

ORAU TEAM Dose Reconstruction Project for NIOSH

Oak Ridge Associated Universities I Dade Moeller & Associates I MJW Corporation

Page 1 of 23

Document Title:		Document Number:	ORAUT-	TKBS-0014-3
Y-12 National Security Complex – Occupational Medical Dose		Revision:	01	
		Effective Date:	06/18/200)7
		Type of Document:	TBD	
		Supersedes:	Revision	00
Subject Expert(s):	William E. Murray			
Site Expert(s):	N/A			
Approval:	Richard Merrill Signature on File William E. Murray, Document Owner	for Appro	oval Date:	06/04/2007
Concurrence:	Signature on File John M. Byrne, Task 3 Manager	Conc	urrence Date:	05/30/2007
Concurrence:	Signature on File Edward F. Maher, Task 5 Manager	Conci	urrence Date:	05/29/2007
Concurrence:	Signature on File Kate Kimpan, Project Director	Conce	urrence Date:	05/31/2007
Approval:	Brant A. Ulsh Signature on File in James W. Neton, Associate Director for		oval Date:	06/18/2007
☐ New	☐ Total Rewrite	Revision	☐ Page Cl	nange

FOR DOCUMENTS MARKED AS A TOTAL REWRITE, REVISION, OR PAGE CHANGE, REPLACE THE PRIOR REVISION AND DISCARD / DESTROY ALL COPIES OF THE PRIOR REVISION.

PUBLICATION RECORD

EFFECTIVE	REVISION		
DATE	NUMBER	DESCRIPTION	
12/15/2003	00	New technical basis document for the Y-12 National Sec Occupational Medical Dose. First approved issue. Initia E. Murray.	ted by William
09/09/2004	00 PC-1	Deletes references to Kathren et al., to be published on pages 7, 11, 17 and 18. This document has not been published. Adds references on pages 7, 11, 17 and 18 for ORAU (Oak Ridge Associated Universities) 2003, <i>Technical Information Bulletin: Dose Reconstruction from Occupationally Related Diagnostic X-ray Procedures</i> , ORAUT-OTIB-0006 Rev 00, Oak Ridge, Tennessee. November 14, 2003. First approved page change revision. Initiated by William E. Murray. Approval:	
		Signature on File William E. Murray, TBD Team Leader	09/08/2004
		Signature on File Judson L. Kenoyer, Task 3 Manager	08/27/2004
		Signature on File Richard E. Toohey, Project Director	08/30/2004
		Signature on File James W. Neton, Associate Director for Science	09/09/2004
10/11/2005	00 PC-2	Page change initiated to incorporate the definition of U.S and details for the definition of a DOE facility on page 5. were deleted. Second approved page change revision. not required. Initiated by William E. Murray. Approval:	No sections
		Signature on File_ William E. Murray, TBD Team Leader	10/06/2005
		Signature on File	10/04/2005
		Signature on File Richard E. Toohey, Project Director	10/04/2005
		Signature on File James W. Neton, Associate Director for Science	10/11/2005

Document No. ORAUT-TKBS-0014-3	Revision No. 01	Effective Date: 06/18/2007	Page 3 of 23

04/18/2006	00 PC-3	Page change initiated to revise text in Table 3-5 on page 10 in Section 3.4 to remove reference that uterus is a surrogate for ovaries. No changes occurred as a result of formal internal review. No sections were deleted. Text on page 10 was revised in response to NIOSH formal review. Third approved page change revision. Retraining is not required. Initiated by William E. Murray. Approval:	
		Signature on File William E. Murray, TBD Team Leader	04/17/2006
		Judson L. Kenoyer Signature on File for John M. Byrne, Task 3 Manager	04/17/2006
		Signature on File Edward F. Maher, Task 5 Manager	04/14/2006
		Signature on File Kate Kimpan, Project Director	04/18/2006
		Signature on File James W. Neton, Associate Director for Science	04/18/2006
06/18/2007	01	Approved revision initiated to add Attributions and Annotations section and additional references in response to review. Added a Purpose and Scope subsection to the Introduction (Section 3.1). Incorporates formal internal and NIOSH review comments. This revision results in no change to the assigned dose and no PER is required. Training required: As determined by the Task Manager. Initiated by William E. Murray.	

TABLE OF CONTENTS

<u>SECT</u>	<u>TION</u> <u>TITLE</u>	<u>PAGE</u>
Acron	yms and Abbreviations	6
3.1	Introduction	8
3.2	Examination Frequencies	8
3.3	Equipment And Techniques	9
3.4	Organ Dose Calculations	10
3.5	Uncertainty	12
3.6	Attributions And Annotations	14
Refere	ences	15
Gloss	ary	16
ATTA	CHMENT A, OCCUPATIONAL MEDICAL DOSE	19
A.1	Y-12 Medical X-Ray Program	20
A.2	Dose Reconstructor Instructions	
	A.2.2 Assignment of Organ Doses from X-ray Procedures: Best Estimate Approach for Dose Reconstructions	20

LIST OF TABLES

TABL	<u>.E</u> <u>TITLE</u>	<u>PAGE</u>
3-1	Frequency of occupational chest x-rays at Y-12	9
3-2	Description of the X-ray equipment used at Y-12	10
3-3	Technique factors used for each type of X-ray equipment	10
3-4	Entrance kerma values for Y-12 chest x rays	
3-5	Analogues for Interactive RadioEpidemiological Program (IREP) organs	
	not included in ICRP (1982)	12
A-1	Frequency of occupational chest x-rays at Y-12	
A-2	Organ doses (rem) for a beam quality (HVL) of 2.5 mm Al and 80 kVp	
	(1943-1947)	22
A-3	Organ doses (rem) for a beam quality (HVL) of 2.5 mm Al and 80 kVp	
	(1948-1968) assuming no collimation	22
A-4	Organ doses (rem) ^a for a beam quality (HVL) of 2.5 mm Al and 80 kVp	
	(1969-January 1982)	23
A-5	Organ doses (rem) ^a for a beam quality (HVL) of 3.5 mm Al and 110 kVp	
	(January 1982-present)	23

