

ORAU TEAM Dose Reconstruction Project for NIOSH

Oak Ridge Associated Universities I NV5|Dade Moeller I MJW Technical Services

Page 1 of 132

DOE Review Release 03/21/2023

Monitoring Feasib Radionuclides Pro National Laborato	ility Evaluation for Exotic duced by the Oak Ridge ry Isotopes Division	ORAUT- Effective Supersed	RPRT-0090 Date: des:	Rev. 01 03/10/202 Revision (23 D0
Subject Expert(s):	Joseph S. Guido				
Document Owner Approval:	Signature on File Pat McCloskey, Document Owner		Approval Date):	03/04/2023
Concurrence:	Vickie S. Short Signature on F Kate Kimpan, Project Director	ile for	Concurrence	Date:	03/06/2023
Approval:	Signature on File Timothy D. Taulbee, Associate Director for	r Science	Approval Date	e:	03/10/2023
FOR DOCUMENTS	S MARKED AS A TOTAL REWRITE, F VISION AND DISCARD / DESTROY A	REVISION, O ALL COPIES	R PAGE CHANGE OF THE PRIOR R	E, REPLACE EVISION.	THE PRIOR
New	v 🛛 🛛 Total Rewrite	🗌 Revi	sion	Page Char	nge

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 2 of 132

PUBLICATION RECORD

EFFECTIVE	REVISION NUMBER	DESCRIPTION
03/29/2018	00	New report evaluating the Oak Ridge National Laboratory capability to monitor internal exposure to exotic radionuclides that were produced by the laboratory's Isotopes Division. Incorporates formal internal and NIOSH review comments. Initiated by Joseph S. Guido.
03/10/2023	01	Document revised to address comments received following SC&A review as well as during Working Group discussions. Specific changes include clarifying the document's scope and intent as being an evaluation of ORNL monitoring capabilities regarding work by Isotope Group employees or within Isotope Group facilities. Accordingly, Appendix C ("Dose Reconstruction Approach for Iodine") was removed and will be included in a separate document. Incorporates formal internal and NIOSH review comments. Constitutes a total rewrite of the document. Training is not required. Initiated by Pat McCloskey and authored by Joseph S. Guido.

TABLE OF CONTENTS

<u>SECTI</u>	<u>ON</u>	TITLE	PAGE
Acrony	/ms and	Abbreviations	5
1.0	Purpos	se	6
2.0	Scope.		6
3.0	Isotope 3.1 3.2 3.3	e Production ORNL Facilities Y-12 Facilities Material Transfers	6 7 8 9
4.0	Evalua 4.1 4.2 4.3	tion of Bioassay Program and Data Sampling Program ORNL Bioassay Data NOCTS Bioassay Data	9 9 10 13
5.0	Evalua	tion of In Vivo Monitoring Counting Program	16
6.0	Invento	bry Development	18
7.0	Feasib 7.1 7.2	ility Analysis Initial Evaluation Additional Evaluation	25 25 41
8.0	Summa	ary	
Refere	ences		46

ATTACHMENT A	SUMMARY OF IN VITRO BIOASSAY METHODS	
ATTACHMENT B	SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER	
	ANALYSIS	63

LIST OF TABLES

TABLE

<u>TITLE</u>

<u>PAGE</u>

4-1	Urine bioassay codes used at ORNL, 1955 to 1988	. 11
4-2	Fecal bioassay codes in use at ORNL, 1955 to 1988	. 12
4-3	Bioassay code 000 with monitored nuclide, 1955 to 1988	. 12
4-4	NOCTS versus ORNL database comparison of sample frequency by year	. 14
4-5	NOCTS versus ORNL database comparison of sample frequency by analyte code	. 15
4-6	Gross beta samples in NOCTS and ORNL datasets (analyte codes 013 and GB0)	. 15
5-1	Tabulation of in vivo counts from database versus annual reports	. 17
6-1	Sources of radionuclide production information	. 19
6-2	Radionuclides added to inventory due to target rupture events	. 19
6-3	Information added during logbook review	. 20
6-4	Final radionuclide inventory for Isotopes Division	. 21

Desument Ne. ODALIT DDDT 0000	Devision No. 01	Effective Deter 02/40/2022	$D_{a} = 4 af 100$
Document No. URAUT-RPRT-0090	Revision No. UT	Ellective Date: U3/T0/Z0Z3	Pade 4 of 132

7-1	Comparison of ³⁵ S production and number of reported bioassay samples	
7-2	Results of feasibility analysis for 1955 to 1969	
7-3	Results of feasibility analysis for 1970 to 1988	
7-4	Thirty-four radionuclides identified as needing additional evaluation	
7-5	Derived air concentration values for 28 radionuclides requiring further evaluation	41
7-6	Dosimetric analysis of radionuclides	43
7-7	Number of bioassay samples collected for code 000 analytes by year	

LIST OF FIGURES

FIGURE

<u>TITLE</u>

PAGE

3-1	General layout of isotope facilities	. 8
3-2	Isotope production flow, 1955 to 1965	. 9

ACRONYMS AND ABBREVIATIONS

Ci	curie
cm	centimeter
cpm	counts per minute
d	day
DAC	derived air concentration
DOE	U.S. Department of Energy
HP	health physics
hr	hour
ICRP	International Commission on Radiological Protection
in.	inch
keV	kiloelectron-volt (1,000 electron-volts)
m	meter
mCi	millicurie
min	minute
mL	milliliter
MPC	maximum permissible concentration
mrem	millirem
NBS	National Bureau of Standards
NIOSH	National Institute for Occupational Safety and Health
NOCTS	NIOSH-Division of Compensation Analysis and Support Claims Tracking System
ORAU	Oak Ridge Associated Universities
ORAUT	ORAU Team
ORNL	Oak Ridge National Laboratory
SEC	Special Exposure Cohort
SRDB Ref ID	Site Research Database Reference Identification (number)
WBC	whole body count
yr	year
Y-12	Y-12 Plant
μCi	microcurie

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 6 of 132
------------------------------	-----------------	----------------------------	---------------

1.0 PURPOSE

This report evaluates the Oak Ridge National Laboratory (ORNL) capabilities for internal monitoring of radionuclides produced by the Isotopes Division and its predecessors from 1955 to 1988. This evaluation was initiated after the publication of the Special Exposure Cohort (SEC) evaluation report for ORNL (SEC-00189) [NIOSH 2012]. As a result of the SEC-00189 ER, a class was added to the SEC from the beginning of ORNL operations (June 17, 1943) through July 31, 1955. The SEC addressed isotopes of uranium, plutonium, thorium, and mixed fission products but did not evaluate the dose reconstruction feasibility for radionuclides produced by the isotopes group. Because the class recommended in the SEC-00189 evaluation report covered the entire period petitioned, NIOSH closed the SEC-189 petition evaluation.

Throughout this document the term *exotic* refers to radionuclides produced by the isotopes group to generally delineate these radionuclides from those more globally handled at the facility (e.g., uranium, plutonium and mixed fission and activation products). Because of the potential challenges involved in monitoring intakes from such a wide variety of materials, NIOSH requested this evaluation; its purpose is to identify any areas where dose reconstruction might be infeasible. The evaluation methodology entailed the following steps:

- Identifying radionuclides produced by the Isotopes Division,
- Identifying available ORNL Health Physics (HP) program bioassay methodologies,
- Chronological benchmarking of the available bioassay methods against the radionuclide inventory to identify potential gaps in monitoring capability, and
- Identify areas where bioassay monitoring gaps exist.

2.0 <u>SCOPE</u>

The period under evaluation in this report is August 1, 1955, through December 31, 1988. The start date was selected to coincide with the end of the SEC period [NIOSH 2012]. The end date coincides with the end of large-scale isotope production at ORNL. All operations under evaluation were managed by ORNL. Although most of the facilities were on the ORNL campus (many in an area termed "Isotope Circle"), the Isotope Division also used the cyclotron and calutron facilities at the Y-12 Plant. This report evaluates the capability of the ORNL HP program to monitor all materials that were produced and handled by the Isotopes Division, regardless of production location, in order to determine if bioassay technology deficiencies existed that could result in improper monitoring. The scope of this report is limited to isotope production activities; it excludes treatment of decontamination and decommissioning, site-wide construction, and maintenance activities that may encompass these same facilities. Although this report identifies potential dose reconstruction challenges, it is not an evaluation of whether a co-exposure model approach could be developed for every radionuclide.

3.0 ISOTOPE PRODUCTION

Isotope production occurred at both ORNL and Y-12 under ORNL management. At times, Y-12 workers supported efforts at the facilities and, in some cases, Y-12 employees were administratively transferred to ORNL. Note that the facilities listed in this report are the primary facilities used by the isotopes group and are presented for a historical perspective. The inventory listing was developed independent of the facility list but instead was related to isotope group activities across the site.

Document No. ORAUT-RPRT-0090 Revision No. 01 [Effective Date: 03/10/2023] Page 7 of 1.	Document No. ORAUT-RPRT-0090 Revision No. 01 Effective Date: 03/10/202
--	---

3.1 ORNL FACILITIES

In the late 1940s, ORNL initiated a program to replace the wartime temporary structures with more permanent buildings. A major focus of this program was the provision for a radioisotope complex of 10 buildings designed for processing, packaging, and shipping radioisotopes [Carver and Slater 1994].

Isotopes are produced in reactors; extracted by chemical processes; and then used for biological, medical, and industrial research. As early as 1946, radioisotopes were produced in the Oak Ridge Research Reactor. In 1947, the Isotopes Section (later Division) was formed at the Clinton Laboratories. By 1950, ORNL was distributing (by order) over 50 radioisotopes to research centers around the world.

Figure 3-1 shows the radioisotope buildings constructed under this expansion, which are grouped in an area termed "Isotope Circle." The ten buildings, one stack, and their original designations were:

- 3028 Radioisotope Processing Building F,
- 3029 Radioisotope Processing Building E,
- 3030 Radioisotope Processing Building D,
- 3031 Radioisotope Processing Building C,
- 3032 Radioisotope Processing Building B,
- 3033 Radioisotope Processing Building A,
- 3034 Radioisotope Service Building,
- 3036 Decontamination Building,
- 3037 Radioisotope Area Office Building,
- 3038 Radioisotope Analytical and Pack Building, and
- 3039 Exhaust Stack.

One building (3038) was used for the analysis, storage, packaging, and shipment of materials. Six small buildings (3028 to 3033) were dedicated to radioisotope production and development, each having dedicated shielding and remote-handling capabilities. The use of dedicated small areas for material processing was purposeful to minimize interaction between different processing areas and to minimize the potential number of exposed individuals within each operational area [Thompson 1952].

The Fission Products Development Laboratory (Building 3517) was completed in 1958. It was originally designed and built to separate kilocurie quantities of ¹³⁷Cs, ⁹⁰Sr, ¹⁴⁴Ce, and ¹⁴⁷Pm from liquid reduction-oxidation and plutonium-uranium extraction waste streams. The facility was modified in 1963 to allow production of megacurie amounts of ¹³⁷Cs, ⁹⁰Sr, and ¹⁴⁴Ce, primarily for use in the Systems for the Nuclear Auxiliary Power program [Martin Marietta Energy Systems (MMES) 1986].

In 1962, Building 3047 was built to house the Radioisotopes Development Laboratory for research and development and to produce radioisotopes. The radioactive materials the Isotopes Division handled included ⁹⁰Sr, ¹³⁷Cs, ¹⁵²Eu, ¹⁵⁴Eu, ²³⁸Pu, ^{111m}Sn, ¹⁶⁶Dy/Ho, ¹⁸⁶Re, and ¹⁸⁸W/¹⁸⁸Re. A single sealed source of ⁹⁰Sr had activity as high as 350,000 Ci [MMES 1995].

Figure 3-1. General layout of isotope facilities [Carver and Slater 1994].

3.2 Y-12 FACILITIES

Concurrently with production of isotopes in reactors on the ORNL campus, the Isotopes Division involved the use of the cyclotron and calutron facilities on the Y-12 site to produce isotopes.

The calutron (electromagnetic separation) facilities were originally built to separate uranium isotopes and recover uranium enriched in ²³⁵U. With the successful operation of the gaseous diffusion process, the calutrons were phased out as a production operation for enriching uranium.

By the end of 1950, plans were made to use the calutron facilities to separate the isotopes of plutonium to allow more accurate measurement of their nuclear properties. The first isotope to be separated was to be ²⁴⁰Pu, followed by ²⁴²Pu and ²⁴⁴Pu. Before 1962, radioisotope production in the Y-12 facility was limited to small quantities of plutonium and uranium that were produced in one or two calutrons in Track 5 of Building 9204-3, which was functionally separated from the other calutrons. In 1962, a containment facility was built in Building 9204-3 that included separations areas, chemical processing areas, a change room, and a locker room. The actinide area operated continuously from 1962 to 1972 and chiefly separated isotopes of plutonium and uranium but included many other isotopes:

- Americium-241, -242, -243;
- Beryllium-9, -10;
- Calcium-40, -41, -42, -43, -44, -46, -48;
- Curium-243, -244, -245, -246, -247, -248, -250;

- Lead-201, -204, -205, -206, -207, -208;
- Plutonium-238, -239, -240, -241, -242, -244;
- Promethium-146, -147;
- Samarium-147, -148, -149, -150, -151, -152, -154;
- Thorium-228, -230, -232; and
- Uranium-232, -233, -234, -235, -236, -238.

3.3 MATERIAL TRANSFERS

Figure 3-2 shows the production flow between ORNL, Y-12, and offsite locations. Certain radionuclides were produced at the ORNL Graphite Reactor, the cyclotron, and the calutrons. Some materials containing exotic radionuclides were shipped off site right after production, while others underwent further processing at ORNL first.

Figure 3-2. Isotope production flow, 1955 to 1965 [NIOSH 2012].

4.0 EVALUATION OF BIOASSAY PROGRAM AND DATA

4.1 SAMPLING PROGRAM

ORNL has collected urine and fecal samples from individuals suspected of potential intakes from 1945 (and possibly as early as 1943) to the present. The processing of urine samples at the ORNL Urinalysis Building started in 1947 [Davis and Warden 1954] and was performed by the ORNL Body Fluids Analysis group [Burnett 1948].

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 10 of 132

Urine samples were collected based on the Area Health Physicist's knowledge of field conditions (e.g., known spills or incidents, air and contamination sample results). A June 1950 document, *Procedure for the Collection of Urine Samples*, indicates that it was ORNL policy to "collect and analyze certain body fluids of all employees who work with large quantities of uranium, plutonium, and other types of radioactive materials" [Hart 1950]. This procedure gave the responsibility for the selection of individuals for urine bioassay to the area HP staff. Urine samples were to be submitted along with a request form (Form X-386) indicating, among other things, the type and quantity of radioactivity with which the individual worked. A March 1954 revision to this procedure included consideration of the need to make a second request for sample submission and made use of the same request format [Warden 1954]. By 1957, the sampling request was revised to include a list of routine analytes that could be requested (H-3, polonium, plutonium, radium, strontium, uranium, gross alpha, and gross beta) along with a space to write in a radionuclide name.

In earlier years, the element of concern was extracted chemically from the biological sample and the total radioactivity of the element in the extract was measured. At some point after the extraction and sample count, the total sample activity was attributed to a specific radionuclide. Many of the isotopic assignments were based on process knowledge because isotope-specific analyses were not possible or routinely performed.

To evaluate the effectiveness of its bioassay program, and as a possible basis for improvement, ORNL conducted a study of all urinalysis samples from July 2, 1953, to August 23, 1954 [Davis and Warden 1954]. The total number of samples was 1,265. ORNL concluded that the method for that period seemed adequate. They recommended that a major emphasis be placed on obtaining samples for employees regularly working with radioactive materials and that the sampling schedule be left at the discretion of the HP area surveyor. It was further recommended that the surveyor annually select at random a number of employees who do not work regularly with radioactive materials and suggest to them that they submit a sample.

Infrequently, a request was made for determination of a radionuclide not included in the routine procedure. Such determinations were usually made by the use of, or modification of, existing analytical methods from the literature [Henley 1968].

Attachment A summarizes the initial development of ORNL bioassay methods. The discussion in this attachment provides detail up through the initial deployment of each bioassay method.

4.2 ORNL BIOASSAY DATA

The Oak Ridge Associated Universities Team (ORAUT) obtained a copy of the ORNL bioassay database dated April 28, 2013 [UT-Battelle 2013]. This database contains the results of 104,957 individual bioassay samples from September 7, 1949, through December 21, 1988. Of these, there are 94,988 with collection dates during the period under evaluation in this report. These 94,988 samples (3,121 fecal; 91,867 urine) were collected from 7,564 individual workers and subjected to analysis for 62 different individually identified analytes and code 000, which indicates other. This code indicates a nonstandard analytical method. There were 1,532 code 000 urine samples from 502 individuals, 52 code "OO0" urine samples from 33 individuals, and 140 code "OF0" fecal samples for 64 individuals (note that the combination of capital "O" and numeral "0" in a code is not a transcription error.) Tables 4-1 and 4-2 provide a summary of the bioassay methods the ORNL bioassay database lists for urine and fecal samples, respectively.

Bioassay		Number of	
code	Description/analyte	samples	Period in use
000	Other	1,532	1955,1958,1961,1963–1974,1976–1977,1979–1983,1985
000ª	Other	52	1986–1988
001	S-35	3	1958–1959,1961
002	Co-60	14	1961–1963
003	Pb-210	3	1960
004	Na-24	2	1960
005	Zr-95/Nb-95	13	1960–1963
006	Tc-99	11	1960–1964
007	As-74	6	1960
008	Br-82/Br-83	6	1960–1961
009	Fe-59	11	1960,1964
010	Mn-54	3	1960,1978
011	I-131	13	1958,1961–1964
012	Cs-132	2	1961
013	Gross beta	153	1955,1960–1964
014	Ba-140	1	1961
015	Sb-125	18	1962–1963
016	TI-204	7	1962
017	Np-237	12	1962–1964
018	Ag-110m	1	1963
AM0	Am-241	1	1987
C-14	C-14	67	1986–1988
CM0	Cm-244	11	1986,1988
CO0	Co-60	144	1963,1965,1967–1969,1972–1976,1982,1984,1987–1988
CS0	Cesium beta	1,589	1964–1970,1972–1977,1980–1988
CS7	Cs-137	284	1955–1957,1959–1964
FP0	Fission products	17	1956–1958
FU0	Total rare earth	1,333	1959-1967,1969-1978,1980,1985
GA0	Gross alpha	132	1965–1973,1975,1979–1980
GB0	Gross beta	26	1961,1965–1966,1968–1971,1973,1984
GD0	Gd-153	40	1987–1988
GG0	Gross gamma	9	1972,1984,1986–1988
GU0	Gross alpha	12,759	1955–1964
HY3	H-3	5,680	1955–1988
125	I-125	8	1987–1988
131	I-131	25	1987–1988
NP0	Np-237	64	1965–1970,1972,1978–1979
PA0	Pa-231	12	1968–1973,1975,1977
PA3	Pa-233	155	1955-1958,1960-1961,1964-1966,1969-1971,1975
PH2	P-32	232	1957-1965,1968-1969,1973-1976,1978-1984
PM7	Pm-147	5	1987
PO0 ^a	Po-210	48	1955–1957,1960–1961,1963,1966–1967,1975,1979
PU0	Pu-239	15,016	1964–1988
PU1	Pu-241	147	1968–1974,1976–1979,1981–1985
PU9	Pu-239	1,738	1957–1958,1960–1964
RA0	Ra-226	329	1955–1961,1963,1966,1968,1976–1977
RA6	Ra-226	1	1987
RU6	Ru-106	81	1958,1960,1962–1967,1972,1985
SR0	Sr-90	26,408	1955–1988
SR5	Sr-85	11	1960,1987
SR9	Sr-89	368	1960-1962 1966 1969

Table 4-1. Urine bioassay codes used at ORNL, 1955 to 1988.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 12 of 132
------------------------------	-----------------	----------------------------	----------------

Bioassay code	Description/analyte	Number of samples	Period in use
TA0	Ta-180	2	1986
TP0	Trans plutonium alpha	8,162	1958,1964,1966–1988
URO	Uranium	15,100	1955–1988
All codes	Total	91,867	1955–1988

Table 4-1. Urine bioassay codes used at ORNL, 1955 to 1988 (continued).

a. The combination of capital "O" and numeral "0" in a code type is not a transcription error.

|--|

Bioassay		Number of	
code	Description/analyte	samples	Period in use
OF0 ^a	Other	140	1964–1970,1976,1983,1988
GF0	Gross alpha	2,195	1955–1968,1972,1975
PF0	Pu-239	109	1968–1973,1975–1983
PF3	Pa-233	79	1957–1958,1961
RF0	Rare earth	70	1955,1960,1963–1965,1971–1972
SF0	Sr-90	243	1957–1958,1960–1974,1980
SF9	Sr-89	42	1960
TF0	Trans plutonium	178	1968–1983,1986
UF0	Uranium	65	1956,1963–1965,1968–1969,1973–1976,1979–1980
All codes	Total	3,121	1955–1988

a. The combination of capital "O" and numeral "0" in a code type is not a transcription error.

To assess the target radionuclide associated with the 1532 code 000 bioassay samples, the ORAU Team examined both the data already on file for 114 workers in the NIOSH-Division of Compensation Analysis and Support Claims Tracking System (NOCTS) as well as the bioassay cards for 388 individuals that are not in that system. The Team reviewed the bioassay card data to identify the analyte and compile the bioassay information into a data file. A total of 1,584 individual urine bioassay samples were identified for 492 individuals.¹ These samples were analyzed for 53 different analytes. Table 4-3 provides a summary of the reported analytes for these code 000 samples. Note that the bioassay cards for the 140 code OF0 (fecal) and 52 code OO0 (urine) samples were not requested.

Bioassay code	Description/analyte	Number of samples	Period in use
000	Am	60	1965–1967
000	Am-241	21	1965–1967
000	Am-243	2	1968
000	Bk-249	7	1965, 1969
000	C-14	14	1968, 1970–1973, 1979, 1982
000	Ca-45	19	1965–1966, 1968
000	Cd-109	1	1973
000	Ce	1	1969
000	CI-36	3	1968
000	Cm	469	1965–1967
000	Cm-242	53	1965–1967
000	Cm-244	17	1965–1967
000	Co-57	2	1965
000	Co-60	4	1961, 1963, 1983

Table 4-3. Bioassay code 000 with monitored nuclide, 1955 to 1988.

¹ The ORNL bioassay database is known to be incomplete (some samples were not entered into the database). Therefore, it is expected that the number of database samples and the number of samples from the bioassay cards for individuals identified in the database might not be equal.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 13 of 132

Bioassay code	Description/analyte	Number of samples	Period in use
000	Cr	2	1964
000	Cr-51	4	1964, 1968, 1976
000	Cs-132	1	1961
000	Eu-152	2	1985
000	Eu-154ª	1	1988
000	Eu-155 ^a	1	1988
000	Fe-55	5	1983
000	Fe-59	2	1964–1965
000	Ga-66/67	5	1970
000	Ga-67	3	1968, 1971
000	Gd-153	1	1987
000		64	1963, 1965–1973, 1976
000	I-125	1	1976
000	I-131	51	1958, 1965–1967, 1969–1971, 1973–1974
000	lr-192	2	1981
000	Nb-95	2	1968–1969
000	P-32	2	1968
000	Pa	1	1965
000	Pm	3	1965–1966
000	Pm-147	2	1967
000	Pu-241	74	1967
000	Ru	29	1968–1969, 1971
000	Ru-103	2	1965
000	Ru-103/106	4	1969
000	Ru-106	9	1968–1969, 1971–1972
000	S-35	5	1955, 1968
000	Тс	12	1965, 1979–1980
000	Tc-99	9	1976–1977, 1979, 1981, 1983
000	Th	2	1965
000	TI-201	1	1981
000	Tm-170	1	1968
000	TrPu	575	1961–1962, 1964–1969, 1974
000	W	1	1966
000	Y-88	2	1961
000	Y-90	1	1982
000	Zn-65	1	1968
000	Zr	20	1959, 1963, 1967–1969
000	Zr-95	2	1966, 1969
000	ZrNb	17	1964, 1968–1969
All codes	Total	1,584	1955–1988

Table 4-3. Bioassay code 000 with monitored nuclide, 1955 to 1988 (continued).

a. Analytical results associated with mixed nuclide release, not an individual nuclide.

4.3 NOCTS BIOASSAY DATA

Bioassay data for 1,003 workers in NOCTS were compiled into a spreadsheet. These 1,003 individuals represent the total pool of ORNL workers in NOCTS with bioassay data when the ORAU Team data transcription project was initiated in mid-2014. Although the purpose of this transcription project was to compile a dataset for potential use as a source of ORNL coworker data, the data were used in this report evaluation to ascertain the degree to which the ORNL bioassay database represents the analysis types that were used for individual workers from August 1, 1955, through December 31, 1988. This was done by comparing the data in the NOCTS claim files (i.e., from individual bioassay cards) with the data in the ORNL database for the same individuals. This comparison was made for analytes containing more than 10 samples.

	Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 14 of 132
--	------------------------------	-----------------	----------------------------	----------------

With the exception of gross beta analysis (results of which seem to be missing from the ORNL database between 1955 and 1959), the sample frequency in the ORNL and NOCTS datasets are comparable, although the NOCTS data files tend to be more complete. Tables 4-4 and 4-5 show the results of this evaluation by sample year and by analytical method code, respectively.

	NOCTS	ORNL database	
Year	sample count	sample count	N/O ^a
1955	485	467	1.04
1956	448	415	1.08
1957	562	517	1.09
1958	905	863	1.05
1959	674	615	1.10
1960	900	875	1.03
1961	1,010	864	1.17
1962	1,232	1,046	1.18
1963	1,330	1,157	1.15
1964	1,119	998	1.12
1965	1,170	982	1.19
1966	1,057	909	1.16
1967	878	760	1.16
1968	805	659	1.22
1969	870	733	1.19
1970	702	572	1.23
1971	687	533	1.29
1972	530	470	1.13
1973	701	578	1.21
1974	515	429	1.20
1975	360	342	1.05
1976	433	397	1.09
1977	311	297	1.05
1978	324	312	1.04
1979	271	267	1.01
1980	265	259	1.02
1981	194	194	1.00
1982	330	323	1.02
1983	254	245	1.04
1984	254	249	1.02
1985	213	209	1.02
1986	225	217	1.04
1987	172	168	1.02
1988	188	186	1.01
Overall	20.374	18.107	1.13

Table 4-4. NOCTS versus ORNL database comparison of sample frequency by year (for analytical methods with >10 samples).

 a. N/O = NOCTS Sample Count / ORNL Sample Count-Analytical Methods with >10 total samples (000, CS0, CS7, FU0, GA0, GF0, GU0, HY3, PA3, PF0, PH2, PU, PU0, PU1, PU9, RA0, RF0, SF0, SR9, TF0, TP0, UF0, UR0).

