 yd

 — −0.17 (649.65) [−2,403.74
to 158.89] 

— −0.14 (809.17) [−2,464.49
to 727.64] 

— 

Percentage of population aged ≥65 y
living at or below federal poverty level

 — −0.15 (523.69) [−1,795.81
to 269.96] 

— −0.15 (512.76) [−1,731.98
to 290.8] 

— 

Percentage of population not US born  — −0.07 (0.56) [−1.63 to 0.57] — −0.09 (0.54) [−1.81 to 0.34] — 

Commute to work using public
transportation

 — −0.09 (3.22) [−10.44 to
2.27] 

— −0.06 (3.17) [−9.24 to 3.26] — 

Average household size  — −0.14 (68.97) [−264.59 to
7.48] 

— −0.17 (67.43) [−288.81 to
−22.81] 

.02 

Rurale  —  — — −0.13 (809.17) [−184.92 to
−55.95] 

<.001 

Table 2. Results of Multiple Linear Regression for Association Between Town-Level Chronic Lung Conditions and Rate of COVID-19 Death Rates per 100,000 
People, Connecticut and Rhode Island 

Abbreviations: —, does not apply; COPD, chronic obstructive pulmonary disease. 
a Model 3: Constant = 5.44; adjusted R2 = 0.02. 
b Model 4: Constant = 435.81; adjusted R2 = 0.11. 
c Model 5: Constant = 537.6; adjusted R2 = 0.16. 
d Prevalence of the condition is defined as being ever diagnosed with the condition in the Medicare Beneficiary Summary File since 1999 (13,14). 
e Living in a town in a rural county as defined by the Office of Management and Budget (21). 
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Changes in access to EBT food retailers in Promise Zone communities before (2019) and during (2021) the COVID-19 pandemic, San Diego. Food insecurity rates 
in 2018 obtained from the California Health Interview Survey AskCHIS Neighborhood Edition (1). EBT store locations obtained from US Department of Agriculture 
SNAP Retailer Database (2) for July 23, 2019, and July 23, 2021. Abbreviations: EBT, electronic benefits transfer; SNAP, Supplemental Nutrition Assistance 
Program. 
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Background 
Access to food retailers that accept electronic benefits transfer 
(EBT) can help reduce nutritional inequalities among low-income 
individuals and families experiencing food insecurity. According 
to the US Department of Agriculture (USDA), nearly all recipi-
ents of the Supplemental Nutrition Assistance Program (SNAP) 
receive benefits via EBT rather than via paper vouchers (3). The 
transition from physical vouchers to EBT improved enrollment by 
reducing the stigma associated with paper vouchers and streamlin-
ing the process for distribution of benefits (4). Food retailers that 
accept EBT may be spatially dispersed in ways that make it diffi-
cult for low-income residents to access nutritional resources 
needed to lead a healthy life (5). Proximity to stores that accept 
EBT supports food security in communities coping with the chal-
lenges of poverty. 

The COVID-19 pandemic disproportionately affects low-income 
communities experiencing food insecurity because of 1) the in-
creased risk for infection among people coping with conditions as-
sociated with food insecurity and 2) the effects of the pandemic on 
physical and financial access to sources of nutrition. The pandem-
ic has increased rates of food insecurity (6) by affecting the sup-
ply of food and the capacity of individuals to afford food (7,8). 
People experiencing poverty are at increased risk for COVID-19 
(9), and conditions typically associated with food insecurity, such 
as obesity, diabetes, and cardiovascular disease, are contributors to 
intensive care admission and in-hospital mortality among patients 
diagnosed with COVID-19 (10). 

The pandemic instigated an economic downturn that shuttered 
many businesses that provide food, closed schools where children 
ate, and left many without jobs. During the first month of the pan-
demic, approximately 30% of US children, particularly those in 
low-income and racial and ethnic minority groups, experienced 
household food insecurity (11). In San Diego, the pandemic has 
had a similar impact: 44% of Black and Hispanic/Latine residents 
have experienced food insecurity, compared with 25% of the over-
all population (12). Nationwide, communities responded to these 
changes; 17% more families applied for SNAP (13) to help mitig-
ate food inaccessibility and unaffordability (14). EBT programs, 
like Pandemic-EBT, were created to help families purchase food, 
and evidence suggests that these programs reduced food hardship 
(6). However, the availability of stores that accept EBT and 
changes to these stores during the pandemic have not been de-
scribed in detail. 