Document No. ORAUT-TKBS-0014-3 Revision No. 01 Effective Date: 06/18/2007 Page 6 of 23

ACRONYMS AND ABBREVIATIONS

Al aluminum

C.F.R. Code of Federal Regulations

cGy centigray

DCF dose conversion factor
DOE U. S. Department of Energy

eq. equivalent

ESE entrance skin exposure

GE General Electric

Gy gray

HVL half value layer

ICRP International Commission on Radiological Protection

IREP Interactive Radio-Epidemiological Program

keV kiloelectronvolt kVp kilovolts peak

mA milliampere MeV megaelectronvolt

mGy milligray mm millimeter

NCRP National Council on Radiation Protection and Measurements

ORAU Oak Ridge Associated Universities

ORAUT Oak Ridge Associated Universities Team

PA posterior/anterior

PFG photofluorographic POC probability of causation

RMS root-mean-square

s second

SID source-to-image distance SSD source-to-skin distance

TBD technical basis document

TEC Tennessee Eastman Corporation

U.S.C. United States Code

Y-12 Y-12 National Security Complex

3.1 INTRODUCTION

Technical basis documents and site profile documents are not official determinations made by the National Institute for Occupational Safety and Health (NIOSH) but are rather general working documents that provide historic background information and guidance to assist in the preparation of dose reconstructions for particular sites or categories of sites. They will be revised in the event additional relevant information is obtained about the affected site(s). These documents may be used to assist NIOSH staff in the completion of the individual work required for each dose reconstruction.

In this document the word "facility" is used as a general term for an area, building, or group of buildings that served a specific purpose at a site. It does not necessarily connote an "atomic weapons employer facility" or a "Department of Energy [DOE] facility" as defined in the Energy Employees Occupational Illness Compensation Program Act [EEOICPA; 42 U.S.C. § 7384I(5) and (12)]. EEOICPA defines a DOE facility as "any building, structure, or premise, including the grounds upon which such building, structure, or premise is located ... in which operations are, or have been, conducted by, or on behalf of, the Department of Energy (except for buildings, structures, premises, grounds, or operations ... pertaining to the Naval Nuclear Propulsion Program)" [42 U.S.C. § 7384I(12)]. Accordingly, except for the exclusion for the Naval Nuclear Propulsion Program noted above, any facility that performs or performed DOE operations of any nature whatsoever is a DOE facility encompassed by EEOICPA.

For employees of DOE or its contractors with cancer, the DOE facility definition only determines eligibility for a dose reconstruction, which is a prerequisite to a compensation decision (except for members of the Special Exposure Cohort). The compensation decision for cancer claimants is based on a section of the statute entitled "Exposure in the Performance of Duty." That provision [42 U.S.C. § 7384n(b)] says that an individual with cancer "shall be determined to have sustained that cancer in the performance of duty for purposes of the compensation program if, and only if, the cancer ... was at least as likely as not related to employment at the facility [where the employee worked], as determined in accordance with the POC [probability of causation¹] guidelines established under subsection (c) ..." [42 U.S.C. § 7384n(b)]. Neither the statute nor the probability of causation guidelines (nor the dose reconstruction regulation) define "performance of duty" for DOE employees with a covered cancer or restrict the "duty" to nuclear weapons work.

As noted above, the statute includes a definition of a DOE facility that excludes "buildings, structures, premises, grounds, or operations covered by Executive Order No. 12344, dated February 1, 1982 (42 U.S.C. 7158 note), pertaining to the Naval Nuclear Propulsion Program" [42 U.S.C. § 7384l(12)]. While this definition contains an exclusion with respect to the Naval Nuclear Propulsion Program, the section of EEOICPA that deals with the compensation decision for covered employees with cancer [i.e., 42 U.S.C. § 7384n(b), entitled "Exposure in the Performance of Duty"] does not contain such an exclusion. Therefore, the statute requires NIOSH to include all occupationally derived radiation exposures at covered facilities in its dose reconstructions for employees at DOE facilities, including radiation exposures related to the Naval Nuclear Propulsion Program. As a result, all internal and external dosimetry monitoring results are considered valid for use in dose reconstruction. No efforts are made to determine the eligibility of any fraction of total measured exposure for inclusion in dose reconstruction. NIOSH, however, does not consider the following exposures to be occupationally derived:

- Radiation from naturally occurring radon present in conventional structures
- Radiation from diagnostic X-rays received in the treatment of work-related injuries

¹ The U.S. Department of Labor is ultimately responsible under the EEOICPA for determining the POC.

The Y-12 Plant, now known as the Y-12 National Security Complex, required pre-placement and routine physical examinations as part of its occupational health and safety program. These medical examinations typically included chest X-rays to screen for disease. The doses from these X-ray procedures depended not only on the characteristics of the X-ray machine and the technical factors used, but also on the frequency of the examination. This section is based primarily on information provided by the staff at the present Y-12 Medical X-ray Department (Wiley 2002).

For evaluating Probability of Causation (POC), the doses to be included in calculating the worker's dose are those from X-rays that are required by the employer for screening and as a condition of employment, e.g., X-rays taken for pre-employment, pre-placement, or routine physical examinations (42 C.F.R. pts. 81 and 82). These X-rays are referred to in this Technical Basis Document (TBD) as occupational X-rays. Doses from X-rays taken by either the employer or an off-site health care provider for on-the-job or off-the-job injuries or illnesses are not included in the worker's dose calculation for POC (42 CFR 81 and 82).

3.1.1 Purpose

This TBD documents historical occupational medicine practices at the Y-12 Plant and provides information needed for the reconstruction of occupational medical doses for workers.

3.1.2 Scope

This TBD contains supporting documentation to assist in the evaluation of occupational external X-ray doses from employer-required chest X-rays of workers at the Y-12 Plant. The objective of this document is to provide supporting technical medical X-ray equipment data to reconstruct the occupational medical doses from these X-rays using assumptions that are favorable to the claimant.

