U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES CENTERS FOR DISEASE CONTROL NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH

+ + + + +

ADVISORY BOARD ON RADIATION AND WORKER HEALTH

+ + + + +

SAVANNAH RIVER SITE WORK GROUP

+ + + + +

WEDNESDAY FEBRUARY 26, 2014

+ + + + +

The Work Group convened via teleconference at 10:00 a.m., Bradley P. Clawson, Acting Chairman, presiding.

PRESENT:

BRADLEY P. CLAWSON, Acting Chairman JAMES E. LOCKEY, Member PHILLIP SCHOFIELD, Member

ALSO PRESENT:

TED KATZ, Designated Federal Official
JIM NETON, DCAS
TIM TAULBEE, DCAS
DEKEELY HARTSFIELD, HHS
MATT ARNO, ORAU
MIKE MAHATHY, ORAU
ROBERT BARTON, SC&A
HARRY CHMELYNSKI, SC&A
JOE FITZGERALD, SC&A
JOYCE LIPSZTEIN, SC&A
ARJUN MAKHIJANI, SC&A
BUCK CAMERON, ATL
DAVID ANDERSON
BOB WARREN

T-A-B-L-E O-F C-O-N-T-E-N-T-S Welcome and Roll Call 4 Mr. Ted Katz Continued from February 5, 2014 Work Group Discussion-Status of Findings and path forward. Neptunium Recap..... Findings 1 through 8..... OPOS-related Comparisons Deferred to SEC Work Group Findings 9, 10, 11 Findings 12 through 19..... Work Group Discussion-Status of Findings and path forward. Thorium Recap..... 87 Finding 1...... 84 Finding 2..... 153 Finding 3 156 Discussion and Closure Finding 4, Thoron..... 163 Findings 5B16, 19B23..... 187 OPOS-related Comparisons Deferred to SEC Work Group Findings 17...... 188 Discussion and Closure Finding 18...... 190 Findings 24-26..... 204 Overarching Data Validation Issue Remains, but Solubility Issue Closed Findings 27-32..... 211 Closing Action Items..... 214

Meeting Adjournment

1	P-R-O-C-E-E-D-I-N-G-S
2	(10:05 a.m.)
3	MR. KATZ: So let's get started.
4	First of all this is the Advisory Board on
5	Radiation Worker Health, Savannah River Site
6	Work Group.
7	And there is an agenda for today's
8	meeting. It's the same agenda as was for the
9	meeting earlier in February, because we're
10	still going through that agenda. And we could
11	just kick off, where we left off from the last
12	meeting on there.
13	So there is also a document on the
14	web site that is a Matrix of Issues that has been
15	updated by SC&A so that we're abreast of
16	current status on all the issues that we're
17	working through. And I assume that will be
18	used heavily today.
19	So let's do roll call. When
20	speaking from specific sites, please speak to
21	conflict of interest when you respond.
22	(Roll call)

1	MR. KATZ: Okay then. Brad, you
2	can kick it off. But really, I think it would
3	probably be helpful if NIOSH or ORAU to tee up
4	where we left off.
5	ACTING CHAIRMAN CLAWSON: Well, yes
6	thanks, that's, like I say this is Brad Clawson.
7	I guess we're going to start up where we left
8	off. And I believe it was in NIOSH's court
9	there. So I'll turn it over to either Tim, or
10	who's going to respond?
11	Is that correct, or are we waiting,
12	is it SC&A?
13	DR. TAULBEE: This is Tim. I guess
14	I have a question for you as to how you want to
15	continue on? We could continue on with where
16	we stopped, which was issue or Finding Number
17	4 from the thorium, our responses on the thorium
18	issues of Addendum Number 3.
19	But I guess Joe Fitzgerald, he sent
20	out a memo to the Work Group the other evening,
21	that kind of summaries where we are at. And we
22	can kind of I guess in a sense, instead of going

1	through line by line, kind of
2	ACTING CHAIRMAN CLAWSON: Yes.
3	DR. TAULBEE: certain findings
4	together. That seemed to make more sense, that
5	we could discuss instead of going through the
6	line by line of the thorium, and then into 8th
7	Issues Matrix.
8	So Brad, I'm not sure which way you
9	want to try and respond to this? So it's
10	entirely up to you.
11	ACTING CHAIRMAN CLAWSON: Well,
12	let me talk with Arjun or how, Arjun, how would
13	you guys like to address this? I know that the
14	memo was sent out on the thorium. Do we want
15	to discuss that right now? Or what would you
16	like to do?
17	MR. FITZGERALD: Yes, Brad
18	DR. MAKHIJANI: Well, Joe is my,
19	the top manager and I think he sent out the memo.
20	Maybe he should respond. I think maybe it
21	might be good to start with the memo that he sent
22	out.