We expand existing research on food insecurity to explore changes 
in the availability of stores that accept EBT during the pandemic, 
including grocery stores and small food retailers like convenience 

stores and small markets. Our objective was to identify how the 
availability of stores that accept EBT payments, authorized by 
SNAP, changed in an area of San Diego County with long-
standing patterns of food insecurity. 

Data and Methods 
Our study area included 159 low-income census block groups 
(CBGs) in 4 zip codes in the federally designated San Diego 
Promise Zone (92101, 92102, 92113, 92114) and 1 zip code from 
National City (91950), an adjacent neighborhood. Promise Zones 
are designated by the US Department of Housing and Urban De-
velopment (15) as areas that receive special assistance for com-
munity revitalization. This study area comprised 15.5 square 
miles, approximately 279,511 people, and some of San Diego’s 
most food-insecure zip codes (12,16). We overlaid 2021 land-use 
data from the San Diego Association of Governments in each 
CBG. We included CBGs that contain any amount of residential 
land use, including single family and multifamily. 

We downloaded the location of stores that accepted EBT pay-
ments from the USDA’s online SNAP Retailer Locator tool (2) on 
July 23, 2019, and 2 years later, on July 23, 2021. Stores on the 
EBT list for San Diego County include large-scale supermarkets, 
small-scale local grocers, specialty markets (eg, bakery, butcher), 
convenience stores, gas station markets, and liquor stores. We 
coded each EBT store according to the presence of fresh produce 
reported previously (17) and locations serviced by BrightSide Pro-
duce (www.brightside.sdsu.edu), an initiative designed to support 
the availability of fruits and vegetables at small markets, conveni-
ence stores, and liquor stores that accept EBTs. 

We mapped EBT retailer locations and spatially joined them to the 
2019 CBG boundaries using ArcGIS Pro version 2.8 (Esri). We 
used buffer analysis to compute the number of EBT retailers with-
in a ½- mile walking distance (18) of the boundary of each CBG 
in 2019 and again in 2021 to examine changes after the COVID-
19 shutdown. The map of EBT retailers across both periods was 
overlaid with census tract–level data on food insecurity (propor-
tion of adults aged ≥18 y who are low income and food insecure) 
obtained from the 2018 California Health Interview Survey 
AskCHIS Neighborhood Edition online data platform (1); we 
matched these data to CBG geographies. We used additional 
CBG-level data from the 2019 American Community Survey (16) 
to estimate median household income, poverty, education, vehicle 
ownership, and race and ethnicity. Maps were exported and 
rendered in Adobe Illustrator 2021. We used Mann–Whitney non-
parametric tests to explore differences between each socioeconom-
ic variable retrieved from the US Census for CBGs that lost EBT 
access and those that gained EBT access. The number of CBGs 
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that gained access to stores that accept EBT with fresh produce 
was too small to compare (via statistical testing) with the number 
of CBGs that lost stores that accept EBT with fresh produce, so we 
reported descriptive statistics only. 

Highlights 
The study area comprised 200 EBT stores on July 23, 2019; by Ju-
ly 23, 2021, twenty-three stores had been removed from San 
Diego County’s EBT list and 7 stores had been added, resulting in 
184 stores (a net loss of 16 [−8.0%] stores). The 23 stores that 
either closed or stopped accepting EBT were 1 full-service super-
market, 3 bakeries, 3 produce outlets, 1 ice cream shop, 1 phar-
macy, 11 convenience stores, 1 gas station, 1 fish market, and a 
food delivery service. Stores added to the EBT list included 6 con-
venience stores and 1 pharmacy; the full-service supermarket was 
not replaced. In 2019, 128 (64.0%) stores offered produce, and in 
2021, 121 (65.7%) offered produce (including 2 of 7 new stores). 
Seven of the 23 closed stores had offered fruits and vegetables. 
Although fewer stores in 2021 accepted EBT, the percentage of 
stores that offered produce was similar. 

Two-thirds of CBGs (105 of 159; 66.0%) lost access to 1 or more 
(range, 1–6) EBT stores within ½ mile, and 13 (8.2%) CBGs 
gained 1 EBT store (Table). Over time, the average number of 
EBT stores accessible within ½ mile declined by 1.2 stores on av-
erage across all CBGs. Mann–Whitney nonparametric tests sug-
gested that the CBGs that lost EBT access, compared with CBGs 
that gained EBT access, had significantly lower median incomes 
(U = 377.0, P = .01), higher poverty rates (U = 431.5, P = .03), 
lower high school graduation rates (U = 422.0, P = .02), a higher 
proportion of households with no vehicle (U = 430.5, P = .03), lar-
ger Hispanic/Latine populations (U = 361.0, P = .006), and higher 
food insecurity rates (U = 424.0, P = .03). Although we could not 
use statistical testing, we observed that CBGs that lost EBT stores 
that carried fresh produce were more varied in socioeconomic 
composition and experienced lower rates of food security than 
CBGs that gained fresh produce access. 