Table 4-5. NOCTS versus ORNL database comparison of
sample frequency by analyte code (for analytical methods
with >10 samples).

•	NOCTS	ORNL database	
Analyte code	sample count	sample count	N/O ^a
000	362	298	1.21
CS0	432	367	1.18
CS7	56	49	1.14
FU0	297	273	1.09
GA0, GU0, Pu,	6,558	5,777	1.14
PU0, PU9			
GF0	581	543	1.07
HY3	836	809	1.03
PA3	17	12	1.42
PF0	35	26	1.35
PH2	31	28	1.11
PU1	22	20	1.10
RA0	72	64	1.13
RF0	15	13	1.15
RU6	45	27	1.67
SF0	41	38	1.08
SR0	5,761	5,091	1.13
SR9	66	66	1.00
TF0	34	27	1.26
TP0	1,904	1,691	1.13
UF0	20	17	1.18
UR0	3,189	2,871	1.11
Overall	20,374	18,107	1.13

 a. N/O = NOCTS Sample Count/ORNL Sample Count-Analytical Methods with >10 total samples ('000', CS0, CS7, FU0, GA0, GF0, GU0, HY3, PA3, PF0, PH2, PU, PU0, PU1, PU9, RA0, RF0, SF0, SR9, TF0, TP0, UF0, UR0).

To summarize, the ratio of the number of samples for the same group of individuals in NOCTS to that in the ORNL Database is 1.13:1.00. The ratio ranges from 1:1 to 1:1.29 when grouped by year (Table 4-4), and from 1:1 to 1:1.67 when grouped by method (Table 4-5). Note that the higher variance when grouped by analytical method is likely due to the smaller sample set for some of the groups (in comparison with the sets grouped by year). The results are consistent with the conclusion of the ORNL Internal Dosimetry staff that the database is incomplete and might be missing up to 25% of the bioassay samples [ORAUT 2013], albeit comparison between NOCTS and the ORNL database indicate a slightly lower value. Note that this evaluation is only qualitative.

As indicated above, the ORNL database does not contain gross beta results (analyte codes 013 and GB0) between 1955 and 1959. Table 4-6 shows the number of gross beta samples for the same group of individuals when viewed in the NOCTS dataset versus the ORNL database.

Table 4-6. Gross beta samples in NOCTS and ORNL datasets (analyte codes 013 and GB0).

Dataset	1955	1956	1957	1958	1959
NOCTS	1	5	26	28	7
ORNL	0	0	0	0	0

This analysis indicates a discrepancy in the presence of gross beta samples (Analyte 013 and GB0) in the ORNL dataset. A review of the underlying data indicates that it was not uncommon for the gross beta analysis to be performed in conjunction with either fission product analysis (FP0), rare earth

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 16 of 132

analysis (FU0), or strontium analysis (SR0). The results of these accompanying FP0, FU0, or SR0 analyses are in the ORNL database, but the gross beta results are not. It appears that gross beta sample results were not recorded in the ORNL database between 1955 and 1959. However, it is not clear from the data results if the FP0, FU0, or SR0 analyses were initiated as a result of the gross beta analysis result.

5.0 EVALUATION OF IN VIVO MONITORING COUNTING PROGRAM

The main whole body count (WBC) room (a shielded vault) was erected in Building 2008 on July 24, 1959, with a 14-in.-thick pre-World War II steel shield. The first recorded background count was made on July 13, 1959, before the door and the roof were completed. The count room was initially used primarily for counting biological samples, such as milk, grass, and cow thyroids [Watts et al. 1995].

Use of the WBC facility for personnel monitoring began in June 1960. The system was configured with a 200-channel tube-type analyzer connected to a single 4- by 4-in. Nal(TI) crystal. This configuration was initially used to measure 19 individuals involved in known contamination events. From June 1960 to July 1961, the effort was expanded to include an additional 208 persons. The system was then upgraded to a 512-channel analyzer connected to two 8-in.-diameter by 4-in. Nal(TI) detectors [Morgan 1961].

During the second year of operations (1961 to 1962), improvements in data analysis were instituted that used computer software and additional data handling (i.e., inclusion of paper tape recording). Counter use was again focused on known or suspected internal exposures and resulted in 142 measurements of 102 additional individuals [Morgan 1962]. Starting in 1963, the scope of the counting program was expanded to include routine counting of potentially exposed persons as well as baseline counts on individuals before entry into areas with potential for internal exposure. System capacity was reported at 110 persons per month; and 492 individuals were counted between 1962 and 1963.

By 1964, continued improvements in instrumentation, scheduling, and operations made it possible to further increase system throughput. Between 1963 and 1964, a total of 1,568 counts were performed on 1,370 individuals. Emphasis was placed on routine counting of persons, who were suspected of having experienced an exposure or having a potential for exposure, and on obtaining baseline counts. The 1964 HP Division annual report indicated that "the increased rate of individual counting made it possible to expand the base-line counting and obtain counts on essentially all persons with even a remote chance for exposure" [Morgan et al. 1964].

The goal to obtain a baseline count on essentially every person with a potential for future exposure was completed in May 1965 [Morgan et al. 1965]. Beginning in May, the method of selecting individuals was changed to allow selection by Applied HP personnel. A five-part priority system was implemented, as follows:

- 1. Persons suspected of having sustained an exposure,
- 2. Persons being recounted as follow-up to initial elevated in vivo counts,
- 3. Persons who worked directly with radioactive materials,
- 4. Persons who worked in the areas where radioactive materials are handled, but who did not work directly with the materials, and
- 5. Newly hired or other persons for baseline counts before beginning work with radioactive materials.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 17 of 132
------------------------------	-----------------	----------------------------	----------------

Based on these criteria, individuals who worked directly with radioactive materials were supposed to have been monitored quarterly, and those who worked where radioactive material was present were to have been monitored semiannually. Baseline counts were to be taken for new hires or other persons requiring a baseline count, and a limited number of workers were to be monitored before termination [Morgan et al. 1965].

By the beginning of the 1966 fiscal year (July 1965), the operation of the whole body counter was reported as being used for "the routine monitoring and evaluation of the extent of exposure to gammaemitting radioisotopes of all Laboratory employees" [Morgan et al. 1966]. The implementation of this routine monitoring effort was reported to be effective beginning in "the next fiscal year" (i.e., July 1967) due to logistical problems with implementation. As stated in the 1966 HP Division annual report, "...the effort required for selection of workers, the frequency of the counts of the workers, preparation of paperwork proved to be greater than anticipated. The new routine counting program is expected to get under way with the beginning of the new fiscal year."

Although the 1967 HP Division annual report indicates that baseline and specified monitoring frequencies continued to be implemented, contemporary ORNL dosimetry staff indicated that a centrally controlled in vivo monitoring program did not exist at ORNL until approximately 1994 when site internal dosimetrists became responsible for identifying personnel for counting [ORAUT 2004]. Before then, Area HP selected individuals for in vivo monitoring based on an understanding of the exposure potential. The Area HP staff was responsible for determining the radioisotopes to which a worker could be exposed as well as the counting frequencies.

Table 5-1 shows the number of in vivo counts taken each calendar year from the ORNL database [UT-Battelle 2013] and the HP Division annual reports from before 1983. (The HP Division reports after 1982 have not been found). The annual report data were assessed to fill in the gaps in the ORNL dataset, which only lists counts starting in 1962.

Number of in vivo counts Number of in vivo counts Sou			
Year	from ORNL database ^a	from annual reports ^b	(annual report)
1961	0	329	Hart 1964, p. 26
1962	71	395	Hart 1963, p. 19
1963	921	1,054	Hart 1964, p. 26
1964	1,555	1,644	UCC 1965, p. 77
1965	1,169	1,222	UCC 1966, pp. 79–80
1966	696	740	UCC 1967, pp. 85–86
1967	966	983	UCC 1968, pp. 83–84
1968	968	964	UCC 1969, pp. 77–78
1969	1,057	1,108	UCC 1970, p.67
1970	518	530	UCC 1971, p. 11
1971	324	332	UCC 1972, p. 11
1972	259	272	UCC 1973, p. 11
1973	325	350	UCC 1974, p. 14
1974	278	278	UCC 1975, p. 17
1975	330	331	UCC 1976, p. 16
1976	255	255	UCC 1977, p. 14
1977	291	291	UCC 1978, p. 14
1978	306	305	UCC 1979, p. 15
1979	402	460	UCC 1980, p. 14
1980	700	750	UCC 1981, p. 15
1981	557	590	UCC 1982, p. 18
1982	556	650	UCC 1983, p. 19
1983	411	Not available	Not Applicable

Table 5-1. Tabulation of in vivo counts from database versus annual reports.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 18 of 132
------------------------------	-----------------	----------------------------	----------------

Table 5-1.	Tabulation	of in \	/ivo co	ounts	from	database	versus	annual	reports
(continued).								

Year	Number of in vivo counts from ORNL database ^a	Number of in vivo counts from annual reports ^b	Source (annual report)
1984	476	Not available	Not Applicable
1985	525	Not available	Not Applicable
1986	682	Not available	Not Applicable
1987	681	Not available	Not Applicable
1988	753	Not available	Not Applicable

a. Source data from UT-Battelle [2013].

b. Includes number of wound counts.

6.0 INVENTORY DEVELOPMENT

A detailed inventory of the radionuclides the ORNL Isotopes Division produced and processed was developed using source documents in the ORAU Team Site Research Database (SRDB). In addition, the Team used documents it had collected for development of the ORNL and Y-12 site profiles, and during subsequent visits to capture data about radionuclide production activities. The predominant source data for this inventory included isotope shipping and sales reports as well as various operational and technical report series, as shown in Table 6-1. These data sources, as well as other ad hoc (nonseries) reports in the SRDB, were used to develop an initial inventory of radionuclides and quantities. The resultant inventory represents materials produced by the Isotopes group as opposed to a more general inventory of materials present at the site. For example, individual fission product radionuclides contained within unprocessed reactor fuels are not included within the inventory quantities.

The initial radionuclide listing was reviewed to determine if the produced materials were handled in the ORNL processing facilities or (as in the case of many cyclotron materials) shipped directly off site for processing. Materials that were irradiated at ORNL but processed off site were identified as either "special irradiations" or "service irradiations." Because these materials were not handled in an unsealed form at ORNL or Y-12, they were not included in the isotope inventory. Thirty-six radionuclides were identified in this category and removed from the initial inventory. The exception to this was the case where a target otherwise identified as a service irradiation ruptured. Fifty (50) documents related to target rupture events were identified by a keyword search of the SRDB. Another 49 documents were identified through a review of the ORNL incident listing [UT-Battelle 2012]. In each event of a target rupture, the relevant radionuclide was retained in the radionuclide inventory if initially present. In a small number of cases, the radionuclide that was identified in the target rupture documentation was not contained on the previously identified inventory and was added (Table 6-2). Two radionuclides (^{123m}Te and ¹²⁸Te) were identified in the inventory development but were removed because they are effectively stable with half-lives of 9.2 × 10¹⁶ years and 2.4 × 10²⁴ years, respectively).

The ORAU Team reviewed a collection of logbooks in the ORNL records repository. These logbooks were selected from a master listing of over 17,000 logbooks. Logbook categories matching those in the table below were selected to narrow the review to 1,867 logbooks. Of these, 15,961 pages from 823 logbooks were selected for data capture. During the course of the data capture, the ORNL radionuclide inventory listing was referenced so that radionuclides in logbook entries that were not listed on the existing inventory could be identified and subsequently added to the radionuclide inventory listing. As a result of this review, 26 additional radionuclides were identified, and one or more additional inventory years were identified for 19 radionuclides (Table 6-3). Table 6-4 provides the final inventory list based on the above-listed data sources.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 19 of 132

	Publication			
Report series name	frequency	Start	End	Source
Chemical Technology Division Annual Progress	Annual	1957	1988	ORAUT 2022a
Report				
Electronuclear Research Division Annual Progress	Annual	1957	1961	ORAUT 2022b
Report				
Isotope Separations Progress Report	Monthly	1976	1978	ORAUT2022c
Isotopes Development Center Progress Report	Variable	1962	1964	ORAUT 2022d
Curium Program				
Isotopes Development Center Progress Report	Variable	1962	1962	ORAUT 2022e
Fission Products				
Isotopes Development Center Progress Report	Variable	1962	1964	ORAUT 2022f
Isotopes Separations				
Isotopes Development Center Progress Report	Variable	1962	1963	Beauchamp 1963
Radioactive Source Development				
Isotopes Development Center Progress Report	Variable	1963	1963	ORAUT 2022g
Reactor and Cyclotron Produced Isotopes				
Isotopes Development Center Progress Report	Variable	1962	1963	ORAUT 2022h
Target Development				
Isotopes Development Center newsletter	Variable	1967	1967	Rupp 1968
Isotopes Division Quarterly Report	Quarterly	1960	1961	ORAUT 2022i
Isotopes Division Research and Development Report	Monthly	1962	1962	ORAUT 2022j
List of Radioisotope Customers with Summary of	Annual	1964	1988	ORAUT 2022k
Radioisotope Shipments				
ORNL Status and Progress Report	Monthly	1950	1967	ORAUT 2022I
Quantity Data on Radioisotopes	Quarterly	1959	1964	ORAUT 2022m
Radioisotope Cost-Price Study	Annual	1957	1974	ORAUT 2022n
Radioisotope Distribution Program Progress Report	Monthly	1973	1980	ORAUT 20220
Radioisotope Inventory	Monthly	1956	1966	ORAUT 2022p
Radioisotope Production and Process Development	Annual	1954	1956	ORAUT 2022q
Annual Report				
Radioisotope Program (8000) Progress Report	Monthly	1969	1973	ORAUT 2022r
Review of Radioisotopes Program	Annual	1964	1967	ORAUT 2022s
Stable Isotope and Heavy Element Inventories	Monthly	1961	1969	ORAUT 2022t
Transuranium Processing Plant Semiannual Report	Semiannual	1969	1975	ORAUT 2022u
of Production, Status, and Plan				

Table 6-1	Sources	of radionuclide	production	information
	Sources		production	mormation

Table 6-2. Radionuclides added to

inventory due to target rupture events.

Radionuclide	Year(s)
As-71	1960
As-72	1960
As-74	1958, 1960–1961
Mn-52	1960
Mn-54	1960
Sr-85	1961
Y-88	1961
Cs-132	1962

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 20 of 132
------------------------------	-----------------	----------------------------	----------------

Dedienvelide		Veer(e)	Coursee
	Dreduction weer	rear(s)	Sources
Derymuni-7	Production year	1962	Buller 1962, p. 9
Socium-22 Chlaring 29	Production year	1904	Coleman 1964, p. 4
Chiorine-38		1956	Cain 1956, p. 8
Scandium-46	Production year	1973	Poggenburg 1972, p. 9
Vanadium-48	Radionuclide	1962	Burrell 1962a, p. 17
Manganese-54	Production year	1963	Butler 1962, p. 25
Cobalt-57	Production year	1964	Millspaugh 1964, p. 12
Nickel-66	Radionuclide	1968	Sillyman 1967, p. 52
Copper-64	Production year	1976	Poggenburg 1972, p. 18
Copper-67	Production year	1963	Butler 1962, p. 26
Gallium-68	Radionuclide	1971	Golden 1970, p. 7
Bromine-85	Radionuclide	1963	Burrell 1962b, p. 15
Rubidium-88	Radionuclide	1964	Coleman 1963b, p. 8
Yttrium-86	Radionuclide	1964	Millspaugh 1964, p. 19;
		1968	Butler 1967, p. 55
Zirconium-97	Radionuclide	1971	Guinn 1970, p. 3
Niobium-92	Radionuclide	1963	Hill 1962b, p. 125
Ruthenium-97	Production year	1970	Poggenburg 1969, p. 6
Ruthenium-105	Radionuclide	1956	Warden 1956, p. 9
Indium-114m	Radionuclide	1975	Poggenburg 1972, p. 113
Tin-117m	Radionuclide	1977	Poggenburg 1976 p. 8
Tellurium-132	Radionuclide	1963	Arthur 1962 n 17
	T tadiona on a	1968	Miller 1967 p. 17
Barium-135m	Production year	1970	Poggenburg 1969 p. 24
Praseodymium-	Radionuclide	1962	Davis 1961 n 131
144		1002	
Promethium-145	Radionuclide	1968	Sillyman 1967, p. 56
Promethium-148	Radionuclide	1970	Miller 1969, p. 6
Europium-152	Production years	1962	Hill 1962a, p. 5; Butler 1962b, p. 7;
	,	1968	Butler 1967, p. 40
Gadolinium-148	Radionuclide	1970	Hill 1969, p. 4
Terbium-156	Production year	1968	Butler 1968, p. 3
	5		Golden 1966, p. 143
Terbium-158	Radionuclide	1970	Poggenburg 1969, p. 49
Holmium-166	Radionuclide	1968	Butler 1967, p. 45
Erbium-171	Radionuclide	1973	Poggenburg 1972, p. 26
Polonium-210	Radionuclide	1962	Davis 1962, p. 5;
		1966	Wallace 1966, p. 10
Thorium-228	Radionuclide	1962	Butler 1962b, p. 9
Protactinium-231	Production years	1961	Burden 1961, p. 6; Burden 1961, p. 16;
		1962	Butler 1962a, p. 3
Protactinium-233	Radionuclide	1963	Hill 1962b, p. 22; Coleman 1963a, p. 9;
		1964	Miller 1965, p. 4; Burrell 1967, p. 11
		1966	
		1969	
Uranium-232	Production vears	1961	Burden 1961, p. 13: Butler 1962b, p. 4:
	,	1962	Keny 1965, p. 5
		1965	
Neptunium-236	Radionuclide	1965	Walters 1965. p. 44
Neptunium-237	Production years	1961	Burden 1961, p. 10: Butler 1962b, p. 3:
		1962	Butler 1962a, p. 5
Neptunium-238	Radionuclide	1965	Clark 1963, p. 11; Coleman 1963c, p. 18
		1966	· · · · · · · · · · · · · · · · · · ·

Table 6-3. Information added during logbook review.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 21 of 132
------------------------------	-----------------	----------------------------	----------------

Table 6-3. Information added during logbook review (continued).

Radionuclide	Information added ^a	Year(s)	Sources
Curium-242	Production years	1962	Butler 1962b, p. 6; Butler 1962, p. 11;
		1964	Millspaugh 1963, p. 26
Curium-244	Production year	1962	Davis 1961, p. 151
Berkelium-249	Production year	1964	Moore 1964, p. 3–71
Californium-252	Production year	1962	Butler 1962a, p. 9
Einsteinium-252	Radionuclide	1970	Butler 1969, p. 12
Fermium-257	Production years	1969	Guinn 1968, p. 9;
		1970	Hill 1969, p. 3

a. "Production year" indicates additional inventory year for nuclide already on inventory or Radionuclide. "Radionuclide" indicates addition to nuclide not previously identified on inventory.

Table 6-4. Final radionuclide inventory for Isotopes Division.

Nuclide	Production years
Hydrogen-3	1955–1957, 1959–1988
Beryllium-7	1955, 1957–1959, 1962, 1964, 1969
Carbon-11	1975, 1977, 1979–1980
Carbon-14	1955–1975, 1980–1983, 1985
Sodium-22	1955–1956, 1961–1964
Sodium-24	1955–1967
Magnesium-28	1966, 1969–1970, 1977, 1983–1984, 1987–1988
Phosphorus-32	1955–1967
Phosphorus-33	1964–1965, 1967–1987
Sulfur-35	1955–1969
Chlorine-36	1955–1972
Chlorine-38	1956
Argon-37	1955–1957, 1959–1971, 1973–1982
Potassium-40	1979
Potassium-42	1955–1966
Potassium-43	1964–1965, 1967, 1971, 1973–1978, 1980–1981, 1983
Calcium-41	1977, 1986
Calcium-45	1955–1966
Calcium-47	1960–1984
Scandium-46	1955–1957, 1959–1973
Scandium-49	1955, 1965
Titanium-44	1956, 1958
Vanadium-48	1962
Chromium-51	1955–1967, 1975
Manganese-52	1960
Manganese-54	1955–1957, 1960, 1963–1965
Iron-55	1955–1956, 1959–1966, 1980–1986
Iron-59	1955–1956, 1958–1967
Cobalt-56	1967, 1972, 1977
Cobalt-57	1955–1957, 1964, 1972–1976
Cobalt-58	1955–1957, 1959–1965
Cobalt-60	1955–1988
Nickel-63	1955–1957, 1959–1972, 1978, 1980, 1985–1987
Nickel-66	1968
Copper-64	1955–1969, 1976
Copper-67	1963–1964, 1967–1968, 1970–1971, 1973–1976
Zinc-65	1955–1957, 1959–1966
Zinc-69m	1967, 1973–1974
Gallium-67	1958–1959, 1969–1978, 1983
Gallium-68	1971
Gallium-72	1955, 1957, 1960–1970

	• • • • • • • • •	
Table 6-4 Final radionuclide inventor	v for Isotopes Division (continued	1)
		~/`

Nuclide	Production years
Arsenic-71	1960
Arsenic-76	1956–1957, 1959–1967
Arsenic-77	1956–1957, 1959–1966
Selenium-75	1955–1957, 1959–1966, 1979–1986
Bromine-82	1956–1967
Bromine-85	1963
Krypton-85	1955–1988
Rubidium-83	1969
Rubidium-84	1964–1965, 1969, 1975
Rubidium-86	1955–1957, 1959–1972
Rubidium-88	1964
Strontium-82	1970
Strontium-85	1955, 1957–1967, 1970, 1986
Strontium-87m	1960, 1964, 1970
Strontium-89	1955–1957, 1959–1963, 1965–1987
Strontium-90	1955–1988
Yttrium-86	1964, 1968
Yttrium-88	1957–1958, 1961–1963, 1965, 1974
Yttrium-90	1956–1968, 1973, 1987–1988
Yttrium-91	1955–1957, 1959–1978
Zirconium-95	1955–1986
Zirconium-97	1971
Niobium-90	1957
Niobium-92	1963
Niobium-92m	1967
Niobium-95	1955–1957, 1959–1981, 1983–1985
Molybdenum-93	1957, 1962
Molybdenum-99	1957, 1959–1971
Technetium-95m	1957–1958, 1967, 1970
Technetium-99	1955–1957, 1959–1970, 1972–1988
Technetium-99m	1966, 1968, 1970
Ruthenium-97	1959–1960, 1962, 1970
Ruthenium-103	1955–1957, 1959–1986
Ruthenium-105	1956
Ruthenium-106	1955–1957, 1959–1988
Rhodium-102	1958
Palladium-103	1962, 1964
Palladium-109	1957, 1959–1971
Silver-110m	1955–1957, 1959–1966
Silver-111	1956–1957, 1959–1970
Cadmium-109	1957–1958, 1960–1961, 1963–1966, 1972
Cadmium-115	1955–1956, 1960, 1962–1966
Cadmium-115m	1955–1956, 1960–1966
Indium-111	1969–1971, 1973
Indium-114	1955–1957, 1959–1977, 1981
Indium-114m	1975
Tin-113	1955–1957, 1959–1967, 1979
Tin-117m	1977
Tin-119m	1986
Antimony-122	1956, 1959–1968, 1971, 1987
Antimony-124	1955–1957, 1959–1967
Antimony-125	1955–1957, 1959–1966

Table 6-4. Final radionuclide inventory for Isotopes Division (continued).

Nuclide	Production years
Arsenic-74	1957–1959, 1961, 1965
Arsenic-72	1960
Tellurium-121	1957
Tellurium-132	1963, 1968
lodine-123	1965, 1967–1970
lodine-125	1957, 1961–1964
lodine-129	1955–1957, 1959–1988
lodine-130	1960–1972, 1985
lodine-131	1955–1976, 1978–1980, 1983, 1985–1986, 1988
lodine-132	1967–1972
lodine-133	1961, 1967–1968, 1977
Xenon-127	1983, 1987–1988
Xenon-133	1960–1976, 1978–1980
Cesium-131	1965
Cesium-132	1962
Cesium-134	1955–1957, 1959–1966
Cesium-137	1955–1988
Barium-131	1955–1957, 1959–1971
Barium-133	1955–1957, 1959–1972
Barium-135m	1970, 1986
Barium-140	1955–1957, 1959–1968, 1970–1978, 1980–1981, 1983
Lanthanum-140	1955–1957, 1959–1966, 1987
Cerium-139	1955, 1957–1958
Cerium-141	1955–1957, 1959–1966, 1970
Cerium-144	1955–1979, 1981–1988
Praseodymium-142	1956–1957, 1959–1968, 1970
Praseodymium-143	1955–1957;1959–1968, 1970, 1972–1973
Praseodymium-144	1962
Neodymium-140	1969
Neodymium-147	1955–1957, 1959–1973, 1979
Neodymium-149	1979
Promethium-145	1968
Promethium-146	1974
Promethium-147	1955–1968, 1970–1987
Promethium-148	1970
Samarium-151	1968–1982, 1984–1987
Samarium-153	1956–1957, 1959–1961, 1963–1969
Europium-152 ^a	1962, 1968, 1974–1975, 1978–1981, 1984–1985, 1988
Europium-155	1955–1957, 1959–1968, 1975
Gadolinium-148	1970
Gadolinium-153	1971, 1973–1988
Terbium-156	1958, 1967–1968
Terbium-158	1970
Dysprosium-157	1975
Dysprosium-159	1957, 1961
Dysprosium-166	1965, 1984
Holmium-156	1965
Holmium-166	1968
Erbium-171	1973
Thulium-170	1962–1971, 1974–1975
Thulium-171	1967
Ytterbium-169	1980, 1986
Hafnium-181	1955, 1957, 1959–1977, 1979–1980

Table C. A. Final realization validation vanta	m fan lastan as Division (santinus)
Table 6-4. Final radionuclide invento	ry for isotopes Division (continued).