Attributions and annotations, indicated by bracketed callouts and used to identify the source, justification, or clarification of the associated information, are presented in Section 3.6.

3.2 EXAMINATION FREQUENCIES

The frequency of exams differed significantly over the years. The frequency of chest X-rays is shown in Table 3-1 for different age groups and for specific groups of workers through the years based on information provided by Y-12 (Wiley 2002).

However, occupational X-rays may have occurred more frequently than on the schedule indicated in Table 3-1 at least in the early years. Wolf specified more frequent physical examinations (including X-ray) for various occupational groups (Wolf 1945). A recommended procedure for post-employment, routine medical examinations specified more frequent X-rays for the following occupational groups:

- Food handlers and cafeteria workers every 6-12 months
- Alpha (calutron) workers twice per year
- Liquid phase workers exposed to uranium, phosgene, or carbon tetrachloride three times per year [1].

Information on employer-required medical X-rays may be available in the energy employee's file.

Table 3-1. Frequency of occupational posterior/anterior chest X-rays at Y-12 (Wiley 2002)^a.

Period	Frequency	Comment
1943 to	Pre-placement	All employees
July 17, 1988	Annually	All employees
	At termination	All employees
	Pre-placement	All employees
	Time of entry into	Asbestos and beryllium workers and other jobs with
	hazardous job	potential pulmonary pathogens
July 18, 1988 to	Annually	Active and previous asbestos and beryllium workers
June 30, 1993	Every 10 years	Employees under 30 years old
	Every 5 years	Employees aged 30-45 years old
	Every 3 years	Employees over 45 years old
	At termination	All employees
	Pre-placement	All employees
July 1, 1993 –	Time of entry into	Asbestos and beryllium workers and other jobs with
March 1998	hazardous job	potential pulmonary pathogens
	Annually	Active and previous asbestos and beryllium workers
	At termination	All employees
	Pre-placement	All employees
	Time of entry into	Asbestos and beryllium workers and other jobs with
March 1998 –	hazardous job	potential pulmonary pathogens
Present	Annually	Active asbestos workers
	Every 3 years	Previous asbestos workers; active and previous beryllium
	At termination	workers All employees

a. Workers in certain occupations may have received chest X-rays more frequently. This information may be in the energy employee's file provided by DOE.

3.3 EQUIPMENT AND TECHNIQUES

The medical practices used at Y-12 are assumed to have followed the adoption of standards of radiology practice during the 1930s and 1940s to minimize dose to the patient (ORAUT 2005). However, there is the potential for significant dose from occupational medical X-ray examinations, depending on the type of equipment, the technique factors, the number of photofluorographic (PFG) examinations typical in the early years, and the number of radiographic examinations (Cardarelli et al. 2002).

According to information provided by the Y-12 Medical X-Ray Department, pre-employment chest X-rays were always taken with a conventional medical diagnostic X-ray machine (Wiley 2002). They found no evidence of PFG chest X-rays in the employee medical X-ray folders and all chest X-rays in these folders were 14"x17" films. However, in reviewing the medical X-ray folders of workers from the 1940s, approximately 1400 4"x10" chest X-ray films were found in the medical X-ray folders of workers who were employed at Y-12 from 1943 to 1947 (Beck 2003) [1]. Originally these X-rays were thought to be copies of conventional X-rays that were taken elsewhere and sent to Y-12 when the person was hired there. In fact, these were PFG chest X-rays.

In February 1945, a General Electric (GE) stereoscopic photoroentgen unit is listed as an equipment item in the Y-12 Medical Department (Wolf 1945). Reexaminations and other chest films were done on conventional 14"x17" films. On October 12, 1945, the Tennessee Eastman Corporation (TEC) Medical Director sent a telegram to the GE X-Ray Corporation, requesting them to set up a Photoroentgen Unit 4x10 (Leggo 1945). In June 1946, TEC placed an order with the Oak Ridge Hospital for 6000 Eastman-Single Coated 4"x10" X-ray films for the period from August 1, 1946 to July 31, 1947 (Graham 1946). Thus, it is clear that pre-employment chest X-rays were taken with a PFG

unit from 1943 to 1947, as evidenced by the 4"x10" films found in the medical records and the purchasing records mentioned above. All chest X-rays done since then are conventional 14"x17" X-rays.

No record has been located to determine what type of X-ray machine was in use at Y-12 from 1948 until the GE-type machine mentioned above that was used in the early 1960s. This date may not be correct either. In a meeting with the X-ray technologist who provided the information for that report, the technologist said that more recent documentation indicated that the GE-type machine was installed in 1969, not in the early 1960s (Beck 2003). Thus, it is not possible at this time to state with certainty what X-ray machine was used from 1948 to 1968. From 1969 until January 1982, the X-ray machine in use was similar to a GE Model DXD-350. This machine was replaced with a GE Model DSX-650II in February 1982 (Wiley 2002).

A description of the X-ray equipment used at Y-12 is included in Table 3-2. The specific technique factors for these machines are shown in Table 3-3. Since no technique factors were identified by Y-12 for Types I and II equipment, organ doses, based on assumed technique factors, were developed on the basis of X-ray techniques contemporary with the time period (1943-1968), with due consideration given to favorability to claimants (ORAUT 2005).

Table 3-2. Description of the X-ray equipment used at Y-12 [2].

Machine	Time period	Equipment
Type I	1943 to 1947	Photofluorographic unit at Oak Ridge Hospital or Y-12 Clinic
Type II	1948 to 1968	Unknown
Type III	1969 to January 1982	Similar to General Electric Model DXD-350 (exact model unknown) ^a
Type IV	February 1982 to present	General Electric DSX 650 II ^a

a.) From Wiley 2002

Table 3-3. Technique factors used for each type of X-ray equipment^a.