Action 
The loss of EBT stores during the pandemic affected food access 
to a greater degree among residents in communities experiencing 
hardships (eg, financial insecurity, lack of vehicle) than in com-
munities experiencing these hardships to a lesser degree. Mapping 
and monitoring of food insecurity in neighborhoods of concern is 
crucial as the pandemic continues. Challenges not studied here 
may affect the number of EBT stores residents can access. As fed-
eral income assistance wanes, the demand for food outlets that ac-
cept EBT will likely increase. Research on local food landscapes 

should consider these changing contexts in neighborhoods of long-
standing food insecurity. Measures of food retail choice should 
consider small food retailers, like the ones studied here, along with 
supermarkets and grocery stores. 
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Table 

Determinant 
All CBGs in Promise 
Zone (N = 159) 

Gained EBT access 
(n = 13) 

Lost EBT access 
(n = 105) 

Gained EBT access with 
fresh produce (n = 5) 

Lost EBT access with 
fresh produce (n = 63) 

Mean change in EBT 
access 

−1.2 1 −2.0 1 −1.4 

Total population 279,511 19,364 186,801 14,310 117,430 

% Households <200% of 
federal poverty level 

18.0 13.3 20.7 15.1 17.1 

Average median annual
household income, $ 

58,660 74,694 54,202 43,338 59,415 

% Adult population (age
≥18 y) with high school
diploma 

77.1 82.7 52.4 54.4 67.6 

% Low-income adults 
(≥18 y) experiencing food
insecurity 

7.7 5.1 8.1 10.0 6.8 

% Population that does
not have a vehicle 

12.6 6.4 14.8 5.4 16.0 

% Population that is
Hispanic/Latine 

54.3 38.2 57.0 59.2 48.5 

% Population that is Black 11.0 13.9 9.6 8.5 11.5 

Table. Sociodemographic and Health Characteristics of Census Block Groups (CBGs) in the San Diego Promise Zone and CBGs Inside the Promise Zone That Experi-
enced a Change in EBT (Electronic Benefits Transfer) Access From 2019 to 2021a 

a Data sources: data on EBT store locations from US Department of Agriculture SNAP Retailer Database (2); data on total population, households <200% federal 
poverty level; median household income, education, vehicle ownership, and race and ethnicity from the 2019 American Community Survey (16); data on food in-
security from UCLA Center for Health Policy Research (1). 
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Online grocery delivery access for Washington State Supplemental Nutrition Assistance Program (SNAP) beneficiaries increased between May and July 2021, 
during the COVID-19 pandemic. The 2017 food insecurity rates spotlight the counties most vulnerable to food insecurity. Sources: Walmart delivery data, 
https://www.walmart.com/store/directory; Amazon delivery data, https://www.amazon.com; SNAP benefit data, https://www.ers.usda.gov/data-products/food-
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Background 
The COVID-19 pandemic ushered in an unprecedented food se-
curity crisis that will have long-term health effects (1). As society 
shut down to slow the spread of SARS-CoV-2, the interruptions 
tested the limits of our current food supply chain to meet supply 
and demand (2). Exigencies on our food system, particularly 
safety-net resources like food banks, increased by 50% nation-
wide (1). Inequities in access to healthy food became magnified, 
exacerbating disparities that existed before the pandemic, such as 
increased risk of food insecurity for people without college de-
grees and unemployed people (3). 

The pandemic generated shifts toward home-based meal prepara-
tion and online grocery purchases with home delivery (4,5). State-
level pilot programs for online grocery purchase and home deliv-
ery for Supplemental Nutrition Assistance Program (SNAP) bene-
ficiaries were already mandated by the 2014 Farm Bill (6), but the 
pandemic accelerated these initiatives. Modernization of SNAP 
mirrors efforts spurred on by the pandemic, including national 
vendors’ investments in online grocery delivery infrastructure and 
expanded delivery services (2). Because of the rapid responses on 
behalf of private and governmental entities, evaluation of access to 
delivery services and beneficiary awareness of new online deliv-
ery services availability was needed. 

The purpose of this GIS Snapshot was to present the results of a 
geospatial assessment of access to online grocery purchase and 
home delivery for SNAP beneficiaries in Washington State. A sec-
ondary aim of this study was to identify potentially vulnerable 
populations resulting from the current level of access. 