Nuclide	Production years		
Tantalum-182	1955–1957, 1959–1972, 1974		
Tungsten-181	1957–1958		
Tungsten-185	1955–1957, 1959–1971		
Tungsten-187	1955–1957, 1959–1970		
Rhenium-186	1957, 1959–1972, 1979		
Osmium-185	1957, 1966		
Osmium-191	1957, 1959–1970, 1984		
Iridium-192	1955–1968, 1970–1971, 1973–1988		
Iridium-194	1959, 1961, 1963, 1968		
Platinum-195m	1972–1974, 1978		
Platinum-197	1965		
Gold-195	1961		
Gold-198	1955, 1957–1966		
Gold-199	1955, 1957, 1959–1967		
Mercury-197	1957–1966		
Mercury-203	1955–1957, 1959–1967		
Thallium-201	1975		
Thallium-204	1955–1971		
Lead-203	1972–1973		
Bismuth-206	1957–1958		
Bismuth-207	1957		
Bismuth-210	1955–1957, 1959–1970		
Polonium-210	1962, 1966		
Thorium-228	1962		
Thorium-229	1968, 1970–1971, 1973–1974, 1977, 1979–1986, 1988		
Thorium-230	1956, 1962–1963, 1965, 1967–1976, 1978–1988		
Thorium-232	1963, 1968–1969, 1972–1976, 1978–1987		
Thorium-234	1981		
Protactinium-231	1961–1963, 1965–1966, 1968–1969, 1976–1981,		
	1984–1986		
Protactinium-233	1963–1964, 1966, 1969		
Uranium-232	1961–1965, 1968, 1970–1971, 1974–1979		
Uranium-233	1961–1963, 1965–1988		
Uranium-234	1956, 1961–1963, 1965–1988		
Uranium-235	1955–1957, 1961–1963, 1965–1988		
Uranium-236	1955–1956, 1961–1963, 1965–1988		
Uranium-238	1955–1956, 1961–1988		
Neptunium-236	1965		
Neptunium-237	1955–1957, 1959, 1961–1962, 1964–1965, 1967–1968,		
	1970, 1972–1987		
Neptunium-238	1965–1966		
Plutonium-236	1968, 1970, 1973, 1975, 1981, 1984, 1986		
Plutonium-237	1984, 1986		
Plutonium-238	1961–1963, 1965, 1968–1985, 1987–1988		
Plutonium-239	1955–1956, 1961–1972, 1974–1985, 1987–1988		
Plutonium-240	1961–1966, 1968–1986, 1988		
Plutonium-241	1955–1956, 1959, 1962–1975, 1977–1986		
Plutonium-242	1961–1988		
Plutonium-244	1968, 1970–1982		
Americium-241	1959-1988		
Americium-243	1901-1978, 1980-1986, 1988		
Curium-242	1902-1900, 1908, 1980		
Curium-243	1905, 1972–1973, 1975–1976, 1981–1983		
Curium-244	1962–1964, 1966–1988		

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 25 of 132

Nuclide	Production years
Curium-245	1969, 1972–1973, 1986
Curium-246	1970–1971, 1973, 1977, 1988
Curium-247	1969, 1972
Curium-248	1968–1980, 1982–1984, 1986, 1988
Berkelium-249	1964, 1967, 1969–1984, 1986, 1988
Californium-248	1972
Californium-249	1968–1976, 1979–1982, 1984, 1986
Californium-250	1970, 1973–1976, 1980
Californium-252	1962, 1967–1988
Californium-253	1984
Einsteinium-252	1970
Einsteinium-253	1967–1981, 1984, 1986, 1988
Einsteinium-254	1972–1974, 1980, 1982, 1984, 1988
Fermium-255	1984, 1988
Fermium-257	1968–1977, 1980, 1984, 1986, 1988

Table 6-4. Final radionuclide inventory for Isotopes Division (continued).

a. Inventory entries listed as "Eu-152, Eu-154" were compiled as ¹⁵²Eu.

7.0 FEASIBILITY ANALYSIS

7.1 INITIAL EVALUATION

The annual production history for each of the 213 radionuclides in Table 6-4 was compared to the available in vitro bioassay methods for each year (Tables 4-1, 4-2, 4-3, and 4-6) and in vivo bioassay methods (Section 4.0) in each year. The information from the analysis of NOCTS bioassay data (Section 4.2) was incorporated to augment the listing of available methods (namely for gross beta) during periods for which the ORNL dataset does not include those methods. The ORAU Team determined if ORNL had monitoring capability for each radionuclide in each production year by taking into consideration the characteristic radionuclide emissions (type and energy) and analytical method sensitivity (including chemical specificity, radiation type, and energy). The ORAU Team performed this evaluation to identify potential gaps in monitoring capabilities specific to an individual radionuclide. No attempt was made to reconcile the quantity of a specific radionuclide against the frequency at which a particular monitoring method was used.

In this evaluation, when an adequate monitoring method was indicated (i.e., by analytical results for a previous year), it was deemed adequate evidence for concluding there was no gap in monitoring capability. This was the case even when a particular radionuclide was produced in a later year in which no instances of that bioassay method were evident. That is, once a bioassay method was reported, it was assumed to be available each year thereafter. For example, ³⁵S was produced each year between 1955 and 1969 but analytical results for methods capable of detecting ³⁵S were only reported in 1955, 1958, 1959, and 1961 (Table 7-1). The lack of recorded monitoring results for the other years of interest was not considered indicative of a gap in monitoring capability.

Tables 7-2 and 7-3 provide a summary of the results of the monitoring capability evaluation. Color and letter codes in Tables 7-2 and 7-3 identify specific radionuclides in inventory, indicate if a bioassay method was available to detect the radionuclide, and specify if sample results for that particular bioassay method are available for that particular year. For instances where dose would be bounded by external radiation (i.e., noble gases), "EXT" is indicated as the bioassay method. As stated in International Commission on Radiological Protection (ICRP) Publication 30, Section 8.2.3, "for submersion in radioisotopes of the noble gases, external irradiation will be of such overriding importance that it alone need be considered" [ICRP 1979].

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 26 of 132

Year	Inventory (Ci)	S-35 samples reported
1955	57	1
1956	14	0
1957	67	0
1958	88	1
1959	60	1
1960	23	0
1961	150	1
1962	70	0
1963	29	0
1964	100	0
1965	14	0
1966	83	0
1967	0.1	0
1968	0.1	0
1969	0.01	0

Table 7-1. Comparison of ³⁵S production and number of reported bioassay samples.

In Tables 7-2 and 7-3, colors and letters mean:

- Green or G
 - A specific radionuclide was present in inventory in the specified year; and
 - A bioassay method was available to detect the radionuclide in the specified year; and
 - Sample results for that particular bioassay method are available for the specified year.
- Yellow or Y
 - A specific radionuclide was present in inventory in the specified year; and
 - A bioassay method was available to detect the radionuclide, but no sample results for that particular bioassay method are available for the specified year.
- Red or R
 - A specific radionuclide was present in inventory in the specified year, but an additional analysis was necessary to determine if the nuclide represented an infeasibility from a monitoring perspective.
- No color or N
 - No radionuclide was present in inventory in the specified year.

Of the 213 identified radionuclides, the ORAU Team determined that the ORNL HP program was able to monitor for 179 of them using an existing monitoring method (green or yellow shading, or coded as [G] or [Y]). For these 179 radionuclides, no further analysis was required. Attachment B summarizes the radiological properties and monitoring capability decisions for these nuclides.

Table 7-2. Results of feasibility analy	/sis for 1955 to 1969.ª
---	-------------------------

able 7-2. Results of feasibility analysis for 1955 to 1969. ^a																	
Nuclide	Bioassay method code ^b	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	С С
Hydrogen-3	HY3	G	G	G	Ν	G	G	G	G	G	G	G	G	G	G	G	m
Beryllium-7	SC ^b	R	Ν	R	R	R	Ν	Ν	G	Ν	G	Ν	Ν	Ν	Ν	G	ent
Carbon-11	SC	Ν	Ν	N	Ν	N	N	N	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	z
Carbon-14	000(C-14); 013/GB0;C14	G	G	G	G	G	G	G	G	G	G	G	G	Y	G	G	.0
Sodium-22	013/GB0;SC	G	G	N	Ν	N	N	G	G	G	G	Ν	Ν	Ν	Ν	Ν	R
Sodium-24	013/GB0;004;SC	G	G	G	G	G	G	G	G	G	G	G	G	G	N	Ν	Ž
Magnesium-28	SC	Ν	Ν	N	Ν	N	N	N	N	Ν	Ν	Ν	G	Ν	Ν	G	-
Phosphorus-32	000(P-32); PH2	G	G	G	G	G	G	G	G	G	G	G	Y	Y	N	Ν	구
Phosphorus-33	013/GB0	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	G	G	Ν	Y	G	G	Ř
Sulfur-35	000(S-35);001	G	Y	Y	G	G	Y	G	Y	Y	Y	Y	Y	Y	G	Y	-0
Chlorine-36	000(CI-36); 013/GB0	G	G	G	G	G	G	G	G	G	G	G	G	Y	G	G	60
Chlorine-38	013/GB0	Ν	G	N	N	N	N	N	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	0
Argon-37	EXT	G	G	G	N	G	G	G	G	G	G	G	G	G	G	G	
Potassium-40	SC	Ν	Ν	N	Ν	N	N	N	Ν	Ν	Ν	Ν	N	N	N	Ν	
Potassium-42	013/GB0;SC	G	G	G	G	G	G	G	G	G	G	G	G	N	Ν	Ν	۲e/
Potassium-43	SC	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	G	G	Ν	G	Ν	Ν	/isi
Calcium-41	(c)	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	on
Calcium-45	000(Ca-45); 013/GB0	G	G	G	G	G	G	G	G	G	G	G	G	N	Ν	Ν	Z
Calcium-47	013/GB0;SC	Ν	Ν	N	Ν	Ν	G	G	G	G	G	G	G	G	G	G	.0
Scandium-46	013/GB0; FU0; SC	G	G	G	Ν	G	G	G	G	G	G	G	G	G	G	G	Ξ
Scandium-49	013/GB0; FU0	G	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	
Titanium-44	013/GB0	Ν	G	N	G	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	п
Vanadium-48	SC	N	Ν	N	Ν	N	N	N	G	N	N	N	N	N	N	N	ffe
Chromium-51	000(Cr-51); SC°	R	R	R	R	R	R	R	G	G	G	G	G	G	N	Ν	ctiv
Manganese-52	013/GB0	Ν	Ν	N	N	N	G	N	N	N	N	N	N	N	N	Ν	é
Manganese-54	010;SC ^c	R	R	R	Ν	N	G	N	N	G	G	G	N	N	N	N	Da
Iron-55	000(Fe-55) ^c	R	R	N	N	R	R	R	R	R	R	R	R	N	N	Ν	te:
Iron-59	000(Fe-59); 013/GB0;009;SC	G	G	Ν	G	G	G	G	G	G	G	G	G	G	N	Ν	03/1
Cobalt-56	SC	Ν	Ν	N	N	N	N	N	N	Ν	N	N	N	G	N	Ν	2/0
Cobalt-57	000(Co-57); SC ^c	R	R	R	Ν	N	N	N	N	Ν	G	Ν	Ν	N	N	Ν	202
Cobalt-58	013/GB0;SC	G	G	G	N	G	G	G	G	G	G	G	N	Ν	Ν	Ν	Ň
Cobalt-60	000(Co-60); 013/GB0;002;CO0;SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Pa
Nickel-63	013/GB0	G	G	G	N	G	G	G	G	G	G	G	G	Y	G	G	ge
Nickel-66	013/GB0	Ν	Ν	N	Ν	N	N	N	N	Ν	N	N	N	N	G	Ν	27
Copper-64	013/GB0	G	G	G	G	G	G	G	G	G	G	G	G	Y	G	G	c f
Copper-67	SC	Ν	Ν	N	N	N	N	N	N	G	G	N	N	G	G	Ν	$\frac{1}{3}$
Zinc-65	000(Zn-65); 013/GB0;SC	G	G	G	Ν	G	G	G	G	G	G	G	G	Ν	Ν	Ν	N

Revision No. 01

able 7-2. Results	of feasibility analysis for 1	955 IC	1909		nueu).											
Nuclide	Bioassay method code ^b	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Zinc-69m	GB0	N	N	N	N	N	N	N	N	N	N	N	N	Y	N	N
Gallium-67	000(Ga-67); SC	N	N	N	R	R	N	N	N	N	N	N	N	N	N	G
Gallium-68	SC	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Gallium-72	013/GB0; SC	G	N	G	N	Ν	G	G	G	G	G	G	G	G	G	G
Arsenic-71	013/GB0	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	N
Arsenic-72	013/GB0	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Arsenic-74	007; 013/GB0;SC	Ν	N	G	G	G	N	G	Ν	Ν	N	G	N	Ν	N	Ν
Arsenic-76	013/GB0;SC	Ν	G	G	N	G	G	G	G	G	G	G	G	G	N	N
Arsenic-77	013/GB0	Ν	G	G	N	G	G	G	G	G	G	G	G	N	N	Ν
Selenium-75	SC℃	R	R	R	Ν	R	R	R	G	G	G	G	G	N	N	N
Bromine-82	008, 0013/GB013;SC	Ν	G	G	G	G	G	G	G	G	G	G	G	G	N	Ν
Bromine-85	013/GB0	Ν	N	N	N	N	N	N	Ν	G	N	N	N	N	N	Ν
Krypton-85	EXT	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Rubidium-83	SC	N	N	N	N	N	N	N	N	N	N	N	N	N	N	G
Rubidium-84	SC	Ν	N	N	N	N	N	Ν	Ν	Ν	G	G	N	N	N	G
Rubidium-86	013/GB0:SC	G	G	G	N	G	G	G	G	G	G	G	G	G	G	G
Rubidium-88	SC	N	N	N	N	N	N	N	N	N	G	N	N	N	N	N
Strontium-82	SC	Ν	N	N	N	N	N	N	Ν	N	N	N	N	N	N	N
Strontium-85	SR5: SC°	R	N	R	R	R	G	Y	G	G	G	G	G	Y	N	N
Strontium-87m	SC°	N	N	N	N	N	R	N	N	N	G	N	N	N	N	N
Strontium-89	SR0:SR9: 013/GB0:	G	G	G	N	G	G	G	G	G	N	G	G	G	G	G
Strontium-90	SR0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Yttrium-86	SC	N	N	N	N	N	N	N	N	N	G	N	N	N	G	N
Yttrium-88	000(Y-88); 013/GB0; FU0;SC	N	N	G	G	N	N	G	G	G	N	G	N	N	N	N
Yttrium-90	000(Y-90); FU0	Ν	G	G	G	G	G	G	G	G	G	G	G	G	Y	N
Yttrium-91	013/GB0; FU0	G	G	G	N	G	G	G	G	G	G	G	G	G	Y	G
Zirconium-95	000(Zr-95)005; 013/GB0;SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Zirconium-97	SC	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	N
Niobium-90	013/GB0	Ν	N	G	N	Ν	N	Ν	Ν	Ν	Ν	N	N	Ν	N	N
Niobium-92	SC	Ν	N	Ν	Ν	Ν	N	Ν	Ν	G	N	N	N	Ν	N	N
Niobium-92m	SC	Ν	N	N	N	Ν	N	N	Ν	N	N	N	N	G	N	N
Niobium-95	000(Nb-95); 005; 013/GB0;SC	G	G	G	N	G	G	G	G	G	G	G	G	G	G	G
Molybdenum-93	(c)	N	N	R	N	N	N	N	R	N	N	N	N	N	N	N
Molybdenum-99	013/GB0;SC	Ν	N	G	N	G	G	G	G	G	G	G	G	G	G	G
Technetium 05m	012/080	N	N	0	0	N	N	N	N	N	NI	NI	N	<u> </u>	NI	NI

_ ... - -.. ~ 4000 (ı\ a _ ~

Nuclide Bioassay method code [®] 55 56 57 75 86 96 61 62 63 64 65 66 67 68 69 60 613(360) 75 756 757 756 75 757 756 757 756 757	Table 7-2. Results	ot teasibility analysis for 1	1955 to	<u> 1969 </u>	(conti	nued).	a											
Technelum-99 000(Tc-99):006; 013(GB0 G	Nuclide	Bioassay method code ^b	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	
Technetium-99m SC N	Technetium-99	000(Tc-99); 006;	G	G	G	N	G	G	G	G	G	G	G	G	Y	G	G	Ime
Iechnetum-99m SC N		013/GB0																Ĭ
Ruthenium-37 013/GB0 N	Technetium-99m	SC	N	N	N	N	N	N	N	N	N	N	N	G	N	G	N	
Ruthenium-103 000(Ru-103); SC° R R R R G G G G G G G G G G G G G G N	Ruthenium-97	013/GB0	N	N	N	N	G	G	N	G	N	N	N	N	N	N	N	
Ruthenium-105 013/GB0 N G N	Ruthenium-103	000(Ru-103); SC ^c	R	R	R	Ν	R	R	R	G	G	G	G	G	G	G	G	ž
Ruthenium-106 Q00(Ru-106): 013/GB0; G	Ruthenium-105	013/GB0	N	G	N	N	N	N	N	N	N	N	N	N	N	N	N	
Rhodum-102 013/GB0 N	Ruthenium-106	000(Ru-106); 013/GB0; RU6	G	G	G	N	G	G	G	G	G	G	G	G	G	G	G	
Palladium-103 (c) N N N N N R N N N R N	Rhodium-102	013/GB0	Ν	Ν	N	G	N	Ν	Ν	N	N	N	Ν	N	N	Ν	Ν	1 7
Palladium-109 013/GB0 N N G N G	Palladium-103	(c)	Ν	Ν	N	Ν	Ν	Ν	Ν	R	Ν	R	Ν	N	N	Ν	Ν	
Silver-110m 013/GB0/018;SC G G G N G <td>Palladium-109</td> <td>013/GB0</td> <td>Ν</td> <td>Ν</td> <td>G</td> <td>N</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>Y</td> <td>G</td> <td>G</td> <td>90 0 0 0 0</td>	Palladium-109	013/GB0	Ν	Ν	G	N	G	G	G	G	G	G	G	G	Y	G	G	90 0 0 0 0
Silver-111 013/GB0 N G G N G	Silver-110m	013/GB0;018;SC	G	G	G	N	G	G	G	G	G	G	G	G	N	N	Ν	Ō
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Silver-111	013/GB0	Ν	G	G	Ν	G	G	G	G	G	G	G	G	Y	G	G	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cadmium-109	000(Cd-109) ^c	Ν	N	R	R	Ν	R	R	Ν	R	R	R	R	N	N	Ν	1 _
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cadmium-115	013/GB0	G	G	N	N	Ν	G	N	G	G	G	G	G	N	Ν	Ν	T Re
Indium-111 SC N <th< td=""><td>Cadmium-115m</td><td>013/GB0</td><td>G</td><td>G</td><td>Ν</td><td>Ν</td><td>Ν</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>N</td><td>Ν</td><td>Ν</td><td>SI></td></th<>	Cadmium-115m	013/GB0	G	G	Ν	Ν	Ν	G	G	G	G	G	G	G	N	Ν	Ν	SI>
Indium-114 013/GB0 G	Indium-111	SC	N	N	N	N	N	N	N	N	N	N	N	N	N	Ν	G	ē
Indium-114m SC N <t< td=""><td>Indium-114</td><td>013/GB0</td><td>G</td><td>G</td><td>G</td><td>N</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>Y</td><td>G</td><td>G</td><td></td></t<>	Indium-114	013/GB0	G	G	G	N	G	G	G	G	G	G	G	G	Y	G	G	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Indium-114m	SC	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	
Tin-117m SC N	Tin-113	SC°	R	R	R	Ν	G	G	G	G	G	G	G	G	G	N	Ν	2
Tin-119m (c) N	Tin-117m	SC	N	Ν	N	Ν	N	N	N	N	N	N	N	N	N	N	Ν	
Antimony-122 013/GB0;SC N G N N G	Tin-119m	(c)	Ν	Ν	N	N	Ν	N	Ν	N	N	N	N	N	N	N	N	
Antimony-124 013/GB0;SC G	Antimony-122	013/GB0;SC	Ν	G	N	N	G	G	G	G	G	G	G	G	G	G	N	1 ¦∄
Antimony-125 013/GB0;015;SC G N </td <td>Antimony-124</td> <td>013/GB0;SC</td> <td>G</td> <td>G</td> <td>G</td> <td>N</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>N</td> <td>N</td> <td>ect</td>	Antimony-124	013/GB0;SC	G	G	G	N	G	G	G	G	G	G	G	G	G	N	N	ect
Tellurium-121 (c) N N R N	Antimony-125	013/GB0;015;SC	G	G	G	N	G	G	G	G	G	G	G	G	N	N	N	
Tellurium-132 SC N	Tellurium-121	(c)	N	N	R	Ν	N	N	N	N	N	N	N	N	N	N	N	
Iodine-123 TH N <th< td=""><td>Tellurium-132</td><td>ŚĆ</td><td>Ν</td><td>Ν</td><td>N</td><td>N</td><td>Ν</td><td>N</td><td>Ν</td><td>N</td><td>G</td><td>N</td><td>N</td><td>N</td><td>N</td><td>G</td><td>N</td><td>ate</td></th<>	Tellurium-132	ŚĆ	Ν	Ν	N	N	Ν	N	Ν	N	G	N	N	N	N	G	N	ate
Iodine-125 000(I-125); I25; TH° N N R N N R G G G G N	lodine-123	ТН	Ν	Ν	N	N	Ν	N	Ν	N	N	N	G	N	G	G	G	
Iodine-129 TH R R R R N R R R G <th< td=""><td>lodine-125</td><td>000(I-125): I25: TH°</td><td>N</td><td>Ν</td><td>R</td><td>N</td><td>N</td><td>N</td><td>R</td><td>G</td><td>G</td><td>G</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>3/1</td></th<>	lodine-125	000(I-125): I25: TH°	N	Ν	R	N	N	N	R	G	G	G	N	N	N	N	N	3/1
Iodine-130 TH° N N N N N N N R R G <t< td=""><td>lodine-129</td><td>TH</td><td>R</td><td>R</td><td>R</td><td>Ν</td><td>R</td><td>R</td><td>R</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>9</td></t<>	lodine-129	TH	R	R	R	Ν	R	R	R	G	G	G	G	G	G	G	G	9
Iodine-131 000(I-131); 011; I31; TH° R R R G Y Y G N	lodine-130	TH°	Ν	N	Ν	N	Ν	R	R	G	G	G	G	G	G	G	G	
Iodine-132 TH N <th< td=""><td>lodine-131</td><td>000(I-131): 011: I31: TH°</td><td>R</td><td>R</td><td>R</td><td>G</td><td>Y</td><td>Y</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>i i</td></th<>	lodine-131	000(I-131): 011: I31: TH°	R	R	R	G	Y	Y	G	G	G	G	G	G	G	G	G	i i
Iodine-133 TH° N <t< td=""><td>lodine-132</td><td>TH</td><td>Ν</td><td>Ν</td><td>Ν</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>G</td><td>G</td><td>G</td><td></td></t<>	lodine-132	TH	Ν	Ν	Ν	N	N	N	N	N	N	N	N	N	G	G	G	
Xenon-127 EXT N <th< td=""><td>lodine-133</td><td>TH°</td><td>N</td><td>Ν</td><td>N</td><td>N</td><td>N</td><td>N</td><td>R</td><td>Ν</td><td>N</td><td>N</td><td>N</td><td>N</td><td>G</td><td>G</td><td>N</td><td>L a</td></th<>	lodine-133	TH°	N	Ν	N	N	N	N	R	Ν	N	N	N	N	G	G	N	L a
Xenon-133 EXT N N N N N N G <th< td=""><td>Xenon-127</td><td>EXT</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>Ν</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>ge</td></th<>	Xenon-127	EXT	N	N	N	N	N	N	Ν	N	N	N	N	N	N	N	N	ge
Cesium-131 (c) N <t< td=""><td>Xenon-133</td><td>EXT</td><td>N</td><td>N</td><td>N</td><td>N</td><td>N</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>67</td></t<>	Xenon-133	EXT	N	N	N	N	N	G	G	G	G	G	G	G	G	G	G	67
Cesium-132 000(Cs-132); 012; SC N N N N N N N G N N N N N N N	Cesium-131	(c)	N	N	N	N	N	N	N	N	N	N	R	N	N	N	N	의
	Cesium-132	000(Cs-132): 012: SC	N	N	N	N	N	N	N	G	N	N	N	N	N	N	N	L 1
Cesium-134 013/GB0;SC G G G G G G G G N N N N	Cesium-134	013/GB0;SC	G	G	G	N	G	G	G	G	G	G	G	G	N	N	N	1 N