Machine	Projection	Current (milliampere [mA])	Voltage (kilovolts peak [kVp])	Exposure time (second [s])
Type I		done at Oak Ridga ave been located	e Hospital or Y-12. Techni	ques are unknown.
Type II	NA ^b	NA	NA	NA
Type III	PA ^c	200	80	1/20 ^b
Type IV	PA	200	110	Photo-timed ^b

- a.) From Wiley 2002.
- b.) NA denotes not available.
- c.) PA indicates a posterior/anterior projection; the average PA chest measures 26 cm.

3.4 ORGAN DOSE CALCULATIONS

Most Y-12 employees received occupationally-related X-rays annually for many years and at a lesser frequency in the later years. The frequency over time (1943-present) for various groups of workers is shown in Table 3-1. Only the PFG chests (from 1943-1947) and the posterior/anterior (PA) chest projections from 1969 to the present are documented. No evidence was found that other screening X-rays were performed.

No actual X-ray output measurements are available. The X-ray technique factors provided may not be reliable, especially for the Type II equipment. Thus, default values for entrance kerma will be used in the calculation of organ dose for use in dose reconstruction. Default values have been developed for the three of the most commonly used occupational medical X-ray procedures: PA, lateral; and

PFG chest films (ORAUT 2005). The default values are considered to be maxima developed from reviews of patient doses reported in the literature, machine characteristics, and knowledge of X-ray procedures used during the time periods indicated. Sufficient conservatism was included in the determination of the default values to ensure with near certainty (>99% confidence) that the actual exposures from the specified procedures would not exceed the default values, thus ensuring favorability to claimants (ORAUT 2005).

In determining the default factors in Table 3-4, it was assumed that minimum filtration was used, along with low kilovolt peak (kVp) techniques, slow film speeds with standard development procedures, and no additional collimation or use of cones (ORAUT 2005). The default entrance kerma values for the three procedures are given in Table 3-4 below.

Table 3-4. Entrance kerma values for Y-12 chest X-rays.

	Entrance kerma (centigray [cGy]) ^a		
Period	Posterior/anterior	Photofluorographic	
Pre-1970	0.20	3.0	
1970-1985	0.10		
Post 1985	0.05		

a. ORAUT 2005.

A source-to-image distance (SID) of 72 inches (in) (183 centimeter [cm]) was standard for the time for the PA chest, and 42 in (106 cm) for the PFG chests (ORAUT 2005). The X-ray machines used at Y-12 were most likely single-phase, and typically no air gap was used between the worker and the film (ORAUT 2005). Before 1982, it is assumed that the X-ray equipment was operated at 80 kVp, had at least 1.5 millimeters (mm) aluminum (Al) total filtration (see Table 3.1 of National Council on Radiation Protection and Measurements [NCRP] [1989]), and that the half value layer (HVL) was approximately 2.5 mm Al equivalent [eq.] (see Table B.2 of NCRP [1989]). These were typical machine parameters for chest X-rays performed in this time period (ORAUT 2005).

After 1982, the X-ray equipment was operated at 110 kVp and had at least 2.5 mm Al total filtration. The HVL was approximately 3.5 mm Al eq. After 1982, the machine parameters were the same but the exposures were photo-timed (Wiley 2002). The default values for entrance kerma were also used for the PA chest X-rays after 1982 because the exposure time would not be known for a photo-timed (automatic) exposure.

The following formula was used to calculate the organ doses in Tables A-2, 3, 4, and 5.

Organ dose (rem) = Entrance kerma (cGy) x Organ DCF (mGy/Gy) x 1.0 E-3 (rem-Gy/cGy-mGy)

where the entrance kerma is in centigray (cGy) and the organ DCF is in milligray (mGy)/gray (Gy). To obtain the organ dose in rem, the equation must be multiplied by 1.0 E-03 (rem-Gy/cGy-mGy).

The appropriate entrance kerma is selected from Table 3-4 and the DCFs are taken from the International Commission on Radiological Protection (ICRP) Report No. 34 (ICRP 1982) and guidance in ORAUT (2005)).

Specific organ doses for the PA chest X-rays and PFG chest films calculated on the basis of the dose conversion factors found in ICRP (1982) and guidance in ORAUT (2005) are given in Tables A-2, 3, 4, and 5. Doses for organs not listed in ICRP (1982) but specified in the Interactive Radio-Epidemiological Program (IREP) code were determined by analogy with anatomical location as indicated in Table 3-5 below. This table applies only to 14" x 17" chest X-rays; it is not used for other types of X-rays or for chest PFG films.

It is assumed that the X-ray beam was poorly collimated for X-rays taken before about 1965 (ORAUT 2003). Therefore, organs not normally in the primary beam for a PA chest were included in the primary beam by using ICRP (1982) organ dose conversion factors (DCFs) for procedures where those organs would normally be included in the primary beam or dose data from the literature was used. For example, assuming no collimation, the ovaries would be in the primary beam, and DCFs for the abdomen were used. Abdomen DCFs were used for ovaries, testes, uterus, and their analogues. The cervical spine DCF was used for the thyroid and its analogue (ORAUT 2005).

Table 3-5. Analogues for IREP organs not included in ICRP (1982) for 14" x 17" chest X-rays only (ORAUT 2005).

Anatomical	ICRP 1982	IREP organ
location	reference organ	analogues
Thorax	Lung	Thymus
		Esophagus
		Stomach
		Liver/gall bladder
		Bone surface
		Remainder organs
Abdomen	Ovaries	Urinary bladder
		Colon/rectum
Head and neck	Thyroid	Eye/brain

ICRP (1982) provides tables of average absorbed dose in milligray (mGy) in selected organs for selected X-ray projections at 1 gray (Gy) entrance kerma (i.e., air kerma without backscatter), for selected projections (including PA chest), and for selected beam qualities, (i.e., various HVLs). These tables provide the basic DCFs for converting entrance air kerma to organ dose.