Data Sources and Map Logistics 
We mapped the online grocery purchase and delivery coverage for 
SNAP recipients for Washington State in May 2021 and July 
2021. Data sources included the GIS (geographic information sys-
tem) census tract shapefile from the Washington Office of Finan-
cial Management (7). Census tract–level SNAP household data 
were obtained from the 2015 American Community Survey 
(ACS), accessed from the US Department of Agriculture Food En-
vironment Atlas website (8). 

The approved SNAP Electronic Benefits Transfer (EBT) delivery 
vendors were confirmed on the Food and Nutrition Service web-
site in May 2021 and July 2021 (9). In July 2021, the 2 approved 
SNAP EBT online vendors were Amazon and Walmart delivery 
centers. One other retailer with a single location was also ap-
proved for online purchases, but this retailer did not have wide-

spread delivery services, so its 1,530-person catchment was not in-
cluded. The final analysis and reporting of the evaluation are at the 
county level. 

We used ArcMAP Desktop version 10.8 (Esri) to overlay census 
tract data with the number of SNAP household units per census 
tract and the delivery areas of participating vendors. Each census 
tract was also identified as urban or rural; areas with populations 
under 2,500 people were classified rural and those with 2,500 
people or more were classified urban (10). Delivery areas for Wal-
mart were created with a 9-mile buffer around georeferenced Wal-
mart distribution outlet points for Walmart. We selected a 9-mile 
radius based on Walmart’s delivery area, confirmed on their web-
site in July 2021 and by telephone during confirmation calls to 
each store (11). The delivery area for Amazon Fresh was created 
using zip code polygons. All zip codes of the Amazon Fresh deliv-
ery services were confirmed on the Amazon Fresh website in July 
2021 (12). The number of SNAP households was spatially ana-
lyzed by census tract population-weighted centroids within the 
defined delivery area boundaries. 

We mapped the 2017 food insecurity rates by using a choropleth 
(shaded enumeration of prevalence rates) by county (13). Equal 
interval data breaks were used to categorize the food insecurity 
rates, expressed in percentages (13). The data sources for the 2017 
food insecurity rates were from the Hunger in Washington web-
site (14). The overall prevalence of food insecurity in Washington 
State was 11.5% and ranged from 7.1% (Franklin County) to 
18.3% (Whitman County) (14). 

Highlights 
According to 2015 American Community Survey data, 376,467 
(11.8%) Washington households were receiving SNAP benefits. In 
July 2021, during our final analysis, 298,839 (79.4) households re-
ceiving SNAP benefits had access to online grocery purchases and 
delivery (Table). The number of Washington State residents re-
ceiving food assistance increased during the COVID-19 pandemic. 
According to Washington State Economic Services Administra-
tion reporting, the number of people on food assistance increased 
by 16% from September 2019 to July 2020, as reported through 
management accountability and performance statistics (Economic 
Services Administration, Management Accountability and Per-
formance Statistics [ESA/EMAPS], the state SNAP client eligibil-
ity system). 

A preliminary survey conducted in May 2021 confirmed that most 
online grocery delivery access was concentrated in the Puget 
Sound region, the state’s largest metropolitan area. In July 2021, 
Walmart launched a delivery service expansion into other urban 
areas of the state. The expansion increased access from 169,507 
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(45.0%) of SNAP households statewide in May 2021 to 261,752 
(69.5%) of SNAP households statewide. The July 2021 Walmart 
expansion substantially increased access to home delivery of gro-
ceries for Washington State by offering access to areas beyond the 
Puget Sound region and outlying communities of Vancouver and 
Yakima. In July 2021, administrative data from the ESA/EMAPS 
indicated that 2.3% of SNAP benefits were redeemed with online 
retailers. 

Rural counties that were previously designated as food insecure 
continue to lack access to home delivery. Most households receiv-
ing SNAP were included in the new delivery coverage from Wal-
mart’s expansion. However, Walmart’s expansion of online deliv-
ery services is concentrated in more densely populated areas of the 
state. The 2017 food insecurity rates indicate some of these 
counties without online delivery access, especially the northeast-
ern Washington counties and the counties along the western coast-
line, are also food insecure (14). 

Action 
Our analyses show the expansion of online grocery delivery 
serving SNAP recipients in Washington State. However, gaps in 
broadband coverage and lack of home computer technology may 
still serve as potential barriers to online purchases for rural popu-
lations in the state (15,16). 