Table 7.2 Results of feasibility analysis for 1955 to 1969 (continued) a

Table 7-2. Results	of feasibility analysis for	1955 to	<u> 196</u> 9	(conti	nued).	a										
Nuclide	Bioassay method code ^b	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Cesium-137	CS7;CS0; SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Barium-131	SR0	G	G	G	N	G	G	G	G	G	G	G	G	G	G	G
Barium-133	SC℃	R	R	R	Ν	R	R	R	G	G	G	G	G	G	G	G
Barium-135m	SC	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν
Barium-140	014;SR0	G	G	G	N	G	G	G	G	G	G	G	G	G	G	N
Lanthanum-140	013;FU0;SC	G	G	G	N	G	G	G	G	G	G	G	G	N	N	N
Cerium-139	(c)	R	Ν	R	R	Ν	N	N	N	Ν	N	Ν	N	N	N	N
Cerium-141	013/GB0;FU0	G	G	G	N	G	G	G	G	G	G	G	G	N	Ν	Ν
Cerium-144	013/GB0;FU0;SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Praseodymium- 142	013/GB0;FU0	Ν	G	G	N	G	G	G	G	G	G	G	G	G	G	Ν
Praseodymium- 143	013/GB0;FU0	G	G	G	N	G	G	G	G	G	G	G	G	G	G	N
Praseodymium- 144	013/GB0;FU0	Ν	N	Ν	N	Ν	Ν	Ν	G	N	Ν	Ν	Ν	Ν	Ν	Ν
Neodymium-140	013/GB0	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	Ν	Ν	G
Neodymium-147	013/GB0;FU0	G	G	G	N	G	G	G	G	G	G	G	G	G	G	G
Neodymium-149	013/GB0;FU0	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν
Promethium-145	(c)	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	Ν	R	Ν
Promethium-146	013/GB0;FU0; SC	Ν	N	N	N	N	N	N	Ν	Ν	N	Ν	N	N	Ν	N
Promethium-147	000(Pm-147); 013/GB0;PM7; FU0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	N
Promethium-148	013/GB0;FU0; SC	Ν	N	N	N	N	N	N	N	N	N	Ν	N	N	N	N
Samarium-151	013/GB0;FU0;	Ν	N	N	Ν	N	Ν	Ν	Ν	Ν	N	Ν	N	Ν	G	G
Samarium-153	013/GB0;FU0	Ν	G	G	N	G	G	G	N	G	G	G	G	G	G	G
Europium-152	000(Eu-152); SC	Ν	N	N	N	N	N	N	G	N	N	Ν	N	N	G	N
Europium-155	000(Eu-155); 013;SC	G	G	G	N	G	G	G	G	G	G	G	G	G	G	N
Gadolinium-148	GA0	Ν	N	N	N	N	N	N	N	Ν	N	Ν	N	N	N	N
Gadolinium-153	000(Gd-153); GD0; SC	Ν	N	N	N	N	N	N	Ν	Ν	N	Ν	N	N	N	N
Terbium-156	SC°	Ν	N	N	R	Ν	N	N	Ν	Ν	N	Ν	N	G	G	N
Terbium-158	FU0	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν
Dysprosium-157	FU0	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν
Dysprosium-159	(c)	Ν	Ν	R	Ν	Ν	Ν	R	Ν	N	N	Ν	N	Ν	Ν	Ν
Dysprosium-166	FU0	Ν	Ν	N	Ν	Ν	Ν	Ν	N	N	N	G	N	Ν	Ν	Ν
Holmium-156	FU0; SC	Ν	Ν	N	Ν	Ν	Ν	Ν	N	N	N	G	N	Ν	Ν	Ν
Holmium-166	013/GB0	Ν	Ν	N	Ν	Ν	Ν	Ν	N	N	N	Ν	N	Ν	G	Ν
Erbium-171	013/GB0	Ν	Ν	N	Ν	Ν	Ν	Ν	N	N	N	Ν	N	Ν	Ν	Ν
Thulium-170	000(Tm-170);FU0	Ν	Ν	N	N	N	N	Ν	G	G	G	G	G	G	G	G
Thulium-171	FU0	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	G	N	N

Table 7-2. Results of feasibility analysis for 1955 to 1969 (continued).^a

Table 7-2. Results	of feasibility analysis for 1	1955 to	<u> 1969</u>	(conti	nued).	a			-		-			-	-		
Nuclide	Bioassay method code ^b	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	
Ytterbium-169	SC	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ν	l la
Hafnium-181	013/GB0	G	Ν	G	Ν	G	G	G	G	G	G	G	G	Y	G	G	ent
Tantalum-182	013/GB0;SC	G	G	G	Ν	G	G	G	G	G	G	G	G	G	G	G	z
Tungsten-181	(C)	Ν	Ν	R	R	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	
Tungsten-185	013/GB0	G	G	G	Ν	G	G	G	G	G	G	G	G	Y	G	G	R
Tungsten-187	013/GB0;SC	G	G	G	Ν	G	G	G	G	G	G	G	G	G	G	G	≥
Rhenium-186	013/GB0	Ν	Ν	G	Ν	G	G	G	G	G	G	G	G	Y	G	G	`
Osmium-185	SC°	Ν	Ν	R	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	N	Ν	짂
Osmium-191	013/GB0;SC	Ν	Ν	G	Ν	G	G	G	G	G	G	G	G	G	G	G	Ň
Iridium-192	000(Ir-192); 0013/GB0;SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	F-009
Iridium-194	013/GB0;SC	Ν	Ν	Ν	Ν	G	Ν	G	Ν	G	Ν	Ν	Ν	Ν	G	Ν	0
Platinum-195m	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Platinum-197	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	
Gold-195	(C)	Ν	Ν	Ν	Ν	Ν	Ν	R	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	2e
Gold-198	013/GB0; SC	G	Ν	G	G	G	G	G	G	G	G	G	G	Ν	Ν	Ν	-isi
Gold-199	013/GB0;SC	G	Ν	G	Ν	G	G	G	G	G	G	G	G	G	Ν	Ν	non
Mercury-197	SC°	Ν	Ν	R	R	R	R	R	G	G	G	G	G	Ν	Ν	Ν	Z
Mercury-203	013/GB0;SC	G	G	G	Ν	G	G	G	G	G	G	G	G	G	Ν	Ν	
Thallium-201	000(TI-201); SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	2
Thallium-204	013/GB0;016	G	G	G	G	G	G	G	G	G	G	G	G	Y	G	G	
Lead-203	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Bismuth-206	(C)	Ν	Ν	R	R	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Effe
Bismuth-207	013/GB0	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	čti
Bismuth-210	013/GB0	G	G	G	Ν	G	G	G	G	G	G	G	G	Y	G	G	₹e
Polonium-210	004;PO0; GU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	G	Ν	Ν	Ν	D
Thorium-228	GU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ate
Thorium-229	GF0;TF0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	0
Thorium-230	GF0;TF0	Ν	G	Ν	Ν	Ν	Ν	Ν	G	G	Ν	G	Ν	G	G	G	3/1
Thorium-232	GF0;TF0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	G	G	0 ²
Thorium-234	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	02
Protactinium-231	PF3;PA0	Ν	Ν	Ν	Ν	Ν	Ν	G	Y	Y	Ν	Y	Y	Ν	G	G	N
Protactinium-233	PA3, SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G	Ν	G	Ν	Ν	G	
Uranium-232	UR0	Ν	Ν	Ν	N	Ν	Ν	G	G	G	G	G	Ν	Ν	G	Ν	ac
Uranium-233	UR0	Ν	Ν	Ν	N	Ν	Ν	G	G	G	Ν	G	G	G	G	G	e
Uranium-234	UR0	Ν	G	Ν	N	Ν	Ν	G	G	G	Ν	G	G	G	G	G	<u> </u> 3
Uranium-235	UR0	G	G	G	N	Ν	Ν	G	G	G	Ν	G	G	G	G	G	윽
Uranium-236	UR0	G	G	Ν	Ν	Ν	Ν	G	G	G	Ν	G	G	G	G	G	13
Uranium-238	UR0	G	G	Ν	Ν	Ν	N	G	G	G	G	G	G	G	G	G	

Table 7-2 Results of feasibility analysis for 1955 to 1969 (continued) ^a

Nuclide	Bioassay method code ^b	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
Neptunium-236	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν
Neptunium-237	017;GU0;NP0;	G	G	G	Ν	G	Ν	G	G	Ν	G	G	Ν	G	G	Ν
Neptunium-238	013/GB0; SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G	Ν	Ν	Ν
Plutonium-236	PU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν
Plutonium-237	PU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Plutonium-238	GU0;PU0	Ν	Ν	Ν	Ν	Ν	Ν	G	G	G	Ν	G	Ν	Ν	G	G
Plutonium-239	GU0;PU9;PU0	G	G	Ν	Ν	Ν	Ν	G	G	G	G	G	G	G	G	G
Plutonium-240	GU0;PU0	Ν	Ν	Ν	Ν	Ν	Ν	G	G	G	G	G	G	Ν	G	G
Plutonium-241	000(Pu-241); PU1°	R	R	Ν	Ν	R	Ν	Ν	R	R	R	R	R	G	G	G
Plutonium-242	GU0;PU0	Ν	Ν	Ν	Ν	Ν	Ν	G	G	G	G	G	G	G	G	G
Plutonium-244	PU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν
Americium-241	000(Am-241);AM0; GUO;TP0	Ν	Ν	Ν	Ν	G	G	G	G	G	G	G	G	G	G	G
Americium-243	000(Am-243); TP0; GF0	Ν	Ν	Ν	Ν	N	N	G	G	G	G	G	G	G	G	G
Curium-242	000(Cm-242); GU0; TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G	G	G	G	Ν	G	Ν
Curium-243	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν
Curium-244	000(Cm-244); TP0;CM0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G	G	Ν	G	G	G	G
Curium-245	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G
Curium-246	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Curium-247	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G
Curium-248	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G
Berkelium-249	000(Bk-249); TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	G	Ν	G
Californium-248	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Californium-249	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G
Californium-250	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Californium-252	TP0; GU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	G	G	G
Californium-253	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Einsteinium-252	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Einsteinium-253	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G	G
Einsteinium-254	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Fermium-255	TP0	Ν	Ν	N	N	N	N	N	N	Ν	Ν	N	N	N	N	Ν
Fermium-257	TP0	Ν	N	N	N	N	N	N	N	N	N	N	N	N	G	G

Table 7-2. Results of feasibility analysis for 1955 to 1969 (continued).^a

a. See Section 7.1 for color coding.

b. Bioassay codes defined in Tables 4-1 and 4-2. EXT indicates exposure monitored by external dosimetry, SC indicates monitored by in vivo analysis, TH indicates monitored by in vivo thyroid counting.

c. See discussion in Section 7.2.

	Bioassay																			
Nuclide	method code ^b	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88
Hydrogen-3	HY3	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Beryllium-7	SC⁰	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Carbon-11	SC	Ν	Ν	Ν	Ν	Ν	G	Ν	G	Ν	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Carbon-14	000(C-14); 013/GB0;C14	G	G	G	G	Y	Y	Ν	Ν	Ν	Ν	Y	Y	G	Y	Ν	Υ	Ν	Ν	Ν
Sodium-22	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Sodium-24	013/GB0;004;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν
Magnesium-28	SC	G	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	G	G	Ν	Ν	G	G
Phosphorus-32	000(P-32); PH2	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Phosphorus-33	013/GB0	G	G	Y	G	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	G	Y	Y	Y	Ν
Sulfur-35	000(S-35);001	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Chlorine-36	000(CI-36); 013/GB0	G	G	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Chlorine-38	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Argon-37	EXT	G	G	Ν	G	G	G	G	G	G	G	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν
Potassium-40	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potassium-42	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Potassium-43	SC	Ν	G	Ν	G	G	G	G	G	G	Ν	G	G	Ν	G	Ν	Ν	Ν	Ν	Ν
Calcium-41	(C)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	R	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	R	Ν	Ν
Calcium-45	000(Ca-45); 013/GB0	Ν	Ν	Ν	Ν	Ν	Ζ	Ν	Ν	Ν	Ν	Ν	Ν	Z	Ν	Ν	Ν	Ν	Ν	Ν
Calcium-47	013/GB0;SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	Ν	Ν	Ν
Scandium-46	013/GB0; FU0; SC	G	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Scandium-49	013/GB0; FU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Titanium-44	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Vanadium-48	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Chromium-51	000(Cr-51); SC ^c	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Manganese-52	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Manganese-54	010;SC⁰	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Iron-55	000(Fe-55) ^c	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	R	R	R	G	Y	Y	Y	Ν	Ν
Iron-59	000(Fe-59); 013/GB0;009;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cobalt-56	SC	Ν	Ν	G	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cobalt-57	000(Co-57); SC ^c	Ν	Ν	G	G	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cobalt-58	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	N	N	Ν	Ν	N	Ν	Ν	Ν	N	N	Ν	Ν	N

Table 7-3 Results of feasibility analysis for 1070 to 1088 a

Document No. ORAUT-RPRT-0090	
Revision No. 01	
Effective Date: 03/10/2022	
Page 34 of 132	

Table 7.2 Populte	of foogibility	(on olygia	for 1070 to	1000	(continued) a
Table 7-5. Results	or reasionity	/ analysis	101 1970 10	1900	(continuea).~

Nuclido	Bioassay	70	71	72	72	74	75	76	77	79	70	90	Q1	97	92	94	95	96	97	00
		10	/1	12	15	/4	75	70	- 11	70	13	00	01	02	05	04	05	00	07	00
Coball-00	013/GB0·002·CO	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
	0;SC	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ
Nickel-63	013/GB0	G	G	Y	Ν	Ν	Ν	Ν	Ν	Y	Ν	Y	Ν	Ν	Ν	Ν	Y	Y	Y	Ν
Nickel-66	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν
Copper-64	013/GB0	Ν	Ν	Ν	Ν	Z	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν
Copper-67	SC	G	G	Ν	G	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Zinc-65	000(Zn-65); 013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Zinc-69m	013/GB0	Ν	Ν	Ν	G	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Gallium-67	000(Ga-67); SC ^c	G	G	G	G	G	G	G	G	G	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν
Gallium-68	SC	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Gallium-72	013/GB0; SC	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Arsenic-71	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Arsenic-72	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Arsenic-74	007; 013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Arsenic-76	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Arsenic-77	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Selenium-75	SC⁰	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	G	G	G	G	G	G	G	Ν	Ν
Bromine-82	008, 0013/GB013;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Bromine-85	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Krypton-85	EXT	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Rubidium-83	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Rubidium-84	SC	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Rubidium-86	013/GB0;SC	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Rubidium-88	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Strontium-82	SC	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Strontium-85	SR5; SC⁰	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν
Strontium-87m	SC°	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Strontium-89	SR0;SR9; 013/ GB0;	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν
Strontium-90	SR0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Yttrium-86	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Yttrium-88	000(Y-88); 013/GB0; FU0;SC	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν
Yttrium-90	000(Y-90); FU0	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Yttrium-91	013/GB0; FU0	G	G	G	G	G	G	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν

Document No. ORAUT-RPRT-0090 Revision No. 01 Effective Date: 03/10/2022 Page 35 of 132

	Bioassay	_									_									
Nuclide	method code ^D	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88
Zirconium-95	000(Zr-95)005; 013/GB0;SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	Ν
Zirconium-97	SC	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Niobium-90	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Niobium-92	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Niobium-92m	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Niobium-95	000(Nb-95); 005; 013/GB0;SC	G	G	G	G	G	G	G	G	G	G	G	G	Ν	G	G	G	Ν	Ν	Ν
Molybdenum-93	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Molybdenum-99	013/GB0;SC	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Technetium-95m	013/GB0;SC	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Technetium-99	000(Tc-99); 006; 013/GB0	G	Ν	Y	G	Y	Y	G	G	Y	G	Y	G	G	Y	G	Y	Y	Y	Y
Technetium-99m	SC	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Ruthenium-97	013/GB0	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Ruthenium-103	000(Ru-103); SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	Ν
Ruthenium-105	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Ruthenium-106	000(Ru-106); 013/GB0; RU6	G	G	G	G	G	Y	G	G	Y	G	G	G	G	G	G	G	Y	Y	Y
Rhodium-102	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Palladium-103	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Palladium-109	013/GB0	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Silver-110m	013/GB0;018;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Silver-111	013/GB0	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cadmium-109	000(Cd-109)°	Ν	Ν	R	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cadmium-115	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Cadmium-115m	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Indium-111	SC	G	G	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Indium-114	013/GB0	G	G	Y	G	Y	Y	Y	Y	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Indium-114m	SC	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Tin-113	SC⁰	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Tin-117m	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Tin-119m	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	R	Ν	Ν
Antimony-122	013/GB0;SC	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	N
Antimony-124	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Antimony-125	013/GB0;015;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Tellurium-121	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Tellurium-132	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν

Table 7-3. Results of feasibility analysis for 1970 to 1988 (continued).ª

Table 7-3. Results of feasibility analysis for 1970 to 1988 (continued).ª														Do							
	Bioassay																				- Cu
Nuclide	method code ^o	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	me
lodine-123	TH	G	N	N	N	N	N	Ν	N	N	Ν	N	N	N	N	N	N	N	N	Ν	nt
lodine-125	000(I-125); I25; TH⁰	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	No. (
lodine-129	TH	G	G	G	G	G	G	G	G	G	Y	Y	Y	Y	Y	Y	Y	G	G	G	R
lodine-130	TH⁰	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ě
lodine-131	000(I-131); 011; I31; TH⁰	G	G	G	G	G	G	G	Ν	G	Y	Y	Ν	Ν	Υ	N	Υ	G	N	G	JT-RF
lodine-132	TH	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ਸ਼ੁੱ
lodine-133	TH⁰	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Xenon-127	EXT	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	G	G	09
Xenon-133	EXT	G	G	G	G	G	G	G	Ν	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	0
Cesium-131	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Cesium-132	000(Cs-132); 012; SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Re
Cesium-134	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	SI-S
Cesium-137	CS7;CS0; SC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	i on
Barium-131	SR0	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	z
Barium-133	SC℃	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	0.
Barium-135m	SC	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	2
Barium-140	014;SR0	G	G	G	G	G	G	G	G	G	Ν	G	G	Ν	G	Ν	Ν	Ν	Ν	Ν	
Lanthanum-140	013;FU0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	
Cerium-139	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ffe
Cerium-141	013/GB0;FU0	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	čti
Cerium-144	013/GB0;FU0;SC	G	G	G	G	G	G	G	G	G	G	Ν	G	G	G	G	G	G	G	G	€
Praseodymium- 142	013/GB0;FU0	G	N	Ν	Ν	Ν	N	Ν	Ν	N	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Date
Praseodymium- 143	013/GB0;FU0	G	N	G	G	N	N	Ν	N	N	Ν	N	N	N	N	Ν	Ν	Ν	Ν	Ν	: 03/1
Praseodymium- 144	013/GB0;FU0	Ν	N	Ν	Ν	Ν	N	Ν	Ν	N	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	0/202
Neodymium-140	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	N	Ν	Ň
Neodymium-147	013/GB0;FU0	G	G	G	G	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Neodymium-149	013/GB0;FU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Pa
Promethium-145	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ge
Promethium-146	013/GB0;FU0; SC	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	36
Promethium-147	000(Pm-147); 013/GB0;PM7; FU0	G	G	G	G	G	G	G	G	G	Y	G	Y	Y	Y	G	G	Y	G	N	of 132

Table 7-3. Results of feasibility analysis for 1970 to 1988 (continued).^a
Document No. ORAUT-RPRT-0090	
Revision No. 01	
Effective Date: 03/10/2022	
Page 37 of 1:	

	Bioassay				,																
Nuclide	method code ^b	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	m
Promethium-148	013/GB0;FU0; SC	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ent
Samarium-151	013/GB0;FU0;	G	G	G	G	G	G	G	G	G	Y	G	Y	Y	Ν	G	G	Y	Y	Ν	Z
Samarium-153	013/GB0;FU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Europium-152	000(Eu-152); SC	Ν	Ν	Ν	Ν	G	G	Ν	Ν	G	G	G	G	Ν	Ν	G	G	Ν	Ν	G	R
Europium-155	000(Eu-155); 013;SC	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	AUT-
Gadolinium-148	GA0	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	고
Gadolinium-153	000(Gd-153); GD0; SC	Ν	G	Ν	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	PRT-0
Terbium-156	SC°	Ν	N	Ν	Ν	N	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν	60
Terbium-158	FU0	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	0
Dysprosium-157	FU0	Ν	N	Ν	Ν	N	G	Ν	Ν	N	Ν	N	Ν	Ν	N	Ν	N	Ν	Ν	Ν	
Dysprosium-159	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Dysprosium-166	FU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	ر e
Holmium-156	FU0; SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	<is< td=""></is<>
Holmium-166	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ion
Erbium-171	013/GB0	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Z
Thulium-170	000(Tm-170);FU0	G	G	Ν	Ν	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	0.
Thulium-171	FU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	2
Ytterbium-169	SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	
Hafnium-181	013/GB0	G	G	Y	G	Y	Y	Y	Y	Ν	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Tantalum-182	013/GB0;SC	G	G	G	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ff∈
Tungsten-181	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	€ct
Tungsten-185	013/GB0	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ive
Tungsten-187	013/GB0;SC	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	D
Rhenium-186	013/GB0	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	ate
Osmium-185	SC°	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	0
Osmium-191	013/GB0;SC	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	3/1
Iridium-192	000(lr-192); 0013/GB0;SC	G	G	Ν	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	0/202
Iridium-194	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ň
Platinum-195m	SC	Ν	Ν	G	G	G	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Platinum-197	SC	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Jac
Gold-195	(C)	Ν	N	Ν	Ν	N	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν	ge
Gold-198	013/GB0; SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	37
Gold-199	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	으
Mercury-197	SC℃	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	13
Mercury-203	013/GB0;SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N

Table 7-3. Results of feasibility analysis for 1970 to 1988 (continued).ª

Document No. ORAUT-RPRT-0090	
Revision No. 01	
Effective Date: 03/10/2022	
Page 38 of 132	

Nuclide	method code ^b	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87
Thallium-201	000(TI-201); SC	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Thallium-204	013/GB0;016	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Lead-203	SC	Ν	Ν	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Bismuth-206	(c)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Bismuth-207	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Bismuth-210	013/GB0	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Polonium-210	PO0; GU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Thorium-228	GU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Thorium-229	GF0;TF0	G	G	Ν	G	G	Ν	Ν	G	Ν	G	G	G	G	G	Y	Y	G	N
Thorium-230	GF0;TF0	G	G	G	G	G	G	G	Ν	G	G	G	G	G	G	Y	Y	G	Y
Thorium-232	GF0;TF0;	Ν	Ν	G	G	G	G	G	Ν	G	G	G	G	G	G	Y	Y	G	Y
Thorium-234	013/GB0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	N
Protactinium-231	PF3;PA0	Ν	Ν	Ν	Ν	N	Ν	Y	G	Y	Y	Y	Y	N	Ν	Y	Y	Y	N
Protactinium-233	PA3, SC	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Uranium-232	UR0	G	G	Ν	Ν	G	G	G	G	G	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N
Uranium-233	UR0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Uranium-234	UR0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Uranium-235	UR0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Uranium-236	UR0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Uranium-238	UR0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Neptunium-236	SC	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Neptunium-237	017:GU0:NP0:	G	Ν	G	Y	Y	Y	Y	Y	G	G	Y	Y	Y	Y	Y	Y	Y	Y
Neptunium-238	013/GB0: SC	N	Ν	N	Ν	N	Ν	Ν	Ν	N	N	N	Ν	Ν	Ν	Ν	Ν	Ν	N
Plutonium-236	PU0	G	Ν	Ν	G	N	G	Ν	Ν	Ν	Ν	N	G	N	Ν	G	N	G	N
Plutonium-237	PU0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	G	N
Plutonium-238	GU0:PU0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	G
Plutonium-239	GU0;PU9;PU0	G	G	G	Ν	G	G	G	G	G	G	G	G	G	G	G	G	Ν	G
Plutonium-240	GU0;PU0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	N
Plutonium-241	000(Pu-241); PU1º	G	G	G	G	G	Y	N	G	G	G	Y	G	G	G	G	G	Y	N
Plutonium-242	GU0;PU0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Plutonium-244	PU0	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	Ν	Ν	Ν	N
Americium-241	000(Am-241); AM0; GUO; TP0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Americium-243	000(Am-243); TP0	G	G	G	G	G	G	G	G	G	Ν	G	G	G	G	G	G	G	N
Curium-242	000(Cm-242); TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	N

Table 7-3. Results of feasibility analysis for 1970 to 1988 (continued).^a

87

88

Ν

Ν

Ν

Ν

Ν

Ν

Ν

Ν Υ

Υ

Ν

Ν Ν

Ν

Ν

G G

G

G

G

Ν Ν

Ν

Ν

Ν

G

G

G

Ν

G

Ν

G

G

Ν

Bioassay

able 7-3. Results of feasibility analysis for 1970 to 1988 (continued).																				
Nuclide	Bioassay method code ^b	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88
Curium-243	TP0	Ν	Ν	G	G	Ν	G	G	Ν	Ν	Ν	Ν	G	G	G	Ν	Ν	Ν	Ν	Ν
Curium-244	000(Cm-244); TP0;CM0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Curium-245	TP0	Ν	Ν	G	G	Z	Ν	Ν	Ν	Ν	Ν	Z	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν
Curium-246	TP0	G	G	Ν	G	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G
Curium-247	TP0	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Curium-248	TP0	G	G	G	G	G	G	G	G	G	G	G	Ν	G	G	G	Ν	G	Ν	G
Berkelium-249	000(Bk-249); TP0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Ν	G	Ν	G
Californium-248	TP0	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Californium-249	TP0	G	G	G	G	G	G	G	Ν	Ν	G	G	G	G	Ν	G	Ν	G	Ν	Ν
Californium-250	TP0	G	Ν	Ν	G	G	G	G	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Californium-252	TP0	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
Californium-253	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	Ν
Einsteinium-252	TP0	G	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Einsteinium-253	TP0	G	G	G	G	G	G	G	G	G	G	G	G	Ν	Ν	G	Ν	G	Ν	G
Einsteinium-254	TP0	Ν	Ν	G	G	G	Ν	Ν	Ν	Ν	Ν	G	Ν	G	Ν	G	Ν	Ν	Ν	G
Fermium-255	TP0	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	G	Ν	Ν	Ν	G
Fermium-257	TP0	G	G	G	G	G	G	G	G	N	Ν	G	Ν	N	Ν	G	Ν	G	Ν	G

11 1114 1000 / ... 1) 3

See Section 7.1 for color coding. a.

Bioassay codes defined in Tables 4-1 and 4-2. EXT indicates exposure monitored by external dosimetry, SC indicates monitored by in vitro analysis, TH indicates b. monitored by in vitro thyroid counting.

c. See discussion in Section 7.2.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 40 of 132

In the case of 34 of the 213 radionuclides (Table 7-4), the ORAU Team concluded that additional evaluations were necessary to determine if the nuclides represented an infeasibility from a monitoring perspective. Table 7-4 provides a summary of the radiological properties of these 34 radionuclides. An analysis and evaluation of the monitoring capability of 28 of these 34 radionuclides is provided in Section 7.2. Separate analyses for five of the remaining six (radioiodines) are provided in a separate document specifically targeting assignment of internal dose from radioiodine exposure. The one remaining (Pu-241) was processed and handled on the Y-12 campus. Because associated exposure would have occurred at the Y-12 campus further analysis will be included in a Y-12 specific evaluation.