3.5 UNCERTAINTY

Error, defined as deviation from the correct, true or conventionally accepted value of a quantity, and uncertainty, defined in terms of the potential range of a stated, measured, assumed or otherwise determined value of a quantity, provides an indication of the confidence of the dose estimates. Error implies knowledge of what the correct or actual value is, which is, of course, not known. Hence a more appropriate term is uncertainty, which is expressed in terms of a confidence level, e.g. 99%. This means that the correct or true value, although not actually known, has a 99% probability of falling within the range cited. The uncertainty includes both the precision, i.e., how reproducible the measurement is, and the accuracy, i.e., how close the measurement or estimate of dose comes to the actual or correct value (ORAUT 2005).

In theory a large number of variables can introduce uncertainties or affect the X-ray machine output intensity and dose to the worker. In practice only four variables can be reasonably considered to have an impact on dose uncertainty. These are variations in (1) applied kVp, (2) beam current, (3) exposure time, and (4) distance from the worker to the source of the X-rays (source-to-skin distance [SSD]) (ORAUT 2003). Other variables, such as the use of screens and grids, reciprocity failure, film speed and development, would not affect the beam output intensity (ORAUT 2005).

For a given set of machine settings and parameters, the X-ray output should theoretically be constant and unvarying. Although this is not always true in practice, the output is essentially constant unless focal spot loading occurs when the power rating of the machine is exceeded. This is unlikely because it would be difficult to achieve in practice and would damage the X-ray tube. However, even with the use of constant voltage transformers to control line voltages, slight variations may occur in line voltage

input or other internal voltages, which could alter the kVp of the output beam. For a given kVp setting, the variation in kVp falls within $\pm 5\%$ of the machine setting (Seibert et al. 1991). The beam intensity is approximately proportional to the 1.7 power of the kilovoltage (ORAUT 2005). This translates to an uncertainty of approximately $\pm 8.6\%$ for the output beam intensity in the 76-84 and 105-116 kVp ranges. For conservatism, this is rounded up to $\pm 9\%$ (ORAUT 2005).

Similarly, slight variations in tube current are normal. As a tube ages or heats up from usage, the tube current may change and typically it will drop. Hence, with all other factors remaining constant, the beam output will be reduced in direct proportion to the change in tube current. Typically, the reduction in beam output from current variation is not more than a few percent under normal operating conditions (ORAUT 2005). Large decreases in beam output will be readily detected (ORAUT 2005). This will result in performing maintenance on the machine to restore the output, or, as a temporary stopgap measure, increasing the current or kVp to provide the necessary beam output for proper radiography. For a given kVp setting, the beam output is a function of the tube current. A milliammeter on the machine measures the average tube current. This measurement is subject to uncertainties (ORAUT 2005). In addition, there may be minor changes in output as the tube heats up from normal usage, but these variations are typically small. Hence the uncertainty in beam output attributable to current variation has been estimated at ±5% (ORAUT 2005).

Another parameter that has potential to affect the dose, perhaps significantly, relates to the exposure time. This can be readily understood by noting that a full-wave rectified machine produces 120 pulses per second of X-rays. For an exposure time of 1/20 of a second, only six pulses would result. A small error in the timer that resulted in a change of only ± 1 pulse would correspondingly affect the output by $\pm 17\%$. For an exposure time of 1/30 of a second, the change in output corresponding to a deviation of ± 1 pulse is $\pm 25\%$. Early mechanical timers were notoriously inaccurate, although timer accuracy improved significantly with the introduction of electronic timers. However, once again for conservatism, the uncertainty in the beam output attributable to timers will be assumed to have an upper limit of $\pm 25\%$ (ORAUT 2005).

The final factor that is likely to affect worker dose relates to distance from the source of the X-rays, which is a determinant of the entrance skin exposure (ESE). For a given individual, the source-to-skin distance (SSD) will be determined largely by the thickness of the worker and the accuracy in positioning the worker. For a typical worker, this variation in SSD is estimated at no more than a few centimeters, with an upper limit of perhaps 7.5 cm. Using the inverse square law, this indicates an uncertainty of ±10 % from this source (ORAUT 2005).

Two approaches can be used to determine the combined uncertainty from the above four potential sources of uncertainty. The first, and most conservative in that it gives the greatest range, would be to assume that the uncertainties are additive. This would give an uncertainty range of up to 9%+5%+25%+10%=49%. However, a more reasonable approach would be to assume that the uncertainties are in fact random, and to compute the statistical root-mean-square (RMS) value (ORAUT 2005). The RMS value is simply the square root of the sum of the squares, and computes as ±28.7%. Thus, for any individual ESE or derived organ dose, an uncertainty of ±30 % at the 99% confidence level may be assumed. For further conservatism, it may be appropriate to assume that errors are all positive, and only the + 30% should be used (ORAUT 2005).

Effective Date: 06/18/2007

Document No. ORAUT-TKBS-0014-3

Where appropriate in this document, bracketed callouts have been inserted to indicate information, conclusions, and recommendations provided to assist in the process of worker dose reconstruction. These callouts are listed here in the Attributions and Annotations section, with information to identify the source and justification for each associated item. Conventional References, which are provided in the next section of this document, link data, quotations, and other information to documents available for review on the Project's Site Research Database.

- [1] Murray, William E. Oak Ridge Associated Universities. Health Physicist 4. March 7, 2007. The basis for specifying more frequent X-rays for these workers is taken from a document entitled "Occupational Accidents and Diseases" (Y-12 Plant, no date, SRDB Ref. ID: 4685, p. 9). Although this document is not dated, Sections 5 through 9 (pp. 11-17) are taken from a memorandum written by a physician in the United States Engineer Office in Oak Ridge, Tennessee, about the Y-12 X-Ray Department on February 23, 1945 (SRDB Ref ID 4691). It is favorable to the claimant to assume that workers in these occupational groups received employer-required medical X-ray examinations more frequently than other workers. This assumption applies to the time period from March 1943 through December 1947.
- Murray, William E. Oak Ridge Associated Universities. Health Physicist 4. March 9, 2007. [2] Regarding Table 3.2, there are multiple references documenting the use of photofluorographic machines and photofluorographic (PFG) film [Ref ID 8626, 12326 (p. 13), Ref ID 4691 (p. 4)]. There is a copy of a telegram from the Medical Director at Y-12 to GE X-Ray Corp. in Nashville requesting the installation of the PFG unit. William (Jack) Beck confirmed that photofluorographic X-rays were taken only during the 1943-1947 period. Ref ID 8609 states there were three medical facilities that served Y-12. Two were on the Y-12 site. The other is the Oak Ridge Hospital, which was run by the U.S. Army Corps of Engineers (USACE). Preemployment PFG X-rays were taken at the Y-12 Medical Facility and the Oak Ridge Hospital.