Using administrative data for geographic assessment to quantify 
access to online grocery delivery services was an essential step, 
but our analyses did not include assessment of other food assets 
such as food retail locations, food banks, pantries, and mobile 
markets (17,18). On the basis of the geographic assessment 
presented here, next steps include community-based approaches 
that allow for broader inventory of local food assets, which may 
be important for food access, particularly in communities with 
limited online grocery delivery. This involves asset-based inquiry 
to ground realities from rural food system leaders seeking innovat-
ive strategies to provide efficient and equitable solutions for food 
delivery. 

Program administrators and municipal policy makers can use these 
maps to target underserved areas and strategize building partner-
ships with local vendors such as farmer’s co-ops and regional-
based grocery outlets to fill the delivery needs for rural areas. 
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Table 

County 
Number of households in 
county in 2015 

Number of households with SNAP 
benefits in 2015 

Number (%) of households with SNAP benefits
with online delivery access 

Adams 6,443 1,265 962 (76.0) 

Asotin 9,989 1,782 — 

Benton 73,896 10,176 8,992 (88.4) 

Chelan 36,890 3,161 — 

Clallam 36,526 4,860 — 

Clark 175,854 25,515 24,652 (96.6) 

Columbia 2,156 352 — 

Cowlitz 44,178 8,908 7,280 (81.7) 

Douglas 16,592 2,280 — 

Ferry 4,485 728 — 

Franklin 27,035 5,073 4,291 (84.6) 

Garfield 1,245 95 — 

Grant 36,385 6,434 — 

Grays Harbor 35,816 5,901 — 

Island 41,239 3,161 2,251 (71.2) 

Jefferson 18,257 1,773 — 

King 900,236 86,369 86,019 (99.6) 

Kitsap 110,715 12,208 11,996 (98.3) 

Kittitas 23,054 2,431 — 

Klickitat 10,181 1,205 — 

Lewis 34,759 6,373 3,381 (53.1) 

Lincoln 5,962 484 — 

Mason 33,172 4,103 — 

Okanogan 22,901 3,328 — 

Pacific 16,036 1,940 — 

Pend Oreille 8,163 1,215 — 

Table. Washington State Supplemental Nutrition Assistance Program Online Grocery Delivery Access, May–July 2021 

Abbreviation: —, no delivery available; SNAP, Supplemental Nutrition Assistance Program. 
Sources: 
Amazon. Amazon Fresh delivery [interactive database]. https://www.amazon.com. Accessed July 20, 2021. 
Hunger in Washington. Food insecurity rate: by county. 2017. [interactive map]. https://www.livestories.com/statistics/hunger-in-washington/washington/food-
insecurity. Accessed November 1, 2021. 
US Census Bureau. National, state, and county housing unit totals: 2010–2019. Published April 20, 2022. Accessed April 27, 2022. 
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-housing-units.html 
US Department of Agriculture Food Atlas. 2015 Food Access Research Atlas published April 27, 2021. https://www.ers.usda.gov/data-products/food-access-
research-atlas/download-the-data/. Accessed July 20, 2021. 
Walmart. Walmart Store Directory [interactive databasehapefile]. https://ofm.wa.gov/washington-data-research/population-demographics/gis-data/census-
geographic-files. Accessed November 1, 2021. 
Washington Office of Financial Management. Washington 2010 Census County [shapefile]. https://ofm.wa.gov/washington-data-research/population-
demographics/gis-data/census-geographic-files. Accessed November 1, 2021. 

(continued on next page) 
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(continued) 

County 
Number of households in 
county in 2015 

Number of households with SNAP 
benefits in 2015 

Number (%) of households with SNAP benefits
with online delivery access 

Pierce 339,501 44,959 43,334 (96.4) 

San Juan 13,908 619 — 

Skagit 52,846 7,445 5,439 (73.1) 

Skamania 5,777 727 — 

Snohomish 302,639 33,385 31,871 (95.5) 

Spokane 210,709 33,984 31,890 (93.8) 

Stevens 21,524 3,485 — 

Thurston 113,750 12,767 11,656 (91.3) 

Wahkiakum 2,118 322 — 

Walla Walla 24,346 3,556 3,355 (94.3) 

Whatcom 94,338 12,460 8,360 (67.1) 

Whitman 20,381 1,844 1,252 (67.9) 

Yakima 87,809 19,794 11,858 (59.9) 

Washington State total Not applicable 376,467 298,839 (79.4) 

Table. Washington State Supplemental Nutrition Assistance Program Online Grocery Delivery Access, May–July 2021 