			Decay	Photon	Electron
Nuclide	Production years	Half life	mode ^b	energy ^c (keV)	energy ^d (keV)
Beryllium-7	1955, 1957–1959, 1962, 1964, 1969	53.3 d	EC	49.3	0
Calcium-41	1977, 1986	1.4E5 yr	EC	0.4	2.3
Chromium-51	1955–1967, 1975	27.7 d	EC	32.5	3.8
Manganese-54	1955–1957, 1960, 1963–1965	312.5 d	EC	836	4.2
Iron-55	1955–1956, 1959–1966, 1980–1986	2.7 yr	EC	1.6	4.2
Cobalt-57	1955–1957, 1964, 1972–1976	270.9 d	EC	125.2	18.6
Gallium-67	1958–1959, 1969–1978, 1983	78.26 hr	EC	158	35.5
Selenium-75	1955–1957, 1959–1966, 1979–1986	119.8 d	EC	394.2	14.5
Strontium-85	1955, 1957–1967, 1970, 1986	64.84 d	EC	511.8	8.9
Strontium-87m	1960, 1964, 1970	2.8 hr	EC	320.3	66.9
Molybdenum-93	1957, 1962	3.5E3 yr	EC	10.6	5.5
Ruthenium-103	1955–1957, 1959–1986	39.28 d	EC	468.7	74.8
Palladium-103	1962, 1964	16.96 d	EC	14.4	5.8
Cadmium-109	1957–1958, 1960–1961, 1963–	464 d	EC	26.3	82.6
	1966, 1972				
Tin-113	1955–1957, 1959–1967, 1979	115.1 d	EC	22.8	6.3
Tin-119m	1986	293 d	IT	11.4	77.7
Tellurium-121	1957	17 d	EC	577.3	9.9
lodine-125	1957, 1961–1964	60.1 d	EC	42	19.3
Iodine-129	1955–1957, 1959–1988	1.57E7 yr	β–	24.6	63.8
lodine-130	1960–1972, 1985	12.36 hr	β–	2,138.5	297.2
lodine-131	1955–1976, 1978–1980, 1983,	8.04 d	β–	381.5	191.7
	1985–1986, 1988				
lodine-133	1961, 1967–1968, 1977	20.8 hr	β–	607.1	410.6
Cesium-131	1965	9.69 d	EC	22.8	6.5
Barium-133	1955–1957, 1959–1972	10.74 yr	EC	401.9	54.2
Cerium-139	1955, 1957–1958	137.66 d	EC	159.5	35.5
Promethium-145	1968	17.7 yr	EC	31	14
Terbium-156	1958, 1967–1968	5.34 d	EC	1,826	103.1
Dysprosium-159	1957, 1961	144.4 d	EC	45	12.8
Tungsten-181	1957–1958	121.2 d	EC	40.4	10.8
Osmium-185	1957, 1966	94 d	EC	718.9	19.2
Gold-195	1961	183 d	EC	84.6	50.7
Mercury-197	1957–1966	64.1 hr	EC	70	66.4
Bismuth-206	1957–1958	6.24 d	EC	3,278.1	135.8
Plutonium-241	1955–1956, 1959, 1962–1975, 1977–1986	14.4 yr	β–	0	5.2

Table 7-4. Thirty-four radionuclides identified as needing additional evaluation.^a

a. Radiological properties in this table are from Radiological Toolbox [Eckerman and Shoreen 2013].

b. EC = decay by electron capture, IT = decay by isomeric transition, β - = decay by beta emission.

c. Emitted photon and X-ray energy per transformation.

d. Emitted beta, conversion electron, and auger electron energy per transformation.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 41 of 132
------------------------------	-----------------	----------------------------	----------------

7.2 ADDITIONAL EVALUATION

As indicated in Table 7-5, below, 28 of the 34 radionuclides requiring additional evaluation all decay by either electron capture or isomeric transformation and generally have short half-lives (22 of the 28 have half-lives of less than 1 year).

Nuclide	DCF (Sv/Bq) ^a	DAC ^b (µCi/cm ³)
Beryllium-7	4.2E-10	1.2E-05
Calcium-41	2.5E-09	3.0E-06
Chromium-51	2.5E-10	1.6E-05
Manganese-54	7.3E-09	4.7E-07
Iron-55	7.5E-09	6.1E-07
Cobalt-57	3.7E-09	9.4E-07
Gallium-67	1.7E-09	2.0E-06
Selenium-75	7.5E-09	3.3E-07
Strontium-85	5.6E-09	8.8E-07
Strontium-87m	6.0E-10	1.6E-05
Molybdenum-93	2.8E-08	4.0E-07
Ruthenium-103	1.5E-08	2.6E-07
Palladium-103	1.7E-09	1.9E-06
Cadmium-109	2.3E-07	5.9E-08
Tin-113	1.3E-08	3.0E-07
Tin-119m	1.1E-08	3.8E-07
Tellurium-121	5.4E-09	1.1E-06
Cesium-131	7.5E-10	1.3E-05
Barium-133	9.6E-09	3.1E-07
Cerium-139	1.0E-08	4.0E-07
Promethium-145	4.1E-08	2.3E-07
Terbium-156	1.4E-08	4.0E-07
Dysprosium-159	2.6E-09	2.3E-06
Tungsten-181	4.4E-10	1.3E-05
Osmium-185	7.1E-09	4.0E-07
Gold-195	8.3E-09	4.7E-07
Mercury-197	3.6E-08	1.3E-07
Bismuth-206	2.4E-08	2.7E-07

Table 7-5. Derived air concentration values for
28 radionuclides requiring further evaluation.

a. Most limiting inhalation dose conversion factor (Sv/Bq) from ICRP Publication 68 [ICRP 1994].

b. Calculated derived air concentration (DAC) based on contemporary ICRP [1994] DCFs. Corresponds to the air concentration that, if breathed at the standard rate (1.2 m³/hr) for 2,000 hr/yr, will result in a dose equivalent of 5 rem.

Table 7-5 lists the limiting derived air concentration (DAC) values based on solubility for each of the 28 radionuclides under evaluation in this discussion. These values range from $1.6 \times 10^{-5} \,\mu\text{Ci/cm}^3$ (87m Sr) to $5.9 \times 10^{-8} \,\mu\text{Ci/cm}^3$ (109 Cd). For comparison purposes, before publication of National Bureau of Standards (NBS) Handbook 69 in 1961 the tolerance value for airborne beta/gamma activity in ORNL facilities was set at $1 \times 10^{-7} \,\mu\text{Ci/cm}^3$. Respiratory protection was required for entry above 10% of this limit ($1 \times 10^{-8} \,\mu\text{Ci/cm}^3$). By 1961, the maximum permissible concentration (MPC) concept within NBS Handbook 69 [NBS 1959] was adopted. The MPC for occupational exposure to unidentified beta/gamma emitters was set at $1 \times 10^{-9} \,\mu\text{Ci/cm}^3$ [Hart 1960] with trigger levels remaining at 0.1 MPC ($1 \times 10^{-10} \,\mu\text{Ci/cm}^3$) for general entry without respiratory protection [UCC 1961]. Information on the DAC values associated with the radionuclides shown in Table 7-5 along with the general standards in place at the time is provided to illustrate the culture around radiation safety at the time of production of

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 42 of 132
------------------------------	-----------------	----------------------------	----------------

these exotics. For example, pre NBS, the respiratory protection requirements were set at values less than the DACs for the nuclides shown in Table 7-5. Post NBS, the standard was even more protective than the DACs shown in Table 7-5.

An evaluation of the dosimetric consequences of each of the 28 radionuclides requiring further analysis was conducted. The committed dose to the maximally exposed organ from inhalation of 1 × 10⁻⁵ of the total annual inventory was computed for the year with the maximum recorded inventory (Table 7-6). The factor 1×10^{-5} was selected based on the guidance in NUREG-1400, which postulates that 1×10^{-6} times the material handled could serve as a reasonable estimate of the quantity that could be inhaled [Hickey et al. 1993]. A factor of 10 was added to ensure a conservative evaluation. The organ dose conversion factor (mrem/mCi) for the organ with the highest unit dose per intake was selected from ICRP [1994], as shown in the table. Although inventory quantities were not available for six radionuclides (⁹³Mo, ¹⁰³Pd, ¹³⁹Ce, ¹⁵⁶Tb, ¹⁸⁵Os, and ²⁰⁶Bi), dose consequences (50-year committed dose equivalent) from inhalation of a significant fraction of the annual inventory for the remainder range from 0.3 mrem to 1,464 mrem to the maximally exposed organ. It should be noted that the inventory quantity for ⁵⁵Fe in this calculation did not consider the inventory during 1980 through 1982, during which values were as high as 1×10^6 mCi (a factor of 1,600 higher than in previous years). The intake quantity calculated using the analysis method would predict an intake quantity of 0.1 Ci, which corresponds to an air activity of $4 \times 10^{-5} \mu$ Ci/ml. Exposure to this concentration of ⁵⁵Fe without detection by workplace monitoring controls does not seem credible, considering the fact that the manufacturing process for ⁵⁵Fe would also carry over a small percentage of ⁵⁹Fe (an easily detected beta/gamma emitter). The ORNL radioisotope production manual indicates that ⁵⁹Fe is produced by the same production mechanism as ⁵⁵Fe (irradiation of ⁵⁴Fe) and lists its presence at <5%.

As indicated in Section 4.2, ORNL had an active bioassay program from the earliest period under evaluation (1955) and routinely performed analyses for tritium, polonium, plutonium, radium, strontium, uranium, gross alpha, and gross beta. When necessary, additional methods were developed to meet emergent sampling needs. Such supplemental sampling was coded specifically to the analyte (codes 001–018, as defined in Table 4-1) or was given a more general "000" code (or 0F0 for fecal analysis).

Table 4-3 lists all of the analytes associated with the 1584 code "000" sample results that are known to exist (based on the ORNL bioassay database; [UT-Battelle 2013]). This listing is potentially incomplete because it is known that not all bioassay results were recorded into the bioassay database (see the discussion in Section 4.2). However, at one point bioassay analyses specific to eight of the 28 radionuclides under evaluation (⁵¹Cr, ⁵⁴Mn, ⁵⁵Fe, ⁵⁷Co, ⁶⁷Ga, ⁸⁵Sr, ¹⁰³Ru, and ¹⁰⁹Cd) were performed. Table 7-7 indicates the frequency of these samples.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 43 of 132
------------------------------	-----------------	----------------------------	----------------

	Maximum	Maximum		Dose to organ from annual
	annual	organ DCF ^a		inhalation of 1 × 10 ⁻⁵ time
Nuclide	inventory (mCi)	(mrem/mCi)	Organ ^a	inventory ^b (mrem)
Beryllium-7	533	1,554	Extrathoracic airways	8
Calcium-41	501	9,250	Bone surface	46
Chromium-51	46,225	925	Extrathoracic airways	428
Manganese-54	115	27,010	Extrathoracic airways	31
Iron-55	620°	27,750	Spleen	172
Cobalt-57	175	13,690	Lungs	24
Gallium-67	120	6,290	Extrathoracic airways	8
Selenium-75	2,160	27,750	Kidneys	599
Strontium-85	142	20,720	Extrathoracic airways	29
Strontium-87m	84	2,220	Extrathoracic airways	2
Molybdenum-93	(d)	103,600	Bone surface	(d)
Ruthenium-103	1,020	55,500	Lungs	566
Palladium-103	(d)	6,290	Extrathoracic airways	(d)
Cadmium-109	64	851,000	Kidneys	545
Tin-113	610	48,100	Lungs	293
Tin-119m	3,598	40,700	Lungs	1464
Tellurium-121	(d)	19,980	Extrathoracic airways	(d)
Cesium-131	25(e)	2,775	Extrathoracic airways	1
Barium-133	80	35,520	Bone surface	28
Cerium-139	(d)	37,000	Lungs	(d)
Promethium-145	32	151,700	Bone surface	49
Terbium-156	(d)	51,800	Extrathoracic airways	(d)
Dysprosium-159	60	9,620	Bone surface	6
Tungsten-181	18	1,628	Extrathoracic airways	0.3
Osmium-185	(d)	26,270	Extrathoracic airways	(d)
Gold-195	5.6	30,710	Lungs	2
Mercury-197	542	133,200	Lungs	722
Bismuth-206	(d)	88.800	Extrathoracic airways	(d)

Table 7-6. Dosimetric analysis of radionuclides.

a. DCFs are based on ICRP [1994], obtained from the Radiological Toolbox. While DCFs are provided for a multitude of individual organs, the highest value (along with the associated organ) is listed and was used in subsequent calculations.

b. The calculated values represents the 50-year committed dose to the organ listed based on an intake of 1E-05 times the listed inventory quantity.

c. Inventory quantities for 1980 to 1982 were not included in analysis.

d. No Inventory data are available for one or more years for these radionuclides.

e. Inventory data based on parent nuclide (Ba-131).

Table 7-7. Number of bloassay samples collected for code 000 analytes by year."													
Analytical													
method code													
(radionuclide)	Production years	1960	1964	1965	1968	1969	1970	1971	1973	1976	1978	1983	1987
000 (Cr)	1955–1967, 1975	NS	2	NS									
000 (Cr-51)	1955–1967, 1975	NS	1	NS	2	NS	NS	NS	NS	1	NS	NS	NS
010 (Mn-54)	1955–1957, 1960, 1963–1965	2	NS	1	NS	NS							
000 (Fe-55)	1955–1956, 1959–1966, 1980–1986	NS	5	NS									
000 (Co-57)	1955–1957, 1964, 1972–1976	NS	NS	2	NS								
000 (Ga-66/67)	1958–1959, 1969–1978, 1983	NS	NS	NS	NS	NS	5	NS	NS	NS	NS	NS	NS
000 (Ga-67)	1958–1959, 1969–1978, 1983	NS	NS	NS	2	NS	NS	1	NS	NS	NS	NS	NS
SR5 (Sr-85)	1955, 1957–1967, 1970, 1986	3	NS	8									
000 (Ru-103)	1955–1957, 1959–1986	NS	NS	2	NS								
000 (Ru-103/106)	1955–1957, 1959–1986	NS	NS	NS	NS	4	NS						
000 (Cd-109)	1957–1958, 1960–1961, 1963–1966, 1972	NS	1	NS	NS	NS	NS						

of bioggoody complex collected for code 000 applyton by year a N I. I. -

a. NS = No samples collected.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 45 of 132
------------------------------	-----------------	----------------------------	----------------

8.0 <u>SUMMARY</u>

ORNL isotope production involved a wide array of radioactive materials it termed *exotics*. NIOSH developed an ORNL radionuclide inventory by reviewing shipping records, sales reports, and selected logbooks. This inventory was compared to available bioassay data and available bioassay methods. This study did not evaluate if ORNL workers were properly monitored but rather if bioassay technology deficiencies existed that would result in improper monitoring.

The ORAU Team compared the available bioassay date from the ORNL internal monitoring database with the data provided by ORNL as contained within Energy Employee Occupational Illness Compensation Program Act claimant files. With the exception of gross beta analysis (results of which seem to be missing from the ORNL database between 1955 and 1959), the sample frequency in the ORNL and NOCTS datasets are comparable, although the NOCTS data files tend to be more complete. The results are consistent with the conclusion of the ORNL Internal Dosimetry staff that the database is incomplete and might be missing up to 25% of the bioassay samples [ORAUT 2013], albeit comparison between NOCTS and the ORNL database indicates a slightly lower value based on the qualitative evaluation in this document.

Exotics that ORNL HP could not readily detect by gross alpha or beta/gamma methods would have presented a particular monitoring challenge. This report identifies 28 radionuclides that might have presented such a monitoring challenge. Evaluation of the ORNL HP bioassay program confirmed the ability of ORNL Staff to develop specialized bioassay methods as needed to adapt to changing conditions and emergent situations. Although no monitoring evidence has been found for the 28 identified nuclides, it remains clear that ORNL Staff had the capability for developing methods had they become necessary. The combination of the inventory and radiological dose coefficients for these 28 radionuclides allowed the development of bounding potential intakes (see Table 7-6) for these radionuclides. These bounding intakes could be used as the basis for a plausible estimation of dose from these radionuclides.

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 46 of 132
------------------------------	-----------------	----------------------------	----------------

REFERENCES

Arthur DE [1962]. ORNL HP unclassified notebook A-2823. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Nuclear Company. [SRDB Ref ID: 193234]

Beauchamp EE, ed. [1963]. Isotopes Development Center progress report radioactive source development October 1962 - January 1963. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-TM-513, April 15. [SRDB Ref ID: 123029]

Brown PE, Davis DM, Henley LC [1957]. A current review of body fluid analysis, procedures, and method of reporting - January 1957. Memorandum to distribution. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. August 1. [SRDB Ref ID: 8544]

Burnett THJ [1948]. Report for radiation survey-monitoring section, week ending October 17, 1948. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Corporation. October 19. [SRDB Ref ID: 116212]

Burden J [1961]. ORNL HP unclassified notebook A-2413. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193243]

Burrell BC [1962a]. ORNL HP unclassified notebook A-2816. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193223]

Burrell BC [1962b]. ORNL HP unclassified notebook A-2883. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193224]

Burrell BC [1967]. ORNL HP unclassified notebook A-5033. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193226]

Butler AC [1962a]. ORNL HP unclassified notebook A-2619. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193244]

Butler AC [1962b]. ORNL HP unclassified notebook A-2792. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193246]

Butler AC [1967]. ORNL HP unclassified notebook A-5093. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193238]

Butler AC [1968]. ORNL HP unclassified notebook A-5371. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193261]

Butler AC [1969]. ORNL HP unclassified notebook A-5968. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193247]

Butler HM [1962]. ORNL HP unclassified notebook A-2779. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193253]

Butler TA [1962]. ORNL HP unclassified notebook A-2641. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193245]

Cain GC [1956]. ORNL HP unclassified notebook A-0830. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193259]

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 47 of 132

Carver M, Slater M [1994]. Architectural/historical assessment of the Oak Ridge National Laboratory, Oak Ridge Reservation, Anderson and Roane counties, Tennessee. Oak Ridge National Laboratory, Oak Ridge, TN: Martin Marietta Energy Systems. ORNL/M-3244, January. [SRDB Ref ID: 129205]

Clark RL [1963]. ORNL HP unclassified notebook A-3060. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193229]

Coleman RE [1963a]. ORNL HP unclassified notebook A-3287. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193230]

Coleman RE [1963b]. ORNL HP unclassified notebook A-3288. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193231]

Coleman RE [1963c]. ORNL HP unclassified notebook A-3291. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193232]

Coleman RE [1964]. ORNL HP unclassified notebook A-3498. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193233]

Davis DM, Warden AD [1954]. Review of urinalysis program. Memorandum to J.C. Hart. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Company. November 3. [SRDB Ref ID: 109515]

Davis JC [1961]. ORNL HP unclassified notebook A-2575. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193250]

Davis JC [1962]. ORNL HP unclassified notebook A-2811. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193251]

Eckerman KF, Sjoreen AL [2006]. Radiological Toolbox user's manual. Oak Ridge National Laboratory, Oak Ridge, TN: UT-Battelle. ORNL/TM-2004/27R1, August 31. [SRDB Ref ID: 151914]

Farabee LB [1946]. Procedure for the determination of plutonium in human urine. Clinton Laboratories, Oak Ridge, TN: Monsanto Chemical Company. August 27. [SRDB Ref ID: 114403]

Farabee LB [1947]. Procedure for the determination of plutonium in human urine. Clinton Laboratories, Oak Ridge, TN: AEC. MonH-218, April 11. [SRDB Ref ID: 116370]

Farabee LB [1948a]. Analysis of urine specimens for plutonium, uranium, and total beta activity. Memorandum to K.Z. Morgan et al. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide and Carbon Company. November 8. [SRDB Ref ID: 90617]

Farabee LB [1948b]. Analysis of urine and blood samples for radium. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide and Carbon Company. December 28. [SRDB Ref ID: 90616]

Farabee LB [1955]. Procedure for the radiochemical analysis of strontium and barium in human urine. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Company. ORNL-1932, September 8. [SRDB Ref ID: 121879]

Golden CA [1966]. ORNL HP unclassified notebook A-4612. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 194699]

Golden CA [1970]. ORNL HP unclassified notebook A-6181. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193248]

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 48 of 132

Guinn CR [1968]. ORNL HP unclassified notebook A-5594. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193227]

Guinn CR [1970]. ORNL HP unclassified notebook A-6154. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193228]

Hart JC [1950]. Procedure for collection of urine specimens. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide and Carbon Corporation. June 3. [SRDB Ref ID: 109788]

Hart JC [1960]. Applied health physics annual report for 1958. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-2777, November 11. [SRDB Ref ID: 21780]

Hart JC, ed. [1963]. Applied health physics annual report for 1962. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-3490, September 25. [SRDB Ref ID: 12093]

Hart JC, ed. [1964]. Applied health physics annual report for 1963. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-3665, August. [SRDB Ref ID: 12092]

Henley LC [1968]. Health physics and safety bio-assay procedures, CF 68-1-67. Memorandum to J. Schacter. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. March 27. [SRDB Ref ID: 114464]

Henley LC [1978]. Radiochemical procedures. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL/TM-6372, May. [SRDB Ref ID: 861]

Henley LC [no date]. Determination of protactinium in urine. Oak Ridge National Laboratory, Oak Ridge, TN. [SRDB Ref ID: 117385]

Hickey EE, Stoetzel GA, Strom DJ, Cicotte GR, Wiblin CM, McGuire SA [1993]. Air sampling in the workplace, final report. Washington, DC: U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. NUREG-1400, September. [SRDB Ref ID: 20129]

Hill G [1962a]. ORNL HP unclassified notebook A-2709. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193252]

Hill G [1962b]. ORNL HP unclassified notebook A-2907. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193254]

Hill G [1969]. ORNL HP unclassified notebook A-5947. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193255]

ICRP [1979]. ICRP 30 Part 1 - Limits for intakes of radionuclides by workers. ICRP Publication 30, Part I. Ann ICRP 2(3-4). [SRDB Ref ID: 29220]

ICRP [1983]. ICRP 38 - Radionuclide transformations energy and intensity of emissions. ICRP Publication 38. Ann ICRP *11–13*. [SRDB Ref ID: 190713]

ICRP [1994]. ICRP 68 - Dose coefficients for intakes of radionuclides by workers. ICRP Publication 68. Ann ICRP 24(4). [SRDB Ref ID: 22731]

Keny RE [1965]. ORNL HP unclassified notebook A-4062. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193249]

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 49 of 132

Miller CH [1965]. ORNL HP unclassified notebook A-3909. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193235]

Miller CH [1967]. ORNL HP unclassified notebook A-5128. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193236]

Miller CH [1969]. ORNL HP unclassified notebook A-5685. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193237]

Millspaugh RE [1963]. ORNL HP unclassified notebook A-3282. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193241]

Millspaugh RE [1964]. ORNL HP unclassified notebook A-3462. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193242]

MMES [1986]. The ORNL surplus facilities management program maintenance and surveillance plan for FY1984. Oak Ridge National Laboratory, Oak Ridge, TN: Martin Marietta Energy Systems. ORNL/TM-10268, October. [SRDB Ref ID: 32221]

MMES [1995]. Work plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory. Oak Ridge National Laboratory, Oak Ridge, TN: Martin Marietta Energy Systems. ORNL/ER-249/R1, May. [SRDB Ref ID: 31777]

Moore FL [1964]. ORNL HP unclassified notebook A-3470. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 136160]

Morgan KZ, Western F [1949]. Health physics division quarterly report for period ending February 28, 1949. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Corporation. ORNL-346, May 19. [SRDB Ref ID: 190572]

Morgan KZ, Western F [1950]. Health physics division quarterly progress report for period ending April 15, 1950. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide and Carbon Corporation. ORNL-695, May 26. [SRDB Ref ID: 10088]

Morgan KZ [1951]. Health physics division quarterly progress report for period ending July 20, 1951. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Company. ORNL-1086, November 6. [SRDB Ref ID: 10763]

Morgan KZ, Western F [1951]. Health physics division quarterly progress report for period ending April 20, 1951. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Company. ORNL-1004, May 31. [SRDB Ref ID: 10086]

Morgan KZ [1956]. Health physics division semiannual progress report for period ending July 31, 1956. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Nuclear Company. ORNL-2151, October 18. [SRDB Ref ID: 10783]

Morgan KZ [1961]. Health physics division annual progress report for period ending July 31, 1961. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-3189, October 24. [SRDB Ref ID: 11564]

Morgan KZ [1962]. Health physics division annual progress report for period ending July 31, 1962. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-3347, November 2. [SRDB Ref ID: 97551]

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 50 of 132
	-		

Morgan KZ, Snyder WS, Struxness EG [1964]. Health physics division annual progress report for period ending July 31, 1964. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-3697, October. [SRDB Ref ID: 11566]

Morgan KZ, Snyder WS, Struxness EG [1965]. Health physics division annual progress report for period ending July 31, 1965. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-3849, October. [SRDB Ref ID: 11567]

Morgan KZ, Snyder WS, Struxness EG [1966]. Health physics division annual progress report for period ending July 31, 1966. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4007, October. [SRDB Ref ID: 11561]

National Nuclear Data Center [no date]. Decay radiation results. Brookhaven National Laboratory, Upton, NY: Brookhaven Science Associates. Date accessed March 20, 2018. [SRDB Ref ID: 190574]

NBS [1959]. NBS Handbook 69 - Maximum permissible body burdens and maximum permissible concentrations of radionuclides in air or water for occupational exposure. Washington, DC: U.S. Department of Commerce, National Bureau of Standards. NBS Handbook 69, June 5. [SRDB Ref ID: 167853]

NIOSH [2012]. Special Exposure Cohort petition evaluation report petition SEC-00189 Rev. 0 Oak Ridge National Laboratory (X-10) qualified October 11, 2011. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. SEC-00189 Rev. 0, August 15. [SRDB Ref ID: 119537]

ORAU [no date]. ENSDF decay data in the MIRD (medical internal radiation dose) format for Br-85. Oak Ridge, TN: Oak Ridge Associated Universities. Date accessed March 20, 2018. [SRDB Ref ID: 190573]