Regarding the discrepancy in the dates for the Type III X-ray equipment, it is stated in Ref ID 8634 that Ms. Patsy Shelton found documentation indicating that the time periods in the information provided by Steve Wiley were incorrect. Ms. Shelton said the X-ray machine was installed in 1969, not in the early 1960s.

[3] Murray, William E. Oak Ridge Associated Universities. Health Physicist 4. March 7, 2007. The basis for specifying more frequent X-rays for these workers is taken from a document entitled "Occupational Accidents and Diseases" (Y-12 Plant, no date, SRDB Ref. ID: 4685, p. 9). Although this document is not dated, Sections 5 through 9 (pp. 11-17) are taken from a memorandum written by physician in the United States Engineer Office in Oak Ridge, Tennessee, about the Y-12 X-Ray Department on February 23, 1945 (SRDB Ref ID 4691). It is favorable to the claimant to assume that workers in these occupational groups received employer-required medical X-ray examinations more frequently than other workers. This assumption applies to the time period from March 1943 through December 1947.

REFERENCES

- Beck W.L., 2003, "Beck's Notes on Y-12 Plant Medical X-rays," Personal Correspondence (e-mail), August 13, 2003. [SRDB Ref ID: 8634]
- Cardarelli, J.J., Spitz, H., Rice, C., Buncher, R., Elson, H., and Succop, P., 2002, "Significance of Radiation Exposure from Work-Related Chest X-Rays for Epidemiological Studies of Radiation Workers," *Amer. J. Ind. Med.*,42:490-501. [SRDB Ref ID: 8159]
- 42 C.F.R. Parts 81 and 82, 2002, Guidelines for Determining the Probability of Causation and Methods for Radiation Dose Reconstruction Under the Employees Occupational Illness Compensation Program Act of 2000; Final Rules, Department of Health and Human Services, *Federal Register*, Vol. 67, No. 85, May 2, pp. 22296;22314.
- Graham, W.H., 1946, "X-Ray Film," Letter to Dr. F.T. Rogers at Oak Ridge Hospital, June 26, 1946. [SRDB Ref ID: 12326, p. 25]
- International Commission on Radiological Protection (ICRP), 1982, "Protection of the Worker in Diagnostic Radiology," *Annals of the ICRP*, ICRP Publication 34, 9(2/3): 1-82.
- Leggo, C., 1945, "Telegram to Mr. E.C. Evans," October 12, 1945. [SRDB Ref ID: 12326, pp. 20-21]
- National Council on Radiation Protection and Measurements (NCRP), 1989, Medical X-Ray, Electron Beam and Gamma-Ray Protection up to 50 MeV (Equipment Design, Performance and Use), NCRP Report No. 102, Bethesda, Maryland.
- Neely, W.E., 1943, Letter to Major W.E. Kelly at U.S. Engineer Office, May 13, 1943. [SRDB Ref ID: 8609]
- ORAUT (Oak Ridge Associated Universities Team), 2005, Dose Reconstruction from Occupationally Related Diagnostic X-Ray Procedures, ORAUT-OTIB-0006, Rev 03 PC-1, December 21.
- ORAUT (Oak Ridge Associated Universities Team), 2006, Occupational X-Ray Dose Reconstruction for DOE Sites, ORAUT-PROC-0061, Rev 01, Oak Ridge, Tennessee, July 21.
- Seibert, J. A., G. T. Barnes and R. G. Gould, 1991, Specification, Acceptance Testing, and Quality Control of Diagnostic X-ray Imaging Equipment, Medical Physics Monograph No. 20, American Institute of Physics, New York.
- Webster, E. W., Merrill, O. E., 1957. "Measurements of Gonadal Dose in Radiographic Examinations," *New England Journal of Medicine*, 257:811-819.
- Wiley, S.W., 2002, Letter to Mr. James Newton, April 10, 2002. [SRDB Ref ID: 8394]
- Wolf, B.S., 1945, "X-ray Department at Y-12, as of 23 February 1945," Memorandum for the files, Army Service Forces, United States Engineer Office, Manhattan District, Oak Ridge, Tennessee, February 23, 1945. [SRDB Ref ID: 4691]
- Y-12 Plant, various dates, X-ray Information at Tennessee Eastman Corporation (Y-12). [SRDB Ref ID: 12326]
- Y-12 Plant, no date, Occupational Accidents and Diseases. [SRDB Ref ID: 4685]

GLOSSARY

Calutron

An electromagnetic apparatus for separating isotopes according to their masses.

Entrance kerma

See kerma.

Entrance skin exposure (ESE)

The exposure at the point where the X-ray beam enters the skin.

Film speed

A measure of the sensitivity of the film to X-rays or light.

Filtration

Material in the useful beam which usually absorbs preferentially the less penetrating radiation.

Focal spot

The apparent size of the radiation source region in a source assembly when viewed from the central axis of the useful radiation beam.

Gray (Gy)

The special name for the SI unit of absorbed dose, kerma, and specific energy imparted equal to one (1) joule per kilogram (J/kg). (1 Gy = 1 J/kg = 100 rad)

Grid

A series of lead strips used to improve the quality of radiographic images by removing scattered X-rays.

Half value layer (HVL)

Thickness of a specified substance which, when introduced into the path of a given beam of radiation, reduces the kerma rate by one-half. (Usually specified in mm Al.)