Abbreviation: —, no delivery available; SNAP, Supplemental Nutrition Assistance Program. 
Sources: 
Amazon. Amazon Fresh delivery [interactive database]. https://www.amazon.com. Accessed July 20, 2021. 
Hunger in Washington. Food insecurity rate: by county. 2017. [interactive map]. https://www.livestories.com/statistics/hunger-in-washington/washington/food-
insecurity. Accessed November 1, 2021. 
US Census Bureau. National, state, and county housing unit totals: 2010–2019. Published April 20, 2022. Accessed April 27, 2022. 
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-housing-units.html 
US Department of Agriculture Food Atlas. 2015 Food Access Research Atlas published April 27, 2021. https://www.ers.usda.gov/data-products/food-access-
research-atlas/download-the-data/. Accessed July 20, 2021. 
Walmart. Walmart Store Directory [interactive databasehapefile]. https://ofm.wa.gov/washington-data-research/population-demographics/gis-data/census-
geographic-files. Accessed November 1, 2021. 
Washington Office of Financial Management. Washington 2010 Census County [shapefile]. https://ofm.wa.gov/washington-data-research/population-
demographics/gis-data/census-geographic-files. Accessed November 1, 2021. 
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Background Highlights 
Although COVID-19 is a communicable disease, for many people 
it could also be a chronic disease (1). In New York City, COVID-
19 has had a greater effect on older populations, people living in 
the outer boroughs of the city’s 5 boroughs (eg, the Bronx, Brook-
lyn, and Queens, compared with Manhattan), people living in 
poverty, and racial/ethnic minority populations (2). The availabil-
ity of a COVID-19 vaccine can lessen the effect of the disease on 
these populations. As of this writing (April 15, 2021), people in 
New York City had to schedule an appointment to be vaccinated 
(3), with certain exceptions (4). Many New Yorkers who wanted 
to be vaccinated were not able to secure appointments, in part be-
cause the supply of COVID-19 vaccine was limited (5). Many 
public health and health care providers use online systems to 
schedule appointments; as a result, lack of internet access has been 
suggested as a potential barrier to vaccination (6). We created a 
map to visualize the community-level distribution of household in-
ternet access and COVID-19 vaccination in New York City. 

Data and Methods 
We obtained estimates of the percentage of households lacking in-
ternet access, by zip code, from NYC Open Data (7). Data on in-
ternet access were collected by the 2018 5-year American Com-
munity Survey. According to NYC Open Data, the American 
Community Survey frames this question as having “No access to 
the internet at this house, apartment, or mobile home.” 

We obtained data on zip code–level percentages of adult residents 
who received at least 1 COVID-19 vaccine dose from the New 
York City Department of Health and Mental Hygiene website (8). 
The vaccination data were obtained from the Citywide Immuniza-
tion Registry. According to the source data table, “People with at 
least one dose have received at least one dose of two-dose vaccine 
series or a single dose shot.” 

We calculated via simple linear regression the association between 
the percentage of households without internet access and the per-
centage of adult residents with at least 1 COVID-19 vaccine dose. 
Internet access and vaccination data were available for all popu-
lated (n = 177) modified zip code tabulation areas in New York 
City (9). We then classified zip codes into 3 internet-access 
quantiles (tertiles) and 3 COVID-19 vaccination quantiles and 
visualized them via a bivariate choropleth map (10). We de-
veloped the map in R version 4.0.4 (R Foundation for Statistical 
Computing) by using the tidyverse (11), sf (12), biscale (13), and 
cowplot (14) packages. All data were retrieved on April 7, 2021. 

Among zip codes in New York City, the median percentage of 
households without internet access was 15.5% (SD, 6.7%), ran-
ging from 0% (zip code 10282, Battery Park City, Manhattan) to 
32.4% (zip code 10454, Mott Haven/Port Morris, the Bronx). The 
median percentage of adults that received at least 1 dose of 
COVID-19 vaccine was 38.2% (SD, 10.0%), ranging from 21.9% 
(zip code 11691, Edgemere/Far Rockaway, Queens) to 75.0% (zip 
code 11697, Breezy Point, Queens). In the simple linear regres-
sion model, the percentage of households without internet access 
was negatively associated with the percentage of adult residents 
who received at least 1 dose of COVID-19 vaccine (β = −0.92; 95 
CI, −1.09 to −0.75; intercept = 53.7%; P < .001, adjusted R2 = 
0.38) (Figure). Most disparities were in the Bronx and Brooklyn. 