ORAUT [2004]. Documented communication with [redacted] April 9, 2004 on ORNL TBD. Oak Ridge, TN: Oak Ridge Associated Universities Team. April 9. [SRDB Ref ID: 121048]

ORAUT [2013]. Documented communication SEC-00189 with [redacted] on ORNL July 9, 2013. Oak Ridge, TN: Oak Ridge Associated Universities Team. July 9. [SRDB Ref ID: 126994]

ORAUT [2022a]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Chemical Technology Division annual progress report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193354]

ORAUT [2022b]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Electronuclear Research Division annual progress report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193355]

ORAUT [2022c]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Isotope separations progress report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193356]

ORAUT [2022d]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Isotopes Development Center progress report curium program." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193357]

ORAUT [2022e]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Isotopes Development Center progress report fission products." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193358]

Document No. ONAOT-NENT-0030 NEVISIOIT NO. OT Lifective Date. 03/10/2023 Fage 31 01 1	Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 51 of 132
--	------------------------------	-----------------	----------------------------	----------------

ORAUT [2022f]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Isotopes Development Center progress report isotopes separations." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193359]

ORAUT [2022g]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Isotopes Development Center progress report reactor and cyclotron produced isotopes." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193360]

ORAUT [2022h]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Isotopes Development Center progress report target development." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193361]

ORAUT [2022i]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Isotopes Division quarterly report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193362]

ORAUT [2022j]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Isotopes Division research and development report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193363]

ORAUT [2022k]. ORAUT-RPRT-0090, Table 6-1 references for row titled "List of radioisotope customers with summary of radioisotope shipments." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193364]

ORAUT [2022I]. ORAUT-RPRT-0090, Table 6-1 references for row titled "ORNL status and progress report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193365]

ORAUT [2022m]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Quantity data on radioisotopes." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193366]

ORAUT [2022n]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Radioisotope cost-price study." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193367]

ORAUT [2022o]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Radioisotope Distribution Program progress report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193368]

ORAUT [2022p]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Radioisotope inventory." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193369]

ORAUT [2022q]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Radioisotope production and process development annual report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193370]

ORAUT [2022r]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Radioisotope Program (8000) progress report." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193371]

ORAUT [2022s]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Review of Radioisotopes Program." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193372]

ORAUT [2022t]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Stable isotope and heavy element inventories." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193373]

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 52 of 132

ORAUT [2022u]. ORAUT-RPRT-0090, Table 6-1 references for row titled "Transuranium Processing Plant semiannual report of production, status, and plan." Oak Ridge, TN: Oak Ridge Associated Universities Team. [SRDB Ref ID: 193374]

Poggenburg JK [1969]. ORNL HP unclassified notebook A-5901. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. October 8. [SRDB Ref ID: 193258]

Poggenburg JK [1972]. ORNL HP unclassified notebook A-6802. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. December 29. [SRDB Ref ID: 193256]

Poggenburg JK [1976]. ORNL HP unclassified notebook A-7748. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. April 5. [SRDB Ref ID: 193257]

Rupp AF [1968]. Isotopes Development Center newsletter for December 1967. Memorandum to A.M. Weinberg. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. January 10. [SRDB Ref ID: 122966]

Sillyman DL [1967]. ORNL HP unclassified notebook A-5092. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193239]

Thompson WE [1952]. Oak Ridge National Laboratory research and radioisotope production. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Company. January. [SRDB Ref ID: 79521]

Tompkins PC, Farabee LB, Khym JX [1949]. Biology division procedure for the radiochemical analysis of barium, strontium and the rare earths in human urine. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Corporation. ORNL-368, August 10. [SRDB Ref ID: 112001]

UCC [1961]. Procedures and practices for radiation protection health physics manual. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 12323]

UCC [1965]. Applied health physics annual report for 1964. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-3820, June. [SRDB Ref ID: 12090]

UCC [1966]. Health physics and safety annual report for 1965. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-3969, July. [SRDB Ref ID: 12087]

UCC [1967]. Health physics and safety annual report for 1966. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4146, August. [SRDB Ref ID: 11558]

UCC [1968]. Health physics and safety annual report for 1967. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4286, August. [SRDB Ref ID: 12072]

UCC [1969]. Applied health physics and safety annual report for 1968. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4423, July. [SRDB Ref ID: 12069]

UCC [1970]. Applied health physics and safety annual report for 1969. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4563, August. [SRDB Ref ID: 12066]

UCC [1971]. Applied health physics and safety annual report for 1970. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4690, August. [SRDB Ref ID: 12061]

UCC [1972]. Applied health physics and safety annual report for 1971. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4795, June. [SRDB Ref ID: 22548]

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 53 of 132

UCC [1973]. Applied health physics and safety annual report for 1972. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4894, September. [SRDB Ref ID: 22549]

UCC [1974]. Applied health physics and safety annual report for 1973. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-4974, August. [SRDB Ref ID: 13226]

UCC [1975]. Applied health physics and safety annual report for 1974. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5055, August. [SRDB Ref ID: 11555]

UCC [1976]. Applied health physics and safety annual report for 1975. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5169, August. [SRDB Ref ID: 13227]

UCC [1977]. Applied health physics and safety annual report for 1976. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5310, August. [SRDB Ref ID: 13228]

UCC [1978]. Industrial safety and applied health physics annual report for 1977. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5420, June. [SRDB Ref ID: 22550]

UCC [1979]. Industrial safety and applied health physics annual report for 1978. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5543, September. [SRDB Ref ID: 22551]

UCC [1980]. Industrial safety and applied health physics annual report for 1979. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5663, September. [SRDB Ref ID: 13229]

UCC [1981]. Industrial safety and applied health physics annual report for 1980. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5821, November. [SRDB Ref ID: 22552]

UCC [1982]. Industrial Safety and Applied Health Physics Division annual report for 1981. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5859, August. [SRDB Ref ID: 13224]

UCC [1983]. Industrial Safety and Applied Health Physics Division annual report for 1982. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. ORNL-5962, December. [SRDB Ref ID: 13231]

UT-Battelle [2012]. Oak Ridge National Laboratory incidents database. Spreadsheet. Oak Ridge National Laboratory, Oak Ridge, TN. [SRDB Ref ID: 107042]

UT-Battelle [2013]. ORNL complete bioassay database. Database. Oak Ridge National Laboratory, Oak Ridge, TN. [SRDB Ref ID: 126306]

Wallace KM [1966]. ORNL HP unclassified notebook A-4608. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193240]

Walters BJ [1965]. ORNL HP unclassified notebook A-3638. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193225]

Warden AD [1954]. Request for urine specimen. Memorandum. Oak Ridge National Laboratory, Oak Ridge, TN: Carbide and Carbon Chemicals Company. March 17. [SRDB Ref ID: 109886]

Document No. ORAUT-RPRT-0090	Revision No. 01	Effective Date: 03/10/2023	Page 54 of 132

Warden AD [1956]. ORNL HP unclassified notebook A-0901. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide Corporation. [SRDB Ref ID: 193260]

Watts JR, Barber JM, Biggerstaff JA, Rao GR [1995]. In vivo monitoring technical basis document. Oak Ridge National Laboratory, Oak Ridge, TN: Martin Marietta Energy Systems. TB/IDG/WBCL-95-R0 Rev. 0, August 30. [SRDB Ref ID: 11500]

Western F [1950]. Routine urine analysis for tritium. Letter to J.E. Rose, Argonne National Laboratory. Oak Ridge National Laboratory, Oak Ridge, TN: Union Carbide and Carbon Company. May 18. [SRDB Ref ID: 114409]

ATTACHMENT A SUMMARY OF IN VITRO BIOASSAY METHODS

TABLE OF CONTENTS

SECTION

<u>TITLE</u>

PAGE

A.1	Gross	Analysis Methods	
	A.1.1	Gross Alpha	
	A.1.2	Gross Beta	
	A.1.3	Fission Products	
	A.1.4	Rare Earth	
	A.1.5	Transplutonium	57
A.2	Eleme	ent-Specific Analysis Methods	58
	A.2.1	Barium	
	A.2.2	Cesium	
	A.2.3	Cobalt	
	A.2.4	Neptunium	
	A.2.5	Plutonium	
	A.2.6	Plutonium-241	
	A.2.7	Polonium	60
	A.2.8	Protactinium	
	A.2.9	Radium	
	A.2.10) Strontium	
	A 2 11	1 Thorium	61
	A 2 12	? Tritium	62
	A.2.13	3 Uranium	

A.1 GROSS ANALYSIS METHODS

A.1.1 Gross Alpha

The ORAU Team observed gross alpha bioassays in the dataset as far back as 1951, and found a 1957 procedure describing gross alpha urinalysis [Brown et al. 1957]. The method includes a bismuth phosphate lanthanum fluoride precipitation of the raw urine with the sample dried for alpha counting.

A 1978 gross alpha fecal method describes the following sequence: drying the fecal sample, treatment with an acid solution, separation using ion exchange resins, evaporation of the final product, and electrodepositing of the sample for alpha counting [Henley 1978].

A.1.2 Gross Beta

Gross beta bioassays were observed in the dataset from as far back as 1954, but reports indicate that gross beta urine measurements were performed as early as 1948.

The first instance of a basic procedure for gross beta urinalysis was indicated in a 1948 memorandum [Farabee 1948a]. During the procedure, a 50-mL urine sample was taken, the organic material was destroyed, the inorganic residue was deposited on a watch glass, and the total activity was determined. A note states that some of the activity may be due to potassium being present.

The first more-comprehensive procedure for gross beta urinalysis was issued in 1968 [Henley 1968]. This method was used to estimate the beta activity in urine exclusive of the naturally occurring ⁴⁰K. Two alternative methods were identified: (1) a precipitation using calcium phosphate, or (2) a nitric acid and hydrogen peroxide solution. Both methods involve transferring the precipitate to a beta-counting planchet, drying, and beta-counting.

Changes in the process occurred in 1978, based on either a precipitation using a nitric acid phosphoric acid solution or a nitric acid and ruthenium carrier solution. Both methods indicate transferring the precipitate to a beta-counting planchet, drying, and beta-counting [Henley 1978].

Note: Adjustment of results based on the beta emission energy for a specific radionuclide may be necessary when the emission energy for the suspected radionuclide is sufficiently different than the emission energy for the calibration source. Henley reported that gross beta counting systems were calibrated using Sr-90 [Henley 1978, p. 65].

A.1.3 Fission Products

Fission product bioassays were observed in the dataset from as far back as 1951, but reports indicate that a procedure for strontium urine measurements was in place as early as 1949 [Tompkins et al. 1949]. A total of 17 fission product urine samples were in the dataset through 1958. The ORAU Team found no official fission product procedure for this period, but it appears that a rare-earth and alkaline-earth procedure might have been used for fission products based on process knowledge of the target radionuclide; this procedure is discussed in the next section.

Note: Adjustment of results based on the beta emission energy for a specific radionuclide may be necessary when the emission energy for the suspected radionuclide is sufficiently different than the emission energy for the calibration source. Henley reported that gross beta counting systems were calibrated using Sr-90 [Henley 1978, p. 65].

A.1.4 <u>Rare Earth</u>

Rare-earth elements include the 15 lanthanides as well as scandium and yttrium. The lanthanides include cerium, dysprosium, erbium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, promethium, samarium, terbium, thulium, and ytterbium. Rare-earth bioassays were observed in the dataset as far back as 1951, but reports indicate that a procedure for rare-earth urine measurements was in place as early as 1949.

The first basic procedure for rare- and alkaline-earth element urinalysis was issued in 1949 [Tompkins et al. 1949]. The method describes a coprecipitation of the rare- and alkaline-earth elements with calcium phosphate from an alkaline solution, separation of the phosphoric acid from the cations by ion exchange, and finally a separation of barium, strontium, and rare-earth elements from calcium and magnesium by a chromate precipitation. The final precipitate was filtered on a medium porosity glass filter, dried, and counted in a standard beta/gamma counting chamber.

The ORAU Team observed changes in the process based on a procedure issued in 1968 [Henley 1968]. This method was based on a precipitation from an acid solution of ashed urine salts as the oxalate. The oxalate was oxidized using perchloric acid and sodium bromate. The precipitate was then transferred to a beta-counting planchet, dried, and beta-counted.

Rare-earth fecal (RF0) sampling was performed beginning as early as 1955. Seventy rare-earth fecal samples were in the dataset through 1972. No method could be identified.

Note: Adjustment of results based on the beta emission energy for a specific radionuclide may be necessary when the emission energy for the suspected radionuclide is sufficiently different than the emission energy for the calibration source. Henley reported that gross beta counting systems were calibrated using Sr-90 [Henley 1978, p. 65].

A.1.5 <u>Transplutonium</u>

Transplutonium urine bioassays were observed from as far back as 1958. The first procedure for transplutonium urinalysis was issued in 1968 [Henley 1968]. The method was improved by performing transplutonium separation using ion-exchange methods with neptunium elution using hydrochloric acid. The sample was then eluted, evaporated, and alpha-counted.

Two methods were identified from 1978 based on (1) extraction chromatography, or (2) bismuth phosphate ion exchange [Henley 1978]. Both methods involve transferring the precipitate to a stainless-steel counting disk, drying, and alpha-counting.

The extraction chromatography method used an extraction column to extract the actinide and lanthanide elements. The basic phosphate precipitate was eluted with a nitric acid and aluminum phosphate solution and passed through an extraction column. The solution was then transferred to a watch glass, dried, and alpha-counted.

The bismuth phosphate method uses a basic phosphate precipitate or a hydrochloric acid effluent from an ion exchange column. After the plutonium, uranium, neptunium, and protactinium were removed from the basic phosphate precipitate by ion exchange, the column effluent would contain any trivalent actinides. A rare-earth carrier and hydrofluoric acid were added. The precipitate was then transferred to a stainless-steel disk, dried, and alpha-counted.

The fecal sample method identified from 1978 involved drying the fecal sample, treatment with an acid solution, separation using ion exchange resins, evaporation of the final product, and deposit of the sample for alpha-counting [Henley 1978].

A.2 ELEMENT-SPECIFIC ANALYSIS METHODS

A.2.1 <u>Barium</u>

One barium-specific bioassay was observed in the dataset in 1961, but reports indicate that a procedure for barium and the rare-earth elements was in place as early as 1949 [Tompkins et al. 1949]. The method involved a coprecipitation of the rare- and alkaline-earth elements with calcium phosphate from an alkaline solution, separation of the phosphoric acid from the cations by ion exchange, and finally a separation of barium, strontium, and rare-earth elements from calcium and magnesium by a chromate precipitation. The final precipitate was filtered on a medium-porosity glass filter, dried, and counted in a standard beta/gamma counting chamber.

The ORAU Team observed that changes in the process occurred in 1955 based on ion exchange and the eluting of strontium and barium with nitric acid. The final precipitate was deposited to a counting dish, dried, and counted in a standard beta/gamma counting chamber. This method was used for both barium and strontium analysis [Farabee 1955; Brown et al. 1957].

Process improvements occurred in 1968 and again in 1978 based on ion exchange and the eluting of strontium and barium with nitric acid. The final precipitate was deposited to a counting dish, dried, and counted in a standard beta/gamma counting chamber. It was noted that this method was used for both ⁸⁹Sr and ⁹⁰Sr in urine. Residue was deposited, dried, and beta-counted in a low-background counter. If the presence of radiobarium and radium was suspected, identification could be made by spectral analysis [Henley 1968, 1978].

A.2.2 <u>Cesium</u>

Cesium bioassays were observed in the dataset from as far back as 1955, and reports indicate that a procedure for cesium urine measurements was in place as early as 1956 [Morgan 1956]. A total of 1,873 cesium urine samples are in the dataset through 1988. In this method, cesium (along with potassium) was precipitated from a dilute acid solution as a cobalt nitrite. This precipitate was dissolved in nitric acid and a cesium phosphotungstate precipitation separated the cesium from potassium. The cesium was finally precipitated for counting. The precipitate was then transferred to a counting planchet, dried, and beta-counted.

A 1968 report describes a method in which cesium (along with potassium) was precipitated from a dilute acid solution [Henley 1968]. A 1978 report describes a method in which cesium (along with potassium) was precipitated from a dilute acid solution as a cobalt nitrite [Henley 1978]. The 1978 method remained mostly the same as the 1968 method.

A.2.3 <u>Cobalt</u>

Cobalt bioassays were observed in the dataset from as far back as 1954. The first basic procedure for cobalt urinalysis was issued in 1968 [Henley 1968]. In concentrations of 6-molar HCl, cobalt ions formed a complex of sufficient strength to be absorbed by ion exchange resins. Then the cobalt was eluted with HCl, dried, and beta-counted. A 1978 report describes a cobalt urine method that was mostly the same as the 1968 method [Henley 1978].

A.2.4 <u>Neptunium</u>

Neptunium bioassays were observed from as far back as 1962. A total of 64 neptunium-specific urine samples were in the dataset through 1979, although neptunium might also have been measured using the gross alpha procedure.

The first procedure for neptunium urinalysis was issued in 1968 [Henley 1968]. The method was improved by performing neptunium separation using ion exchange methods with neptunium elution using HCI. The sample was then eluted, evaporated, electrodeposited, and alpha-counted.

The 1978 neptunium fecal method involved drying of the fecal sample, treatment with an acid solution, separation using ion exchange resins, evaporation of the final product, and electrodeposit of the sample for alpha-counting [Henley 1978].

Gross alpha fecal sampling was performed, possibly for neptunium, beginning as early as 1955.

A.2.5 <u>Plutonium</u>

The first procedure for plutonium urinalysis at ORNL was implemented in 1946. The method involved precipitating bismuth phosphate from urine, dissolving the precipitate, reprecipitating bismuth phosphate, oxidizing the organic matter, and finally precipitating LaF₃. The sample was then deposited on a platinum disk, dried, and alpha-counted [Farabee 1946].

In 1947, the method improved but remained mostly the same as the 1946 method [Farabee 1947].

In January 1957, a method was described that involved using a precipitation of calcium oxalate from urine, oxidation of the organic matter, and a final LaF_3 precipitation [Brown et al. 1957]. The sample was deposited on a platinum disk, dried, and alpha-counted.

In 1968, the method was improved by performing plutonium separation using ion exchange methods with plutonium elution using HCI [Henley 1968]. The sample was then eluted, evaporated, and electrodeposited for counting.

Plutonium-specific fecal sampling was performed beginning in 1968. The fecal sample method identified in 1978 involved drying the fecal sample, treatment with an acid solution, separation using ion exchange resins, evaporation of the final product, and electrodeposit of the sample for alpha-counting [Henley 1978].

A.2.6 <u>Plutonium-241</u>

The first basic procedure for ²⁴¹Pu urinalysis was issued in 1957 [Henley 1968]. This method was based on urine samples that were treated with HCI. The plutonium, neptunium, uranium, protactinium, and transplutonium elements were adsorbed on an anion exchange resin column. The plutonium was eluted from the column with HCI and transferred to a glass cylinder. Toluene was added to the sample and then counted for low-energy beta using a liquid scintillation counter.

Another report [Henley 1978] describes another method from 1978. This method was based on urine samples that were treated with HCI. The plutonium elements were adsorbed on an anion exchange resin column. The plutonium was eluted from the column with HCl and transferred to a glass cylinder.

Toluene was added to the sample and the counted for low-energy beta using a liquid scintillation counter. The method remained mostly the same as the 1968 method.

A.2.7 <u>Polonium</u>

The first basic procedure for polonium urinalysis was issued in 1957 [Brown et al. 1957]. This method was based on urine samples treated with HCl and the polonium plated onto clean copper disks suspended in the solution for 2 hours. Deposition of the polonium was done by electrolysis. The alpha activity was determined by counting both sides of the disks.

Another report describes a method in which polonium was quantitatively deposited on a nickel disk from HCI [Henley 1968]. The salt of the ashed urine sample was dissolved in a dichloric acid and a clean nickel disk was suspended in the solution for 2 hours. Deposition of the polonium was by electrolysis. The alpha activity was determined by counting both sides of the disks.

Another report [Henley 1978] describes a method in which the polonium was quantitatively deposited on a nickel disk from HCI. The salt of the ashed urine sample was dissolved in a dichloric acid and a clean nickel disk was suspended in the solution for 2 hours. Deposition of the polonium was by electrolysis. The alpha activity was determined by counting both sides of the disks. The method remained mostly the same as the 1968 method.

A.2.8 <u>Protactinium</u>

Protactinium bioassays were observed from as far back as 1962. From 1952 to 1975, 189 protactinium urine samples were in the dataset. Note that protactinium might also have been measured using the gross alpha procedure.

The initial method involved an extraction of niobium and protactinium from the raw urine using nitric and HCI solutions. A protactinium separation was performed using oxalic acid with the sample transferred to a stainless-steel planchet, dried, and beta-counted [Henley, no date].

Changes in the process occurred in 1968 [Henley 1968]. The method was improved by performing protactinium separation using ion exchange methods with protactinium elution using HCI. The sample was then eluted, evaporated, and alpha-counted.

Further changes in the process occurred in 1978 [Henley 1978]. The method included an extraction of niobium and protactinium from the raw urine using nitric and hydrochloric acid solutions. A protactinium separation was performed using oxalic acid with the sample then transferred to a stainless-steel planchet, dried, and beta-counted.

A.2.9 Radium

Radium bioassays were observed in the dataset from as far back as 1954, but reports indicate that a procedure for radium urine measurements was in place as early as 1948 [Farabee 1948b]. A total of 330 radium-in-urine samples were in the dataset from 1954 to 1987.

The first basic procedure for radium urinalysis was issued in 1948 [Farabee 1948b]. The referenced method, CH-3534, could not be found, but a beta/gamma counting of the decay products in the urine was performed at approximately 12 days of ingrowth, at which time the percent of progeny in equilibrium with radium and radon was 88.5%.

The first basic procedure for radium urinalysis found was issued in 1957. This method involved an extraction based on HCl and sulfuric acid solutions. The precipitate was then transferred to a lacquered platinum disk, dried, and counted. If the activity was found to be greater than 1 cpm, a count was performed at a 1- or 2-day interval to determine which isotope was present [Brown et al. 1957].

A.2.10 Strontium

Strontium bioassays were observed in the dataset from as far back as 1951, but reports indicate that a procedure for strontium urine measurements was in place as early as 1949 [Tompkins et al. 1949].

A report from April 15, 1950, indicates that an analysis procedure for strontium was in use [Morgan and Western 1950]. The report notes that the 1949 procedure was in use but recommended a change that would separate strontium from calcium and magnesium by a strontium nitrate precipitation using a nitric acid solution. The report noted that 18 samples had been assayed for strontium by using this procedure.

Another report, from July 20, 1951, indicates that an analysis procedure for strontium was in use [Morgan 1951]. The report notes that the procedure was lengthy and included the elements of barium, strontium, yttrium, lanthanum, and other rare earths.

Changes in the process occurred in 1955 based on ion exchange and the eluting of strontium and barium with nitric acid. The final precipitate was deposited to a counting dish, dried and counted in a standard beta/gamma counting chamber. This method was for both barium and strontium analysis [Farabee 1955; Brown et al. 1957].

Improvements in the process occurred in 1968 based on ion exchange and the eluting of strontium and barium with nitric acid. The final precipitate was deposited to a counting dish, dried, and counted in a standard beta/gamma counting chamber. It was noted that this method was for both ⁸⁹Sr and ⁹⁰Sr in urine. Residue was deposited, dried, and beta-counted in a low-background counter. If the presence of radiobarium and radium was suspected, identification could be made by spectral analysis [Henley 1968].

Fecal bioassays specific to ⁹⁰Sr were observed in the dataset from 1960. The fecal sample method identified in 1978 involved drying of the fecal sample, treatment with an acid solution, separation using ion exchange resins, evaporation of the final product, and deposition of the sample for beta-counting [Henley 1978].

A.2.11 <u>Thorium</u>

No thorium-specific fecal sampling was identified. However, gross alpha fecal sampling could have been performed for thorium beginning as early as 1955.

One thorium fecal sample method was identified in 1978 [Henley 1978]. It involved drying of the fecal sample, treatment with an acid solution, separation using ion exchange resins, evaporation of the final product, and electrodeposition of the sample for alpha-counting.

A.2.12 <u>Tritium</u>

Tritium urine bioassays were observed as far back as 1953. No early tritium method was identified, but it is thought that a procedure was used that was based on an Argonne National Laboratory method extant around 1950 [Western 1950].

The first procedure for tritium urinalysis was issued in 1968 [Henley 1968]. In this method, tritium samples were counted by liquid scintillation. Urine samples were analyzed by either distilling the sample and counting a portion of the distillate for tritium beta, or by adding the raw urine directly to the scintillation mix.

Another method for tritium urinalysis was issued in 1978 [Henley 1978]. The method remained mostly the same as the 1968 method.

A.2.13 <u>Uranium</u>

Uranium bioassays were observed from as far back as 1949. A total of 15,100 uranium urine samples were in the dataset from 1949 through 1988. Only basic information is available for the methods used from 1947 to 1949. In 1949, a procedure was developed that describes the separation and elution for uranium [Morgan and Western 1949]. The sample was transferred to a platinum plate, evaporated, and counted on a standard alpha counter. The overall recovery of 80% to 85% was typical for ²³³U. In 1951, improvements were be developed to minimize the time necessary to complete the procedure [Morgan and Western 1951].

In January 1957, a method using tributyl phosphate in hexane was in use [Brown et al. 1957]. In this method, the uranium was separated, transferred to a stainless-steel disk, dried, and alpha-counted.

In 1968, the method was improved by performing uranium separation using ion exchange methods with uranium elution using HCI [Henley 1968]. The sample was then eluted, evaporated, and electrodeposited for counting.

Gross alpha fecal sampling was performed for uranium beginning as early as 1955. The fecal sample method (from 1978) involved drying the fecal sample, treatment with an acid solution, separation using ion exchange resins, evaporation of the final product, and electrodeposition of the sample for alpha-counting [Henley 1978].

The following 179 radionuclides required no further analysis to determine there is no infeasibility in respect to ORNL's monitoring capabilities. Nuclear decay information was generally obtained from the ICRP Publication 38 [ICRP 1983] nuclear decay data contained within the Radiological Toolbox [Eckerman and Shoreen 2006]. Nuclear decay information for Br-85 and Es-252 were obtained from the National Nuclear Data Center (NuDat) dataset [National Nuclear Data Center, no date; ORAU 2000] as these radionuclides are not in ICRP Publication 38.

