Bounding Stable Metal Tritide (SMT) Exposures at the Mound Laboratory

James W. Neton, Ph.D., CHP

Associate Director for Science National Institute for Occupational Safety and Health Division of Compensation Analysis and Support

> September 2012 Denver, CO

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Stable Metal Tritide (SMT) Overview

- Most forms of tritium (e.g., HTO, OBT) are relatively soluble in the body
- SMTs are tritium-metal compounds that are chemically unreactive (i.e., do not dissociate easily)
- The most unreactive forms (e.g., HfT) have very long biological clearance times in the body
 - Are considered ICRP solubility type S

 Urinalysis is ineffective for quantifying intakes of SMTs in the presence of other more soluble forms

SMT Overview-cont.

- Tritium research occurred at Mound in the SW/R tritium Complex (SRTC)
- Operations started in the 1960s and continued beyond the 1990s
- Workers could have handled and been exposed to both soluble and insoluble forms of tritium
 - All workers in SRTC on a routine tritium bioassay program
 - Workers who directly handled SMTs were relatively few
 - NIOSH has established identity of these workers
- Method needed to evaluate SMT exposures for support workers

Approach to SMT Exposure Evaluation Support Staff

- Routine tritium contamination surveys taken in the SRTC
- NIOSH collected and reviewed survey data from >10,000 documents
 - Resulted in >69,000 smears taken in 4 rooms between 1968 and 1989
 - Probability distributions of the contamination levels in the rooms were established

Approach to SMT Exposure Evaluation Support Staff_cont.

- Using the 95th percentile values and a claimant favorable resuspension factor (5E-05/m), the intake for a support worker can be calculated
- Intakes assume that worker is exposed to this value for the entire work year
 - Also assumes that the intake is to SMTs
- Dose calculation:
 - Use urine data for estimating systemic organs doses
 - Calculate lung dose using both SMT resuspension model and urinary excretion values

Doses to Workers

- Applying the bounding approach to support workers results in relatively small lung doses
- Values vary depending on specific exposure scenario
 - Annual lung doses using the 95th percentile contamination values are in the several mrem range.
- Methodology demonstrates that potential doses to support workers (i.e. those that did not directly handle SMTs) are low and can be bounded