Interactive RadioEpidemiological Program (IREP)

A computer software program that uses information on the dose-response relationship, and specific factors such as a claimant's radiation exposure, gender, age at diagnosis, and age at exposure to calculate the probability of causation for a given pattern and level of radiation exposure.

International Commission on Radiological Protection (ICRP)

An independent Registered Charity, established to advance for the public benefit the science of radiological protection, in particular by providing recommendations and guidance on all aspects of protection against ionising radiation.

Inverse square law

The relationship between the exposure rate from a point source of radiation and the distance from the source.

Kerma

The sum of the initial kinetic energies of all the charged ionizing particles liberated by uncharged ionizing particles per unit mass of a specified material.

Kiloelectronvolt (keV)

The energy equal to that acquired by a particle with one electron charge in passing through a potential difference of 1000 volts.

Milliammeter

An instrument for measuring electric current in milliamperes.

National Council on Radiation Protection and Measurements (NCRP)

A nongovernmental, public service organization that formulates and disseminates information, guidance and recommendations on radiation protection and measurements.

Organ dose

The dose to a given organ from an X-ray procedure.

Photofluorography

An obsolete radiographic technique in which the image produced on a fluorescent screen by X-rays was photographed.

Photon

A quantum of electromagnetic radiation.

Posterior/anterior (P/A)

An X-ray in which the X-ray beam passes from posterior to the anterior side of the patient.

Pre-placement X-ray

An X-ray, usually a chest X-ray, taken before a worker is hired or assigned to a specific job.

Probability of causation (POC)

The probability or likelihood that a cancer was caused by radiation exposure incurred by a covered employee in the performance of duty.

Pulmonary

Relating to, functioning like, or associated with the lungs.

Root-mean-square

The square root of the arithmetic mean of the squares of a set of numbers.

Screens

A fluorescent material used in diagnostic radiology that absorbs the X-rays and converts it into light that exposes the X-ray film.

Source-to-image distance (SID)

The distance measured along the central ray from the center of the front of the surface of the source (focal spot) to the surface of the image detector.

Document No. ORAUT-TKBS-0014-3	Revision No. 01	Effective Date: 06/18/2007	Page 18 of 23
--------------------------------	-----------------	----------------------------	---------------

Source-to-skin distance (SSD)

The distance measured along the central ray from the center of the front of the surface of the source (focal spot) to the surface of the irradiated object or the patient.

Technique factors

The variables, i.e., the peak voltage (kVp), current (mA), and time (s), that are used for taking an X-ray.

Termination X-ray

An X-ray, usually a chest X-ray that is taken when the employee is separated from the company.

Tube current

The current flowing from the cathode to the anode in an X-ray tube.

Variable

A quantity that may assume any one of a set of values.

X-ray

Electromagnetic radiation of the same nature as visible radiation but having an extremely short wavelength of less than 10⁻⁸ m; an image obtained by use of X-rays.

X-ray tube

An evacuated electronic tube in which X-rays are generated when electrons are accelerated by an applied voltage and strike an anode or target.

Page 1 of 5

TABLE OF CONTENTS

SECTION	<u>SECTION</u> <u>TITLE</u>	
A.1	Y-12 Medical X-Ray Program	20
A.2	Dose Reconstructor Instructions	20
	Approach for Dose Reconstructions	20
	A.2.2 Assignment of Organ Doses from X-ray Procedures: Best	
	Estimate Approach for Dose Reconstructions	20
	LIST OF TABLES	
TABLE	<u>TITLE</u>	PAGE
A-1	Frequency of occupational chest x-rays at Y-12	20
	Organ doses (rem) for a beam quality (HVL) of 2.5 mm Al and 80 kVp (1943-1947)	
A-3	Organ doses (rem) for a beam quality (HVL) of 2.5 mm Al and 80 kVp (1948-1968) assuming no collimation	22
A-4	Organ doses (rem) ^a for a beam quality (HVL) of 2.5 mm Al and 80 kVp (1969-January 1982)	
A-5	Organ doses (rem) ^a for a beam quality (HVL) of 3.5 mm Al and 110 kVp	
	(January 1982-present)	23

Page 2 of 5

A.1 Y-12 MEDICAL X-RAY PROGRAM

Y-12 conducted pre-placement and annual physical examinations as part of its occupational health program. These examinations typically included a chest X-ray. In general, the frequency of the examinations over the years and by age of the worker is shown in Table A-1 (Wiley 2002). For some workers, and occupations, chest X-rays could be more frequent. For example, food handlers and cafeteria workers were examined every 6-12 months; alpha (calutron) workers were examined twice per year; and liquid phase workers exposed to uranium, phosgene or carbon tetrachloride underwent three examinations per year [3].

Table A-1. Frequency of occupational posterior/anterior chest X-rays at Y-12 (Wiley 2002).^a

Period	Frequency	Comment
1943 –	Pre-placement	All employees
Present	At termination	All employees
1943 –	Annually	All employees
July 18,1988		
July 18, 1988 –	Time of entry into	Asbestos and beryllium workers and other jobs with potential
Present	hazardous job	pulmonary pathogens
July 18, 1988 –	Annually	Active and previous asbestos and beryllium workers
March 1998		
July 18, 1988 –	Every 10 years	Employees under 30 years old
June 30, 1993	Every 5 years	Employees aged 30-45 years old
	Every 3 years	Employees over 45 years old
March 1998 –	Annually	Active asbestos workers
Present	Every 3 years	Previous asbestos workers; active and previous beryllium workers

a. Workers in certain occupations may have received chest X-rays more frequently. This information may be in the energy employee's file provided by DOE.

A.2 DOSE RECONSTRUCTOR INSTRUCTIONS

The information given below summarizes instructions given to the dose reconstructors in determining organ doses from occupational medical X-ray procedures. For the purpose of evaluating POC, X-ray doses are always considered acute, and are considered to be photons with energies in the range from 30 to 250 kiloelectronvolts (keV).