Americium-241

- Production years: 1959–1988
- Half-life: 432 yr
- Decay mode: α
- Progeny: Np-237
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,440	13.0%
alpha	5,490	84.7%
gamma	59.5	35.9%

• Bioassay method: transplutonium (TP0) in urine, GF0 (gross alpha fecal)

Americium-243

- Production years: 1961–1978, 1980–1986, 1988
- Half-life: 7,370 yr
- Decay mode: α
- Progeny: Np-239
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,230	11.0%
alpha	5,280	87.6%
gamma	74.7	68.2%

• Bioassay method: transplutonium (TP0) in urine and GF0 (gross alpha fecal)

Antimony-122

- Production years: 1956, 1959–1968, 1971, 1987
- Half-life: 2.7 d
- Decay mode: EC, β-

ATTACHMENT B

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	521	67.2%
beta	771	25.7%
gamma	564	70.7%

• Bioassay method: gross beta (013) then whole body counting

Antimony-124

- Production years: 1955–1957, 1959–1967
- Half-life: 60.2 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	194	52.2%
beta	918	22.4%
gamma	603	98.3%
gamma	723	10.8%
gamma	1,690	47.8%

• Bioassay method: gross beta (013) then whole body counting

Antimony-125

- Production years: 1955–1957, 1959–1966
- Half-life: 2.7 yr
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	24.9	13.4%
beta	34.7	17.9%
beta	86.9	40.4%
beta	215	13.6%
X-ray	27.5	26.6%
gamma	428	29.8%
gamma	463	10.6%
gamma	601	17.8%
gamma	636	11.3%

• Bioassay method: gross beta (013) then whole body counting, Sb-125 specific method (015) used in 1962 and 1963, radiation from daughter Te-125m

Argon-37

- Production years: 1955–1957, 1959–1971, 1973–1982
- Half-life: 35.04 d
- Decay mode: EC
- Progeny: stable
- Important energy emissions: NA
- Bioassay method: NA-noble gas: external monitoring is controlling for these materials

Arsenic-71

- Production years: 1960
- Half-life: 65.3 hr
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	352	28.0%
gamma	175	82.0%
gamma	511	56.7%

• Bioassay method: gross beta (013)

Arsenic-72

• Production years: 1960

- Half-life: 26 hr
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	1,120	64.2%
positron	1,530	16.3%
gamma	511	176.0%
gamma	834	79.5%

• Bioassay method: gross beta (013)

Arsenic-74

- Production years: 1957–1959, 1961, 1965
- Half-life: 17.77 d
- Decay mode: EC, β+, β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	243	15.4%
positron	408	26.0%
beta	531	18.6%
gamma	511	58.1%
gamma	596	59.4%
gamma	635	15.4%

• Bioassay method: gross beta (013) then whole body counting

Arsenic-76

- Production years: 1956–1957, 1959–1967
- Half-life: 25.9 hr
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	993	35.3%
beta	1,260	51.1%
gamma	559	45.0%

• Bioassay method: gross beta (013) then whole body counting

Arsenic-77

- Production years: 1956–1957, 1959–1966
- Half-life: 38.8 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	229	97%

• Bioassay method: gross beta (013 and GB0)

Barium-131

- Production years: 1955–1957, 1959–1971
- Half-life: 11.5 d
- Decay mode: EC
- Progeny: Cs-131
- Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	3.45	79.1%
A.E.	4.17	24.4%
I.C.	87.8	17.9%
gamma	216	19.7%
gamma	373	14.0%
gamma	496	46.8%

• Bioassay method: strontium (SR0)

Barium-135m

- Production years: 1970, 1986
- Half-life: 28.7 hr

ATTACHMENT B

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Decay mode: IT
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	231	59.9%
I.C.	262	11.3%
X-ray	31.8	15.5%
X-ray	32.2	28.9%
gamma	268	15.6%

• Bioassay method: in vivo counting

Barium-140

- Production years: 1955–1957, 1959–1968, 1970–1978, 1980–1981, 1983
- Half-life: 12.75 d
- Decay mode: β-
- Progeny: La-140
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	141	23.9%
beta	344	38.2%
beta	362	24.1%
I.C.	23.7	56.0%
I.C.	28.8	12.9%
gamma	30	14.1%
gamma	537	24.4%

• Bioassay method: strontium (SR0), Ba-140 specific method (014) used one time in 1961

Berkelium-249

- Production years: 1964, 1967, 1969–1984, 1986, 1988
- Half-life: 330 d
- Decay mode: SF, β -, α
- Progeny: Am-245

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	32.4	100%

• Bioassay method: transplutonium (TPO)

Bismuth-207

- Production years: 1957
- Half-life: 32.9 yr
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	10.4	16.1%
X-ray	73	21.8%
X-ray	75.3	36.6%
gamma	570	97.8%
gamma	1,060	74.6%

• Bioassay method: gross beta (013)

Bismuth-210

- Production years: 1955–1957, 1959–1970
- Half-life: 5.01 d
- Decay mode: β-
- Progeny: Po-210
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	389	100%

• Bioassay method: gross beta (013 and GB0)

Bromine-82

- Production years: 1956–1967
- Half-life: 35.3 hr
- Decay mode: β-

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	138	97.0%
gamma	554	70.8%
gamma	619	43.4%
gamma	698	28.5%
gamma	777	83.5%
gamma	828	24.0%
gamma	1,040	27.2%
gamma	1,320	26.5%
gamma	1,470	16.3%

Bioassay method: gross beta (013), Br-82/Br-83 (008) then whole body counting; Br-82 specific method used in 1960 and 1961

Bromine-85

- Production year: 1963
- Half-life: 2.9 min
- Decay mode: β-
- Progeny: Kr-85m
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	1,070	95.7%

• Bioassay method: gross beta

Cadmium-115

- Production years: 1955–1956, 1960, 1962–1966
- Half-life: 53.46 hr
- Decay mode: β-
- Progeny: In-115m
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	184	33.0%
beta	394	62.5%
gamma	528	27.5%

ATTACHMENT B

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Bioassay method: gross beta (013 and GB0), radiation from daughter In-115m.

Cadmium-115m

- Production years: 1955–1956, 1960–1966
- Half-life: 44.6 d
- Decay mode: β-
- Progeny: In-115
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	618	97%
gamma	934	2%

• Bioassay method: gross beta (013 and GB0), radiation from daughter In-115m

Calcium-45

- Production years: 1955–1966
- Half-life: 162.7 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	77.2	100%

• Bioassay method: gross beta (013 and GB0)

Calcium-47

- Production years: 1960–1984
- Half-life: 4.54 d
- Decay mode: β-
- Progeny: Sc-47
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	243	80.9%
beta	819	19.0%
gamma	1,300	74.6%

ATTACHMENT B

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Bioassay method: gross beta (013) then whole body counting, radiation from daughter Sc-47

Californium-248

- Production years: 1972
- Half-life: 334 d
- Decay mode: SF, α
- Progeny: Cm-244
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	6,220	19.6%
alpha	6,260	80.0%

• Bioassay method: transplutonium (TP0)

Californium-249

- Production years: 1968–1976, 1979–1982, 1984, 1986
- Half-life: 351 yr
- Decay mode: SF, α
- Progeny: Cm-245
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,810	82.4%
I.C.	31.0	13.6%
I.C.	35.8	10.5%
gamma	333	14.6%
gamma	388	66.0%

• Bioassay method: transplutonium (TP0)

Californium-250

- Production years: 1970, 1973–1976, 1980
- Half-life: 13.08 yr
- Decay mode: SF, α
- Progeny: Cm-246
• Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,990	15.0%
alpha	6,030	84.6%

• Bioassay method: transplutonium (TP0)

Californium-252

- Production years: 1962, 1967–1988
- Half-life: 2.638 yr
- Decay mode: SF, α
- Progeny: Cm-248
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	6,080	15.2%
alpha	6,120	81.5%
beta	1,280	19.2%

 Bioassay method: transplutonium (TP0) Gross Alpha (GU0), Cf-252 specific method 1989– 1992

Californium-253

- Production years: 1984
- Half-life: 17.81 d
- Decay mode: β-, α
- Progeny: Cm-249, Es-253
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	65.5	49.8%
beta	79.1	49.8%
A.E.	12.3	10.2%
I.C.	19.6	32.9%

• Bioassay method: transplutonium (TP0)

Carbon-11

- Production years: 1975, 1977, 1979–1980
- Half-life: 20.39 min

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	386	99.8%
gamma	511	200%

• Bioassay method: whole body counting

Carbon-14

- Production years: 1955–1975, 1980–1983, 1985
- Half-life: 5,700 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	49.5	100%

• Bioassay method: gross beta (013 and GB0), C-14 specific methods 1986–1992

Cerium-141

- Production years: 1955–1957, 1959–1966, 1970
- Half-life: 32.5 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	130	69.7%
beta	181	30.3%
I.C.	103	18.9%
gamma	145	48.3%

• Bioassay method: rare earths (FU0)

Cerium-144

• Production years: 1955–1979, 1981–1988

- Half-life: 284.9 d
- Decay mode: β-
- Progeny: Pr-144m, Pr-144
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	50.3	19.6%
beta	91.3	76.6%
gamma	134	11.1%

• Bioassay method: rare earths (FU0), whole body counting, Ce-144 specific method

Cesium-132

- Production years: 1962
- Half-life: 6.5 d
- Decay mode: EC
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
Gamma	668	97.5

• Bioassay method: nuclide specific method (012), whole body counting

Cesium-134

- Production years: 1955–1957, 1959–1966
- Half-life: 2.06 yr
- Decay mode: EC, β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	23.1	27.3%
beta	210	70.2%
gamma	569	15.4%
gamma	605	97.6%
gamma	796	85.5%

• Bioassay method: gross beta (013) then whole body counting

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Cesium-137

- Production years: 1955–1988
- Half-life: 30.16 yr
- Decay mode: β-
- Progeny: Ba-137m
- Important energy emissions:

E	mission type	Energy (keV)	Abundance
	beta	174	94.4%
	gammaª	662	100.0%
a.	See Comments	below.	

- Bioassay method: Cs-137 specific method (CS7) then whole body counting
- Comments: 662 keV gamma is from daughter Ba-137m

Chlorine-36

- Production years: 1955–1972
- Half-life: 3.01E5 yr
- Decay mode: EC, β+, β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	278	98.1%

• Bioassay method: gross beta (013 and GB0)

Chlorine-38

- Production years: 1956
- Half-life: 37.2 min
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	420	31.9%
beta	1,180	10.5%
beta	2,240	57.6%
gamma	1,640	31.9%
gamma	2,170	42.4%

• Bioassay method: gross beta (013); only production year in pre-existing SEC

Cobalt-56

- Production years: 1967, 1972, 1977
- Half-life: 77.2 d
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	631	18.1%
gamma	511	38.0%
gamma	847	99.9%
gamma	1,240	66.9%
gamma	1,770	15.5%
gamma	2,600	17.3%

• Bioassay method: whole body counting

Cobalt-58

- Production years: 1955–1957, 1959–1965
- Half-life: 70.86 d
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	201	14.9%
gamma	511	29.8%
gamma	811	99.5%

• Bioassay method: gross beta (013) then whole body counting

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Cobalt-60

- Production years: 1955–1988
- Half-life: 5.27 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	95.9	99.9%
gamma	1,170	99.9%
gamma	1,330	100.0%

 Bioassay method: gross beta (013) then whole body counting, Co-60-specific method used in 1962–1964

Copper-64

- Production years: 1955–1969, 1976
- Half-life: 12.7 hr
- Decay mode: EC, β+, β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	190	39.0%
positron	278	17.4%
gamma	511	34.8%

• Bioassay method: gross beta (013 and GB0)

Copper-67

- Production years: 1963–1964, 1967–1968, 1970–1971, 1973–1976
- Half-life: 61.83 hr
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	116	56.9%
beta	149	22.0%
beta	184	20.0%
I.C.	83.7	12.1%
gamma	93.3	16.1%
gamma	185	48.7%

• Bioassay method: whole body counting

Curium-242

- Production years: 1962–1966, 1968, 1986
- Half-life: 162.8 d
- Decay mode: SF, α
- Progeny: Pu-238
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	6,070	25.9%
alpha	6,110	74.1%

• Bioassay method: transplutonium (TP0)

Curium-243

- Production years: 1965, 1972–1973, 1975–1976, 1981–1983
- Half-life: 29.1 yr
- Decay mode: α, EC
- Progeny: Pu-239, Am-243

• Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,740	11.5%
alpha	5,790	72.6%
A.E.	10.7	28.2%
A.E.	14.2	14.6%
I.C.	106	23.3%
I.C.	155	17.5%
X-ray	18.4	13.8%
X-ray	100	14.7%
X-ray	104	23.3%
gamma	228	10.6%
gamma	278	14.0%

• Bioassay method: transplutonium (TP0)

Curium-244

- Production years: 1962–1964, 1966–1988
- Half-life: 18.1 yr
- Decay mode: SF, α
- Progeny: Pu-240
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,760	23.6%
alpha	5,800	76.4%

 Bioassay method: transplutonium (TP0), Cm-242/244 specific method (CM0) used in 1986– 1988

Curium-245

- Production years: 1969, 1972–1973, 1986
- Half-life: 8,500 yr
- Decay mode: α
- Progeny: Pu-241

• Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,362	92.9%
I.C.	52.6	44.6%
X-ray	18.4	11.1%
X-ray	100	21.6%
X-ray	104	34.2%

• Bioassay method: transplutonium (TP0)

Curium-246

- Production years: 1970–1971, 1973, 1977, 1988
- Half-life: 4,760 yr
- Decay mode: SF, α
- Progeny: Pu-242
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,340	17.8%
alpha	5,390	82.2%

• Bioassay method: transplutonium (TP0)

Curium-247

- Production years: 1969, 1972
- Half-life: 1.56E+07 yr
- Decay mode: α
- Progeny: Pu-243
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,870	71.0%
alpha	5,270	13.8%
gamma	402	72.0%

• Bioassay method: transplutonium (TP0)

Curium-248

- Production years: 1968–1980, 1982–1984, 1986, 1988
- Half-life: 3.48E+05 yr

- Decay mode: SF, α
- Progeny: Pu-244
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,030	16.5%
alpha	5,080	75.0%
beta	1,370	55.9%
gamma	1,100	12.2%

• Bioassay method: transplutonium (TP0)

Dysprosium-157

- Production years: 1975
- Half-life: 8.1 hr
- Decay mode: EC
- Progeny: Tb-157
- Important energy emissions:

Emission type	Energy (keV)	Abundance
X-ray	43.8	24.2%
X-ray	44.6	43.3%
gamma	326	92.0%

• Bioassay method: rare earth (FU0)

Dysprosium-166

- Production years: 1965, 1984
- Half-life: 81.6 hr
- Decay mode: β-
- Progeny: Ho-166
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	118	89.1%
I.C.	18.9	14.1%
I.C.	26.8	54.6%
I.C.	46.2	10.6%
X-ray	46.8	14.8%
X-ray	47.6	26.3%
gamma	82.5	13.8%

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Bioassay method: rare earth (FU0)

Einsteinium-252

- Production years: 1970
- Half-life: 471.7 d
- Decay mode: α, EC
- Progeny: Bk-248
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	6,562	10.6%
alpha	6,632	62.6%
A.E.	11.2	15.2%
X-ray	15.7	18.8%
gamma	139	11.7%
gamma	785	15.4%

• Bioassay method: gross alpha

Einsteinium-253

- Production years: 1967–1981, 1984, 1986, 1988
- Half-life: 20.47 d
- Decay mode: SF, α
- Progeny: Bk-249
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	6,630	89.8%

• Bioassay method: transplutonium (TP0)

Einsteinium-254

- Production years: 1972–1974, 1980, 1982, 1984, 1988
- Half-life: 275.7 d
- Decay mode: α
- Progeny: Bk-250

• Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	6,430	93.4%
A.E.	11.5	43.9%
A.E.	15.4	23.4%
I.C.	10.2	31.7%
I.C.	16.0	16.2%
I.C.	17.3	66.3%
I.C.	30.5	14.9%
I.C.	37.6	18.2%
X-ray	15.3	32.1%

• Bioassay method: transplutonium (TP0)

Erbium-171

- Production years: 1973
- Half-life: 7.52 hr
- Decay mode: β-
- Progeny: Tm-171
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	362	94.3%
I.C.	52.1	39.5%
gamma	112	20.5%
gamma	296	28.9%
gamma	308	64.4%

• Bioassay method: gross beta (Sr-90) (GB0) as production in years of pre-existing SEC

Europium-152

- Production years: 1962, 1968, 1974–1975, 1978–1981, 1984–1985, 1988
- Half-life: 13.53 yr
- Decay mode: β-, EC, β+
- Progeny: Au-152

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	222	13.8%
I.C.	74.9	19.4%
X-ray	40.2	38.3%
gamma	122	28.7%
gamma	344	26.6%
gamma	779	13.0%
gamma	964	14.6%
gamma	1,090	10.2%
gamma	1,110	13.7%
gamma	1,410	21.1%

• Bioassay method: whole body counting

Europium-155

- Production years: 1955–1957, 1959–1968, 1975
- Half-life: 4.76 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	39.2	46.7%
beta	44.6	24.8%
beta	70.2	17.5%
I.C.	36.2	11.1%
X-ray	43.1	11.8%
gamma	86.5	30.7%
gamma	105	21.2%

• Bioassay method: whole body counting

Fermium-255

- Production years: 1984, 1988
- Half-life: 20.07 hr
- Decay mode: α
- Progeny: Cf-251

• Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	7,020	92.5%
A.E.	11.4	36.2%
A.E.	15.4	19.4%
I.C.	17.9	16.0%
I.C.	19.7	31.2%
I.C.	24.8	11.6%
I.C.	32.4	20.4%
I.C.	56.2	20.1%
I.C.	61.5	13.5%
X-ray	15.7	30.1%
X-ray	20.7	15.2%

• Bioassay method: transplutonium (TP0)

Fermium-257

- Production years: 1968–1977, 1980, 1984, 1986, 1988
- Half-life: 100.5 d
- Decay mode: α
- Progeny: Cf-253
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	6,520	92.4%
A.E.	11.8	34.5%
A.E.	15.8	18.5%
I.C.	35.6	34.9%
I.C.	36.4	12.8%
I.C.	43.8	40.8%
I.C.	56.5	14.0%
I.C.	105	14.7%
X-ray	15.7	25.6%
X-ray	20.7	14.9%
X-ray	110	16.4%
X-ray	116	25.3%
gamma	241	11.0%

• Bioassay method: transplutonium (TP0)

Gadolinium-148

- Production years: 1970
- Half-life: 74.6 yr
- Decay mode: α

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	3,180	100%

• Bioassay method: gross alpha (GA0)

Gadolinium-153

- Production years: 1971, 1973–1988
- Half-life: 240.4 d
- Decay mode: EC
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	21.1	11.0%
I.C.	54.6	30.8%
X-ray	40.9	35.0%
X-ray	41.6	63.1%
X-ray	47.1	12.3%
gamma	97.4	29.0%
gamma	103	21.1%

• Bioassay method: rare earth (FU0) then whole body counting

Gallium-68

- Production years: 1971
- Half-life: 67.71 min
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	836	87.7%
gamma	511	178.0%

• Bioassay method: whole body counting

Gallium-72

• Production years: 1955, 1957, 1960–1970

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Half-life: 14.1 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	22.1	15.0%
beta	22.7	21.7%
beta	346	27.6%
beta	1,360	10.3%
gamma	630	24.8%
gamma	834	95.6%
gamma	2,200	25.9%
gamma	2,510	12.8%

• Bioassay method: gross beta (013 and GB0)

Gold-198

- Production years: 1955, 1957–1966
- Half-life: 2.7 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	314	99.0%
gamma	412	95.6%

• Bioassay method: gross beta (013 and GB0)

Gold-199

- Production years: 1955, 1957, 1959–1967
- Half-life: 3.14 d
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	67.2	21.5%
beta	82.3	72.0%
I.C.	144	10.1%
gamma	158	40.0%

• Bioassay method: gross beta (013) then whole body counting

Hafnium-181

- Production years: most years between 1955, 1957, 1959–1977, 1979–1980
- Half-life: 42.4 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	121	92.5%
I.C.	65.5	21.2%
I.C.	122	12.7%
I.C.	123	10.5%
X-ray	57.7	16.0%
gamma	133	43.3%
gamma	346	15.1%
gamma	482	80.5%

• Bioassay method: gross beta (013 and GB0) then whole body counting

Holmium-156

- Production years: 1965
- Half-life: 56 min
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	83.9	24.1%
gamma	138	51.1%
gamma	266	64.9%
gamma	366	14.3%
gamma	511	86.3%

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Bioassay method: rare earth (FU0)

Holmium-166

- Production years: 1968
- Half-life: 26.83 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	651	48.7%
beta	694	50.0%
I.C.	23.0	11.0%
I.C.	71.3	12.7%
I.C.	72.2	13.1%

• Bioassay method: 013 gross beta

Hydrogen-3

- Production years: 1955–1957, 1959–1988
- Half-life: 12.35 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	5.7	100%

• Bioassay method: HY3

Indium-111

- Production years: 1969–1971, 1973
- Half-life: 2.83 d
- Decay mode: EC
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	19.3	10.6%
X-ray	23.0	24.0%
X-ray	23.2	45.0%
gamma	171	90.7%
gamma	24.5	94.1%

• Bioassay method: whole body counting

Indium-114

- Production years: 1955–1957, 1959–1977, 1981
- Half Life: 71.9 s
- Decay mode: β-, EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	779	99.4%

• Bioassay method: gross beta (013)

Indium-114m

- Production years: 1975
- Half-life: 49.51 d
- Decay mode: EC, IT
- Progeny: In-114
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	162	39.8%
I.C.	186	16.0%
I.C.	187	12.8%
X-ray	24.2	18.3%
gamma	190	15.56%

• Bioassay method: whole body counter

lodine-123

• Production years: 1965, 1967–1970

- Half-life: 13.3 hr
- Decay mode: EC
- Progeny: Te-123m, Te-123
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	12.7	13.7%
X-ray	27.2	25.0%
X-ray	27.5	46.5%
gamma	159	83.3%

• Bioassay method: thyroid count

lodine-132

- Production years: 1967–1972
- Half-life: 2.3 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	242	12.9%
beta	422	18.7%
beta	608	12.5%
beta	841	18.9%
gamma	523	16.0%
gamma	630	13.3%
gamma	668	98.7%
gamma	773	75.6%
gamma	955	17.6%

• Bioassay method: thyroid count

Iridium-192

- Production years: 1955–1968, 1970–1971, 1973–1988
- Half-life: 73.8 d
- Decay mode: β-, EC
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	162	41.4%
beta	210	48.0%
gamma	296	28.7%
gamma	308	29.7%
gamma	317	82.7%
gamma	468	47.8%

• Bioassay method: gross beta (013) then whole body counting

Iridium-194

- Production years: 1959, 1961, 1963, 1968
- Half-life: 19.3 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	846	85.4%
gamma	328	13.1%

• Bioassay method: gross beta (013) then whole body counting

Iron-59

- Production years: 1955–1956, 1958–1967
- Half-life: 44.5 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	81	45.3%
beta	149	53.1%
gamma	1,100	56.5%
gamma	1,290	43.2%

• Bioassay method: gross beta (013 and GB0) then whole body counting, Fe-59 specific method (009) used between 1960 and 1964

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Krypton-85

- Production years: 1955–1988
- Half-life: 10.76 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions: NA

Emission type	Energy (keV)	Abundance
beta	252	99.6%
gamma	514	0.4%

• Bioassay method: NA-noble gas: external monitoring is controlling for these materials

Lanthanum-140

- Production years: 1955–1957, 1959–1966, 1987
- Half-life: 1.68 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	442	11.2%
beta	488	45.2%
beta	630	19.7%
gamma	329	20.3%
gamma	487	45.5%
gamma	816	23.3%
gamma	1,600	95.4%

• Bioassay method: rare earth (FU0) and whole body counting

Lead-203

- Production years: 1972–1973
- Half-life: 51.9 hr
- Decay mode: EC
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	10.1	17.6%
I.C.	193	13.6%
X-ray	71.1	25.8%
X-ray	73.1	43.5%
gamma	279	80.8%

• Bioassay method: whole body counting

Magnesium-28

- Production years: 1966, 1969–1970, 1977, 1983–1984, 1987–1988
- Half-life: 20.91 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	156	94.7%
I.C.	29.1	27.7%
gamma	401	36.6%
gamma	941	38.3%
gamma	1,340	52.6%

• Bioassay method: whole body counting

Manganese-52

- Production years: 1960
- Half-life: 5.59 d
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	242	29.7%
gamma	511	59.3%
gamma	744	90.0%
gamma	936	94.5%
gamma	1,430	100.0%

• Bioassay method: gross beta (013)

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Mercury-203

- Production years: 1955–1957, 1959–1967
- Half-life: 46.6 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	57.8	100.0%
I.C.	193	13.8%
gamma	279	81.5%

• Bioassay method: gross beta (013) then whole body counting

Molybdenum-99

- Production years: 1957, 1959–1971
- Half-life: 65.9 hr
- Decay mode: β-
- Progeny: Tc-99m, Tc-99
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	133	16.4%
beta	443	82.2%
gamma	740	12.13%

• Bioassay method: gross beta (013) then whole body counting

Neodymium-140

- Production years: 1969
- Half-life: 3.37 d
- Decay mode: EC
- Progeny: Pr-140

• Important energy emissions: emissions listed include Pr-140 progeny

Emission type	Energy (keV)	Abundance
X-ray	35.6	21.7%
X-ray	36.1	39.7%
Positron	1,070	51.0%

• Bioassay method: gross beta

Neodymium-147

- Production years: 1955–1957, 1959–1973, 1979
- Half-life: 10.98 d
- Decay mode: β-
- Progeny: Pm-147
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	106	15.3%
beta	264	80.9%
I.C.	45.9	49.2%
X-ray	38.2	13.3%
X-ray	38.8	24.1%
gamma	91.1	27.9%
gamma	531	13.1%