Figure. Association in New York City, at the zip code level, between the 
percentage of households without internet access and the percentage of adult 
residents with at least 1 COVID-19 vaccine dose. Each point represents 1 zip 
code. The dashed line represents a simple linear regression model, and the 
shaded area indicates 95% CIs. Linear regression summary: β = −0.92; 95 CI, 
−1.09 to −0.75; intercept = 53.7%; P < .001; adjusted R2 = 0.38. Data 
sources: New York City Department of Health and Mental Hygiene (8), NYC 
Open Data (7). Data retrieved on April 7, 2021. 

Action 
COVID-19 vaccination was significantly associated with house-
hold internet access in New York City at the zip code level. Al-
though this association neither implies nor precludes causation, 
and does not control for possible confounders, it is consistent with 
the hypothesis that lack of internet access is a barrier to vaccina-
tion. Internet access is a known social determinant of health (15). 

Disparities in internet access exist across multiple socioeconomic 
dimensions and disproportionately affect low-income neighbor-
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hoods (16). A digital health divide in the older population has 
been widely documented (17). A study published in 2021 sugges-
ted that the digital health divide is associated with age, education, 
income, and race/ethnicity (18). 

To facilitate equitable and efficient COVID-19 vaccine uptake in 
New York  City,  public  health  officials  should  establish  
appointment-free vaccination sites, work with other agencies and 
organizations to advocate for legal and policy approaches that in-
crease internet access (19), and increase access to in-person and 
telephone-based services that provide assistance with vaccine ap-
pointment scheduling, especially in zip codes with low rates of in-
ternet access. Our map can be used to inform the placement of 
such interventions. Because most disparities in internet access and 
vaccination were in zip codes in the Bronx and Brooklyn, appro-
priate partners for public health officials in these areas include the 
offices of the borough president, the borough-based New York 
City Department of Health and Mental Hygiene Neighborhood 
Health Action Centers, and borough-wide community-based or-
ganizations. More generally, we recommend that bivariate map-
ping be considered when selecting methods for comparing geo-
graphic distributions of health determinants and health outcomes. 

The availability and accessibility of COVID-19 vaccine in New 
York City has continued to improve. After this writing, home-
based vaccination, appointment-free walk-up vaccination sites, 
mobile vaccination sites, and pop-up vaccination sites were estab-
lished (20). 
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Spatial distribution of the correlation between change in mobility and percentage increase in new COVID-19 cases 11 days later, from February 15 through April 
26, 2020, by US county. Correlations are mapped for visits to 6 different types of places and plotted within 6 different urban–rural classifications. Significance is P 
< .05. A decrease in visits to places outside the home, and an increase in time spent at home, are associated with reduced rates of new COVID-19 cases 11 days 
later in most counties, suggesting that restrictions on mobility can mitigate COVID-19 transmission. The association is stronger in more urban counties, suggesting 
that mobility restrictions may be most effective in urban areas. Abbreviation: metro, metropolitan. 
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Background 
As of July 31, 2020, more than 17 million confirmed novel 
coronavirus disease 2019 (COVID-19) cases had occurred world-
wide with more than 668,000 COVID-19–related deaths (1). More 
than 4.4 million cases and 151,000 deaths occurred in the United 
States (2). Pre-existing conditions such as asthma and other respir-
atory conditions, diabetes, and heart disease are associated with 
COVID-19 illness severity (3), as is race/ethnicity (4), and chron-
ic health problems may persist among survivors (5). Mitigating the 
COVID-19 pandemic thus has profound implications for chronic 
disease prevention and outcomes, health disparities, and overall 
population health. 

The basic reproduction number for an infection, R0, is influenced 
by 3 factors: the probability of infection per contact between an in-
fected and a susceptible individual, the average rate of contact 
between susceptible and infected individuals, and the average dur-
ation of infectiousness. In the absence of pharmaceutical interven-
tions, behavioral interventions that reduce contact rates can re-
duce viral transmission. In response to the COVID-19 pandemic, 
state and local governments initially required nonessential busi-
nesses, schools, places of worship, restaurants, and bars to close; 
banned large gatherings; and issued stay-at-home directives to 
promote social (physical) distancing and reduce contact rates. In-
vestigating the relationship between changes in mobility and fu-
ture changes in the rate of new COVID-19 diagnoses can reveal 
the effect of these measures on disease transmission (6,7). We 
mapped the county-level association between changes in popula-
tion mobility, derived from location histories captured by GPS 
embedded in mobile phones (8), and the rate of new confirmed 
COVID-19 cases 11 days later across the United States. We ex-
amined the variation across the urban-to-rural gradient, given dif-
ferences in population density, travel behaviors, the prevalence of 
COVID-19, and time since the first case was diagnosed in rural 
versus urban counties (9). 