A.2.1 <u>Assignment of Organ Doses from X-ray Procedures: Maximizing Approach for Dose Reconstructions</u>

The X-ray doses presented above are treated as a point estimate (constant) for the purpose of calculating POC (ORAUT 2006).

A.2.2 <u>Assignment of Organ Doses from X-ray Procedures: Best Estimate Approach for Dose Reconstructions</u>

For the dose calculation, a normal distribution is applied with a standard deviation of 30%. The value of the standard deviation is equal to the mean value times 30%. Thus, the dose reconstructor should multiply the organ doses listed in Tables A-2, 3, 4, and 5 by 1.3. The dose reconstructor may use a

Page 3 of 5

frequency other than annual if the actual frequency is known and apply the guidance in A.2.1 above (ORAUT 2006).

Page 4 of 5

1

Table A-2. Organ doses (rem)^a for a beam quality (HVL) of 2.5 mm Al and 80 kVp (Type I machine: 1943-1947)

	Organ dose from photofluorographic
Organ	chest X-ray (rem)
Entrance air kerma	3.00E+00 ^b
Thyroid ^c	5.22E-01
Eye/brain	9.60E-02
Ovaries ^e	2.5 E-02
Liver/gall bladder	1.35E+00
Urinary bladder ^e	2.5 E-02
Colon/rectum ^e	2.5 E-02
Testes ^e	5.0 E-03
Lungs (male)	1.26E+00
Lungs (female)	1.35E+00
Thymus	1.35E+00
Esophagus	1.35E+00
Stomach	1.35E+00
Bone surface	1.35E+00
Remainder	1.35E+00
Breast	1.47E-01
Uterus ^e	2.5 E-02
Bone marrow (male)	2.76E-01
Bone marrow (female)	2.58E-01
Skin d	4.05E+00

- a. For organs listed in ICRP 34 (1982) and proximal organs for input to IREP.
- b. ORAUT (2005).
- The DCF for the AP cervical spine was used, corrected by a 20% depth dose factor (NCRP (1989), Table B-8).
- d. Skin dose is entrance skin kerma, multiplied by a backscatter factor of 1.35 from NCRP 102, Table B-8.
- e. Modified from Webster.

Table A-3. Organ doses (rem) ^a for a beam quality (HVL) of 2.5 mm Al and 80 kVp (Type II machine: 1948-1968) assuming no collimation.

111acmine, 1940-1900) as	Organ dose from
	posterior/anterior
Organ	chest X-ray (rem)
Entrance air kerma	2.00E-01 ^b
Thyroid ^c	3.48E-02
Eye/brain	6.40E-03
Ovaries ^e	2.50E-02
Liver/gall bladder	9.02E-02
Urinary bladder ^e	2.50E-02
Colon/rectum e	2.50E-02
Testes ^e	5.00E-03
Lungs (male)	8.38E-02
Lungs (female)	9.02E-02
Thymus	9.02E-02
Esophagus	9.02E-02
Stomach	9.02E-02
Bone surface	9.02E-02
Remainder	9.02E-02
Breast	9.80E-03
Uterus ^e	2.50E-02
Bone marrow (male)	1.84E-02
Bone marrow (female)	1.72E-02
Skin ^a	2.70E-01

- For organs listed in ICRP (1982) and proximal organs for input to IREP.
- b. ORAUT (2005).
- c. The DCF for the AP cervical spine was used, corrected by a 20% depth dose factor (NCRP (1989), Table B-8)
- d. Skin dose is entrance skin kerma, multiplied by a backscatter factor of 1.35 from NCRP (1989), Table B-8.
- e. Modified from Webster.

Page 5 of 5

Table A-4. Organ doses (rem)^a for a beam quality (HVL) of 2.5 mm Al and 80 kVp (1969-January 1982).

Organ	Organ dose from Posterior/anterior chest X-ray (rem)
Entrance air kerma	1.00E-01 ^b
Thyroid	3.20E-03
Eye/brain	3.20E-03
Ovaries	1.00E-04
Liver/gall bladder	4.51E-02
Urinary bladder	1.00E-04
Colon/rectum	1.00E-04
Testes	1.00E-06
Lungs (male)	4.19E-02
Lungs (female)	4.51E-02
Thymus	4.51E-02
Esophagus	4.51E-02
Stomach	4.51E-02
Bone surface	4.51E-02
Remainder	4.51E-02
Breast	4.90E-03
Uterus	1.30E-04
Bone marrow (male)	9.20E-03
Bone marrow (female)	8.60E-03
Skin ^c	1.35E-01

- For organs listed in ICRP (1982) and proximal organs for input to IREP.
- b. ORAUT (2005).
- Skin dose is entrance skin kerma, multiplied by a backscatter factor of 1.35 from NCRP (1989), Table B-8.

Table A-5. Organ doses (rem)^a for a beam quality (HVL) of 3.5 mm Al and 110 kVp (January 1982-present).

(carraary 1992 prosent)	Organ dose from posterior/anterior
Organ	chest X-ray (rem)
Entrance air kerma	5.00E-02 ^b
Thyroid	3.10E-03
Eye/brain	3.10E-03
Ovaries	1.60E-04
Liver/gall bladder	3.05E-02
Urinary bladder	1.60E-04
Colon/rectum	1.60E-04
Testes	5.00E-07
Lungs (male)	2.83E-02
Lungs (female)	3.05E-02
Thymus	3.05E-02
Esophagus	3.05E-02
Stomach	3.05E-02
Bone surface	3.05E-02
Remainder	3.05E-02
Breast	4.55E-03
Uterus	1.50E-04
Bone marrow (male)	7.30E-03
Bone marrow (female)	7.05E-03
Skin ^c	7.00E-02

- For organs listed in ICRP (1982) and proximal organs for input to IREP.
- b. ORAUT (2005).
- Skin dose is entrance skin kerma, multiplied by a backscatter factor of 1.4 from NCRP (1989), Table B-8.