• Bioassay method: rare earth (FU0)

Neodymium-149

- Production years: 1979
- Half-life: 1.73 hr
- Decay mode: β-
- Progeny: Pm-149

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	355	18.6%
beta	403	21.0%
beta	515	17.1%
beta	541	24.1%
I.C.	69.1	17.6%
X-ray	38.8	16.9%
gamma	114	19.2%
gamma	211	25.9%
gamma	270	10.7%

• Bioassay method: rare earth (FU0)

Neptunium-236

- Production years: 1965
- Half-life: 154,000 yr
- Decay mode: EC, β-
- Progeny: Pu-236, U-236
- Important energy emissions: annihilation photons

Emission type	Energy (keV)	Abundance
beta	46.4	12.0%
A.E.	103	71.7%
A.E.	13.6	36.5%
I.C.	83.2	34.4%
I.C.	139	22.0%
X-ray	13.6	42.7%
X-ray	17.3	40.8%
X-ray	95.1	20.2%
X-ray	98.9	32.3%
gamma	160	31.5%

• Bioassay method: whole body counting

Neptunium-237

- Production years: 1955–1957, 1959, 1961–1962, 1964–1965, 1967–1968, 1970, 1972–1987
- Half-life: 2.144 E6 yr
- Decay mode: α
- Progeny: Pa-233

• Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,770	25.7%
alpha	4,790	48.3%
I.C.	36.7	27.3%
I.C.	40.4	22.9%
I.C.	52.9	14.1%
gamma	29.4	15.0%
gamma	86.5	12.4%

• Bioassay method: gross alpha (GU0) and neptunium (NP0), Np-237 (017)

Neptunium-238

- Production years: 1965–1966
- Half-life: 2.117 d
- Decay mode: β-
- Progeny: Pu-238
- Important energy emissions: annihilation photons

Emission type	Energy (keV)	Abundance
beta	72.2	44.8%
beta	412	41.0%
I.C.	21.7	30.9%
I.C.	26.0	26.5%
I.C.	39.5	16.3%
gamma	984	25.2%
gamma	1,030	18.3%

• Bioassay method: gross beta (013 and GB0)

Nickel-63

- Production years: most years 1955–1957, 1959–1972, 1978, 1980, 1985–1987
- Half-life: 100.1 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	17.4	100%

• Bioassay method: gross beta (013 and GB0)

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Nickel-66

- Production years: 1968
- Half-life: 54.6 hr
- Decay mode: β-
- Progeny: Cu-66
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	73.4	100%

• Bioassay method: gross beta (GB0)

Niobium-90

- Production years: 1957
- Half-life: 14.6 hr
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	662	53.7%
I.C.	123	18.0%
gamma	511	107.0%
gamma	1,130	92.7%
gamma	2,320	82.0%

• Bioassay method: gross beta (013)

Niobium-92

- Production years: 1963
- Half-life: 3.47 E+7 yr
- Decay mode: EC
- Progeny: stable
- Important energy emissions: annihilation photons

Emission type	Energy (keV)	Abundance
A.G.	13.3	16.4%
gamma	561	100.0%
gamma	935	100.0%

• Bioassay method: whole body counting

Niobium-92m

- Production years: 1967
- Half-life: 10.15 d
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	13.3	17.1%
gamma	934	99.1%

• Bioassay method: whole body counting

Niobium-95

- Production years: 1955–1957, 1959–1981, 1983–1985
- Half-life: 35 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	43.4	100.0%
gamma	766	99.8%

Bioassay method: gross beta (013), Nb-95 specific method (005 – Zn/Nb95), whole body counting

Osmium-191

- Production years: 1957, 1959–1970, 1984
- Half-life: 15.4 d
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	37.8	100.0%
I.C.	53.1	65.3%
X-ray	63.5	18.2%
X-ray	65.1	31.3%
gamma	129.42	29.0%

• Bioassay method: gross beta (013) and whole body counting

Palladium-109

- Production years: 1957, 1959–1971
- Half-life: 13.7 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	361	99.9%
I.C.	62.6	41.1%
I.C.	84.5	19.3%
I.C.	84.7	22.4%
X-ray	22.1	18.6%

• Bioassay method: gross beta (013 and GB0)

Phosphorus-32

- Production years: 1955–1967
- Half-life: 14.26 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	695	100%

• Bioassay method: P-32 specific method (PH2)

Phosphorus-33

• Production years: 1964–1965, 1967–1987

- Half-life: 25.3 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	76.4	100

• Bioassay method: gross beta (013 and GB0)

Platinum-195m

- Production years: 1972–1974, 1978
- Half-life: 4.02 d
- Decay mode: IT
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	116	17.5%
I.C.	118	40.1%
I.C.	127	19.6%
X-ray	65.3	22.7%
X-ray	67.0	38.8%
gamma	98.85	11.4%

• Bioassay method: whole body counting

Platinum-197

- Production years: 1965
- Half-life: 19.89 hr
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	198	81.2%
beta	225	10.6%
I.C.	63.0	30.7%
I.C.	63.6	14.1%
I.C.	65.4	10.5%
I.C.	74.6	13.5%
gamma	77.4	17.0%

• Bioassay method: whole body scan

Plutonium-236

- Production years: 1968, 1970, 1973, 1975, 1981, 1984, 1986
- Half-life: 2.86 yr
- Decay mode: SF, α
- Progeny: U-232
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,720	30.6%
alpha	5,770	69.3%
I.C.	26.5	11.9%
I.C.	30.4	10.4%

• Bioassay method: plutonium (PU0)

Plutonium-237

- Production years: 1984, 1986
- Half-life: 45.2 d
- Decay mode: α, EC
- Progeny: U-233, Np-237
- Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	10.4	28.3%
A.E.	13.9	14.6%
X-ray	97.5	12.4%
X-ray	102	19.8%

• Bioassay method: plutonium (PU0)

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Plutonium-238

- Production years: 1961–1963, 1965, 1968–1985, 1987–1988
- Half-life: 87.7 yr
- Decay mode: SF, α
- Progeny: U-234, Np-237
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,460	29.0%
alpha	5,500	70.9%
I.C.	22.5	10.9%

• Bioassay method: gross alpha (GU0), plutonium (PU0)

Plutonium-239

- Production years: 1955–1956, 1961–1972, 1974–1985, 1987–1988
- Half-life: 2.4E4 yr
- Decay mode: α
- Progeny: U-235
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,110	11.9%
alpha	5,140	17.1%
alpha	5,160	70.7%

• Bioassay method: gross alpha (GU0), Pu-239 specific method (PU9), plutonium (PU0)

Plutonium-240

- Production years: 1961–1966, 1968–1986, 1988
- Half-life: 6,564 yr
- Decay mode: SF, α
- Progeny: U-236
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,120	27.1%
alpha	5,170	72.8%
I.C.	24.2	10.3%

• Bioassay method: gross alpha (GU0) and plutonium (PU0)

Plutonium-242

- Production years: 1961–1988
- Half-life: 3.75E+05 yr
- Decay mode: SF, α
- Progeny: U-238
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,860	23.5%
alpha	4,900	76.5%

• Bioassay method: gross alpha (GU0) and plutonium (PU0)

Plutonium-244

- Production years: 1968, 1970–1982
- Half-life: 8.00 E7 yr
- Decay mode: SF, α
- Progeny: U-240
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,550	19.4%
alpha	4,590	80.5%

• Bioassay method: plutonium (PU0)

Polonium-210

- Production years: 1962, 1966
- Production method: β: Bi-210, EC: At-210, α: Rn-214
- Half-life: 138.4 d
- Decay mode: α

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,300	100%

• Bioassay method: gross alpha (GU0)

Potassium-40

- Production years: 1979
- Half-life: 1.25E9 yr
- Decay mode: β-, EC
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	585	89.1%
gamma	1,460	10.7%

• Bioassay method: whole body counting

Potassium-42

- Production years: 1955–1966
- Half-life: 12.36 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	824	17.6%
beta	1,570	81.9%
gamma	1,520	18.1%

• Bioassay method: gross beta (013) then whole body counting

Potassium-43

- Production years: 1964–1965, 1967, 1971, 1973–1978, 1980–1981, 1983
- Half-life: 22.3 hr
- Decay mode: β-

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	297	90.9%
gamma	373	86.8%
gamma	617	79.2%

• Bioassay method: whole body counting

Praseodymium-142

- Production years: 1956–1957, 1959–1968, 1970
- Half-life: 19.12 hr
- Decay mode: β-, EC
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	834	96.3%
gamma	1,580	3.68%

• Bioassay method: rare earth (FU0)

Praseodymium-143

- Production years: 1955–1957, 1959–1968, 1970, 1972–1973
- Half-life: 13.57 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	315	100%

• Bioassay method: rare earth (FU0)

Praseodymium-144

- Production years: 1962
- Half-life: 17.28 min
- Decay mode: β-
SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	1,220	97.9%

• Bioassay method: rare earth (FU0)

Promethium-146

- Production years: 1974
- Half-life: 5.53 yr
- Decay mode: β-, EC
- Progeny: Sm-146
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	260	31.9%
gamma	454	65.0%
gamma	736	22.5%
gamma	747	34.0%

• Bioassay method: rare earth (FU0), whole body counting

Promethium-147

- Production years: 1955–1968, 1970–1987
- Half-life: 2.46 yr
- Decay mode: β-
- Progeny: Sm-147
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	61.9	100%

• Bioassay method: rare earth (FU0), Pm-147 specific method (PM7) used in 1987

Promethium-148

- Production years: 1970
- Half-life: 5.37 d
- Decay mode: β-

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	341	33.3%
beta	976	55.5%
gamma	550	22.0%
gamma	915	11.5%
gamma	1,470	22.2%

• Bioassay method: rare earth (FU0), whole body counting

Protactinium-231

- Production years: 1961–1963, 1965–1966, 1968–1969, 1976–1981, 1984–1986
- Half-life: 3.28E4 yr
- Decay mode: α
- Progeny: Ac-227
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,950	23.0%
alpha	5,020	25.6%
alpha	5,030	20.2%
alpha	5,060	11.1%

• Bioassay method: protactinium (PA0) and Pa231/233 fecal (PF3)

Protactinium-233

- Production years: 1963–1964, 1966, 1969
- Half-life: 26.97 d
- Decay mode: β-
- Progeny: U-233
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	41.4	25.4%
beta	46.3	15.0%
beta	62.9	36.7%
beta	71.3	15.6%
I.C.	196	29.7%
gamma	312	38.6%

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Bioassay method: Pa-233 beta (PA3), whole body counting

Rhenium-186

- Production years: 1957, 1959–1972, 1979
- Half-life: 90.46 hr
- Decay mode: β-, EC
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	306	21.5%
beta	359	70.9%

• Bioassay method: gross beta (013)

Rhodium-102

- Production years: 1958
- Half-life: 207 d
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	413	20.0%
positron	576	11.3%
gamma	475	45.9%
gamma	511	30.8%

• Bioassay method: gross beta (013), whole body counting

Rubidium-83

- Production years: 1969
- Half-life: 86.2 d
- Decay mode: EC
- Progeny: Kr-83m

• Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	10.8	23.4%
gamma	520	44.7%
gamma	530	29.3%
gamma	553	16.0%

• Bioassay method: whole body counting

Rubidium-84

- Production years: 1964–1965, 1969, 1975
- Half-life: 32.77 d
- Decay mode: EC, β +, β -
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	339	14.0%
positron	75.7	13.1%
A.E.	10.8	16.3%
gamma	511	54.2%
gamma	882	69.0%

• Bioassay method: whole body counting

Rubidium-86

- Production years: 1955–1957, 1959–1972
- Half-life: 18.64 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	70.9	91.4%
gamma	1,080	9.0%

• Bioassay method: gross beta (013) then whole body counting

Rubidium-88

• Production years: 1964

- Half-life: 17.78 min
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	2,370	78.0%
gamma	898	14.0%
gamma	1,840	21.4%

• Bioassay method: whole body counting

Ruthenium-97

- Production years: 1959–1960, 1962, 1970
- Half-life: 2.9 d
- Decay mode: EC
- Progeny: Tc-97m
- Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	15.4	14.0%

• Bioassay method: gross beta (013)

Ruthenium-105

- Production years: 1956
- Half-life: 4.44 hr
- Decay mode: β-
- Progeny: Rh-105
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	397	18.8%
beta	405	16.9%
beta	431	47.8%
I.C.	107	14.4%
gamma	469	17.5%
gamma	676	15.7%
gamma	724	47.3%

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Bioassay method: gross beta (013)

Ruthenium-106

- Production years: 1955–1957, 1959–1988
- Half-life: 373.6 d
- Decay mode: β-
- Progeny: Rh-106
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	10.0	100%

• Bioassay method: Ru-106 specific method (RU6)

Samarium-151

- Production years: 1968–1982, 1984–1987
- Half-life: 90 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	19.8	99.1%

• Bioassay method: rare earth (FU0)

Samarium-153

- Production years: 1956–1957, 1959–1961, 1963–1969
- Half-life: 46.7 hr
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	200	32.2%
beta	225	49.6%
beta	264	17.5%
I.C.	21.1	22.1%
I.C.	54.6	43.4%
X-ray	40.9	17.9%
X-ray	41.6	32.2%
gamma	103	29.8%

• Bioassay method: rare earth (FU0)

Scandium-46

- Production years: 1955–1957, 1959–1973
- Half-life: 83.8 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	112	100%
gamma	889	100%
gamma	1,120	100%

• Bioassay method: rare earth (FU0)

Scandium-49

- Production years: 1955, 1965
- Half-life: 57.2 min
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	818	99.9%

• Bioassay method: rare earth (FU0)

Silver-110m

• Production years: 1955–1957, 1959–1966

- Half-life: 249.76 d
- Decay mode: IT, β-
- Progeny: Ag-110
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	21.6	66.9%
beta	165	30.1%
gamma	658	94.3%
gamma	885	72.7%
gamma	937	34.2%
gamma	1,380	24.9%

• Bioassay method: gross beta (013 and GB0)

Silver-111

- Production years: 1956–1957, 1959–1970
- Half-life: 7.45 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	364	91.7%

• Bioassay method: gross beta (013)

Sodium-22

- Production years: 1955–1956, 1961–1964
- Half-life: 2.6 yr
- Decay mode: EC, β+
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	215	89.8%
gamma	511	180.0%
gamma	1,270	99.9%

• Bioassay method: gross beta (013), whole body counting

Sodium-24

- Production years: 1955–1967
- Half-life: 14.96 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	554	99.9%
gamma	1,370	100.0%
gamma	2,750	99.9%

• Bioassay method: gross beta (013), Na-24 specific method used in 1960, whole body counting

Strontium-82

- Production years: 1970
- Half-life: 25.36 d
- Decay mode: EC
- Progeny: Rb-82
- Important energy emissions: emissions listed from Rb-82 progeny

Emission type	Energy (keV)	Abundance
Gamma	776	13%
Positron	1,520	83%

• Bioassay method: whole body counting

Strontium-89

- Production years: 1955–1957, 1959–1963, 1965–1987
- Half-life: 50.5 d
- Decay mode: β-

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	585	100%

• Bioassay method: strontium (SR0), Sr-89 specific urine method (SR9) beginning in 1960

Strontium-90

- Production years: 1955–1988
- Half-life: 28.79 yr
- Decay mode: β-
- Progeny: Y-90
- Important energy emissions:

Ε	mission type	Energy (keV)	Abundance
	beta	196	100%
	betaª	933	100%
~	Soo Commonte	bolow	•

a. See Comments below.

• Bioassay method: strontium (SR0)

Sulfur-35

- Production years: 1955–1969
- Half-life: 87.5 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	48.7	100%

• Bioassay method: S-35 specific method (001)

Tantalum-182

- Production years: 1955–1957, 1959–1972, 1974
- Half-life: 114.43 d
- Decay mode: β-

- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	73.2	29.5%
beta	129	20.7%
beta	158	40.0%
I.C.	88.5	16.6%
I.C.	89.9	14.9%
gamma	1,120	34.9%
gamma	1,190	16.2%
gamma	1,220	27.0%
gamma	1,230	11.4%

• Bioassay method: gross beta (013) then whole body counting

Technetium-95m

- Production years: 1957–1958, 1967, 1970
- Half-life: 61 d
- Decay mode: EC, β+, IT
- Progeny: Tc-95
- Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	14.7	14.5%
gamma	204	63.2%
gamma	582	30.0%
gamma	835	26.6%

• Bioassay method: gross beta (013) then whole body counting

Technetium-99

- Production years: 1955–1957, 1959–1970, 1972–1988
- Half-life: 2.11E5 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	101	100%

• Bioassay method: gross beta (013, GB0), Tc-99 specific method (006) beginning in 1960

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Technetium-99m

- Production years: 1966, 1968, 1970
- Half-life: 6.02 hr
- Decay mode: IT
- Progeny: Tc-99
- Important energy emissions:

Emission type	Energy (keV)	Abundance
gamma	141	89.1%

• Bioassay method: whole body counting

Tellurium-132

- Production years: 1963, 1968
- Half-life: 3.204 d
- Decay mode: β-
- Progeny: I-132
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	67.0	100.0%
I.C.	16.6	74.0%
gamma	228	88.0%

• Bioassay method: whole body counting

Terbium-158

- Production years: 1970
- Half-life: 180 yr
- Decay mode: β-, EC
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	275	15.5%
I.C.	29.2	23.2%
I.C.	71.6	16.2%
I.C.	72.3	17.6%
gamma	944	43.9%
gamma	962	20.3%

• Bioassay method: rare earth (FU0)

Thallium-201

- Production years: unknown quantity in 1975
- Half-life: 72.9 hr
- Decay mode: EC
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	84.1	15.6%
X-ray	69.1	27.4%
X-ray	71.1	46.4%
gamma	167	10.0%

• Bioassay method: whole body counting

Thallium-204

- Production years: 1955–1971
- Half-life: 3.78 yr
- Decay mode: EC, β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	244	97.1%

• Bioassay method: gross beta (013 and GB0)

Thorium-228

• Production years: 1962

- Half-life: 1.91 yr
- Decay mode: α
- Progeny: Ra-224
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,340	27.2%
alpha	5,420	72.1%
I.C.	65.8	10.7%

• Bioassay method: gross alpha (GU0)

Thorium-229

- Production years: 1968, 1970–1971, 1973–1974, 1977, 1979–1986, 1988
- Half-life: 7340 yr
- Decay mode: α
- Progeny: Ra-225
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,850	55.6%
alpha	4,900	10.1%
X-ray	85.8	15.3%
X-ray	88.9	25.1%

• Bioassay method: gross alpha and fecal monitoring (GF0, TF0)

Thorium-230

- Production years: 1956, 1962–1963, 1965, 1967–1976, 1978–1988
- Half-life: 75,380 yr
- Decay mode: α
- Progeny: Ra-226
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,620	23.4%
alpha	4,690	76.4%

• Bioassay method: gross alpha and fecal monitoring (GF0, TF0), Th-230

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Thorium-232

- Production years: 1963, 1968–1969, 1972–1976, 1978–1987
- Half-life: 1.4E10 yr
- Decay mode: α
- Progeny: Ra-228
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	3,950	21.7%
alpha	4,010	78.2%

• Bioassay method: gross alpha and fecal monitoring, (GF0, TF0)

Thorium-234

- Production years: 1981
- Half-life: 24.1 d
- Decay mode: β-
- Progeny: Pa-234m
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	26.7	19.2%
beta	52.4	70.3%
I.C.	71.3	10.8%

• Bioassay method: gross beta (GB0)

Thulium-170

- Production years: 1962–1971, 1974–1975
- Half-life: 128.6 d
- Decay mode: EC, β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	290	18.3%
beta	323	81.6%

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Bioassay method: rare earth (FU0)

Thulium-171

- Production years: 1967
- Half-life: 1.92 yr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	25.1	98%

• Bioassay method: rare earth (FU0)

Tin-117m

- Production years: 1977
- Half-life: 13.76 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	127	66.3%
I.C.	152	13.7%
I.C.	152	10.6%
gamma	159	86.4%

• Bioassay method: whole body counting

Titanium-44

- Production years: 1956, 1958
- Half-life: 60 yr
- Decay mode: EC
- Progeny: Sc-44

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Important energy emissions:

Emission type	Energy (keV)	Abundance
gamma	67.9	93.0%
gamma	78.4	96.4%

• Bioassay method: gross beta (013), radiation from daughter Sc-44

Tungsten-185

- Production years: 1955–1957, 1959–1971
- Half-life: 75.1 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	127	99.9%

• Bioassay method: gross beta (013 and GB0)

Tungsten-187

- Production years: 1955–1957, 1959–1970
- Half-life: 23.7 hr
- Decay mode: β-
- Progeny: Re-187
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	193	55.4%
beta	457	30.1%
I.C.	62.4	16.7%
gamma	480	21.8%
gamma	686	27.3%

• Bioassay method: gross beta (013), whole body counting

Uranium-232

- Production years: 1961–1965, 1968, 1970–1971, 1974–1979
- Half-life: 68.9 yr
- Decay mode: α

- Progeny: Th-228
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	5,260	31.5%
alpha	5,320	68.1%
I.C.	38.0	12.1%
I.C.	41.5	10.3%

• Bioassay method: uranium (UR0)

Uranium-233

- Production years: 1961–1963, 1965–1988
- Half-life: 1.59E5 yr
- Decay mode: α
- Progeny: U-233
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,780	13.2%
alpha	4,820	84.5%

• Bioassay method: uranium (UR0)

Uranium-234

- Production years: 1956, 1961–1963, 1965–1988
- Half-life: 2.45E5 yr
- Decay mode: α
- Progeny: Th-230
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,720	28.4%
alpha	4,780	71.4%
I.C.	33.4	11.0%

• Bioassay method: uranium (UR0)

Uranium-235

• Production years: 1955–1957, 1961–1963, 1965–1988

- Half-life: 7E8 yr
- Decay mode: α
- Progeny: Th-231
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,370	17.2%
alpha	4,400	55.6%
I.C.	15.6	44.2%
gamma	186	57.2%

• Bioassay method: uranium (UR0)

Uranium-236

- Production years: 1955–1956, 1961–1963, 1965–1988
- Half-life: 2.34E7 yr
- Decay mode: α
- Progeny: Th-232
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,450	25.9%
alpha	4,490	73.8%

• Bioassay method: uranium (UR0)

Uranium-238

- Production years: 1955–1956, 1961–1988
- Half-life: 4.47E9 yr
- Decay mode: SF, α
- Progeny: Th-234
- Important energy emissions:

Emission type	Energy (keV)	Abundance
alpha	4,150	22.3%
alpha	4,200	77.5%

• Bioassay method: uranium (UR0)

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Vanadium-48

- Production years: 1962
- Half-life: 15.97 d
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	290	49.4%
gamma	511	100.0%
gamma	984	100.0%
gamma	1,310	97.5%

• Bioassay method: whole body counting

Xenon-127

- Production years: 1983, 1987–1988
- Half-life: 36.34 d
- Decay mode: EC
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
gamma	172	25.5%
gamma	203	68.3%
gamma	375	17.2%

• Bioassay method: NA-noble gas: external monitoring is controlling for these materials

Xenon-133

- Production years: 1960–1976, 1978–1980
- Half-life: 5.24 d
- Decay mode: β-
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	101	99.2%
I.C.	45.0	55.4%
X-ray	31.0	26.6%
gamma	81.0	36.0%

• Bioassay method: NA-noble gas: external monitoring is controlling for these materials

Ytterbium-169

- Production years: 1980, 1986
- Half-life: 32 d
- Decay mode: EC
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	50.3	35.3%
I.C.	138	13.1%
gamma	177	22.2%
gamma	198	35.8%

• Bioassay method: whole body counting

Yttrium-86

- Production years: 1964, 1968
- Half-life: 14.74 hr
- Decay mode: EC, β+
- Progeny: stable

• Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	535	11.9%
A.E	12.0	13.8%
gamma	443	16.9%
gamma	511	63.8%
gamma	628	32.6%
gamma	703	15.4%
gamma	777	22.4%
gamma	1,080	82.5%
gamma	1,150	30.5%
gamma	1,850	17.2%
gamma	1,920	20.8%

• Bioassay method: whole body counting

Yttrium-88

- Production years: 1957–1958, 1961–1963, 1965, 1974
- Half-life: 106.65 d
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
A.E.	12.0	20.0%
gamma	898	93.7%
gamma	1,840	99.2%

• Bioassay method: rare earth (FU0) and whole body counting

Yttrium-90

- Production years: 1956–1968, 1973, 1987–1988
- Half-life: 64 hr
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	933	100%

• Bioassay method: rare earth (FU0), daughter of Sr-90.

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

Yttrium-91

- Production years: 1955–1957, 1959–1978
- Half-life: 58.5 d
- Decay mode: β-
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	604	99.7%

• Bioassay method: rare earth (FU0)

Zinc-65

- Production years: 1955–1957, 1959–1966
- Half-life: 243.9 d
- Decay mode: EC, β+
- Progeny: stable
- Important energy emissions:

Emission type	Energy (keV)	Abundance
positron	143	1.4%
gamma	511	2.8%
gamma	1,120	50.6%

• Bioassay method: gross beta (013), whole body counting

Zinc-69m

- Production years: 1967, 1973–1974
- Half-life: 13.76 hr
- Decay mode: EC, β-
- Progeny: Zn-69
- Important energy emissions:

Emission type	Energy (keV)	Abundance
I.C.	429	4.55%
beta	321	100.0%
gamma	439	94.8%

SUMMARY OF RADIONUCLIDES REQUIRING NO FURTHER ANALYSIS (continued)

• Bioassay method: gross beta (GB0), beta emission from Zn-69 progeny

Zirconium-95

- Production years: 1955–1986
- Half-life: 64.0 d
- Decay modes: β-
- Progeny: Nb-95m
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	110	54.5%
beta	121	44.3%
gamma	724	44.3%
gamma	757	54.4%

• Bioassay method: gross beta (013), Zr-95/Nd-95 (005), whole body counting

Zirconium-97

- Production years: 1971
- Half-life: 16.74 hr
- Decay mode: β-
- Progeny: Nb-97m
- Important energy emissions:

Emission type	Energy (keV)	Abundance
beta	757	88.2%
gamma	743	93.1%

• Bioassay method: whole body counting