Data and Methods 
County-level daily mobility data for February 15 through April 26, 
2020, were obtained from Google’s Community Mobility Report, 
which comprises aggregated and anonymized data from Google 
users who turned on the “location history” setting on their cellular 
telephone (10,11). The data set included 6 location categories, de-
termined by the different types of places encoded within Google 
Maps: retail and recreation, grocery and pharmacy, parks, transit 
stations, workplaces, and residential. Daily changes in mobility 
were measured relative to the median value of travel for the cor-
responding location type and day of the week from January 3, 
2020, through February 6, 2020. County-level daily mobility 

change was correlated with the daily county growth rate of 
COVID-19 cases (12) 11 days later (to account for the average in-
cubation period [13]) plus the time delay between testing and state 
reporting (14), beginning on the day the first confirmed COVID-
19 case was reported in each county. A catplot was used to visual-
ize the distribution of the county-level correlation coefficients and 
their significance for mobility to each location type, stratified by 
the 6-level urban–rural classification scheme from the National 
Center for Health Statistics: large central metropolitan, large 
fringe metropolitan, medium metropolitan, small metropolitan, mi-
cropolitan, or noncore county (15). We repeated the analysis by 
using a 5-day time lag to test the sensitivity of our results. 

Highlights 
We plotted the spatial distributions of the correlation coefficients 
and attendant catplots for each location type. The maps show that 
retail and recreation, grocery and pharmacy, parks, transit stations, 
and workplaces generally have significant and positive correla-
tions — a decrease in visits to these locations is associated with a 
reduced rate of new COVID-19 cases 11 days later. Conversely, 
an increase in the amount of time spent in residential locations was 
significantly negatively correlated with an increase in the rate of 
new COVID-19 diagnoses in most observed counties — staying at 
home is associated with a slowed growth rate. 

Geographic variation is substantial, however, where, in many rur-
al counties, the correlation is not significant. This is illustrated fur-
ther by the catplots, where for all location types, significant correl-
ations are more likely to occur in urban counties. Indeed, most 
noncore counties (the most rural) show no significant correlations 
between change in mobility and the rate of new diagnoses, where-
as most large central metropolitan counties show significant cor-
relations for all location types (except parks). Results using the 5-
day time lag were consistent with the results presented here. 

We acknowledge certain limitations, including extensive missing 
county mobility data, and that other factors can influence disease 
transmission and reported cases (eg, testing practices, disease bur-
den, population density, prevalence of chronic health conditions, 
age distributions, the population living in congregate settings). 
Additionally, these results reflect cases detected in the United 
States between February and April, when most states and counties 
had a combination of stay-at-home directives and business/school 
closures, and when cases were concentrated in a few urban areas, 
particularly New York City. In a post-hoc analysis we repeated the 
analysis by using a February 15 through June 19, 2020, study peri-
od. The resulting analogous urban–rural graphs for workplaces 
and residential places show that the association of mobility reduc-
tions with COVID-19 cases we observed for the initial study peri-
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od dissipates to some extent, particularly in more rural areas (Fig-
ure). Notably, May 2020 was a period of decline in COVID-19 
cases in the United States; the initial disease hotspots were cool-
ing, and many states began to phase out mobility-reducing direct-
ives. This was followed in June by a rapid increase in COVID-19 
cases in Florida, Arizona, and other states that did not act aggress-
ively to reduce mobility and encourage wearing masks, with some 
states reinstating mobility reduction directives in response. 

Figure. Post-hoc analysis of correlation between change in mobility and 
percentage increase in new COVID-19 cases 11 days later for February 15 
through June 19, 2020, by US county. Correlations are shown for visits to 
workplaces and residential places and plotted within 6 different urban–rural 
classifications. Mobility data are from the Google Community Mobility Report, 
and confirmed COVID-19 case data are from the New York Times, Inc, 
Urban–rural classification data are from the National Center for Health 
Statistics. Significance is P < .05. The extended study period shows that the 
association between mobility change and new COVID-19 cases weakened 
somewhat as compared to the initial study period, particularly in more rural 
counties, reflecting the changing geographic pattern of disease dynamics 
occurring in May and June 2020. Abbreviation: metro, metropolitan. 

Action 
Although our findings should not be interpreted as a predictive 
model, these results provide evidence that reductions in popula-
tion mobility may act to constrain the growth rate in COVID-19 
cases, particularly in urban settings, though it is unclear whether 
the urban–rural differences we observed during the initial rise in 
COVID-19 cases in the United States will continue in the future, 
given the changing geography of the pandemic and differences in 
mitigation approaches used across the country. 
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