1	ACTING CHAIRMAN CLAWSON: Okay,
2	that sounds good. I'm sorry, Joe.
3	DR. MAKHIJANI: I think maybe Joe
4	is most appropriate to respond.
5	MR. FITZGERALD: Yes, let me clarify
6	just a little bit. Just taking off what Tim
7	said. I thought it would be helpful given the
8	fact we are continuing this several weeks
9	later, to recap a little bit.
10	And we also as I had indicated two
11	weeks ago, we did not have a chance for Joyce
12	Lipsztein to provide her responses on some, a
13	number of neptunium issues, as a matter of fact.
14	Because she was, you know she was
15	out of the office during that time. So what I
16	would propose is maybe we could back pedal a
17	little bit. Go back into that neptunium report
18	and start with, what I indicated, is Finding 9.
19	Kind of where we kind of jumped
20	because we could not address those issues
21	because she wasn't available. And you know,
22	start with item, Finding 9 and go from there.

1	And she is certainly on the phone and ready to
2	do that.
3	ACTING CHAIRMAN CLAWSON: Okay.
4	That sounds fine with me. I'm kind of taken by
5	surprise on this, so please forgive me if a
6	little bit cumbersome. Who's going to be
7	running the Live Meeting? Are they going to
8	put up any of these documents so that hello?
9	MR. KATZ: Brad, with respect to
10	documents for a Live Meeting, I mean you have
11	the matrix, you have the memo. The memo, I
12	don't know if it's been put up on the web site
13	yet. But I think it was, not sure whether it's
14	PA cleared yet.
15	MR. STIVER: I think, this is John
16	Stiver, I can pull that up onto Live Meeting if
17	you want?
18	MR. KATZ: Yes, if you would that
19	would be great, John, that's what I was going
20	to say. If you just pull the memo up, that
21	would be great.
22	MR. STIVER: Okay. Just give me a

1	minute here.
2	MR. FITZGERALD: Okay. While he's
3	doing that, yes, it did come in late Monday. So
4	I realize this is really going to facilitate for
5	the participants but, more so than anything
6	else.
7	But Findings 1 through 8, we did
8	spend a fair amount of time in the February 5th
9	meeting. And I think there was some general
10	agreement that many of those issues touched on
11	the, so called, OPOS or statistical issues on
12	comparison of two worker groups, NCW and CTWs.
13	And I think we could just certainly
14	decide to defer the discussion to that forum.
15	So we're really kind of picking up on some of
16	the first specific neptunium issues that we
17	certainly could address in the Work Group.
18	And with that, Joyce do you want to
19	start with Number 9, or do you need anything
20	further on that?
21	DR. LIPSZTEIN: Okay.
22	MR. STIVER: Before we start, this

1	is John. Can everybody see the memo?
2	ACTING CHAIRMAN CLAWSON: Yes,
3	it's just, thank you. I just hate jumping back
4	and forth from these two when we have some of
5	this stuff come up. So appreciate that John.
6	MR. STIVER: Okay, thank you.
7	DR. LIPSZTEIN: Should I start?
8	ACTING CHAIRMAN CLAWSON: Yes, go
9	ahead Joyce.
10	DR. LIPSZTEIN: Okay. I think I'm
11	fine on Finding Number 9 there was some
12	misunderstanding between SC&A and NIOSH
13	because the response from NIOSH to our finding,
14	didn't answer our questioning.
15	So NIOSH has justified the use of
16	iodine-131 region to quantify neptunium-237.
17	SC&A doesn't question the use of iodine-131
18	region to calculate the protactinium-233,
19	which is the daughter of neptunium-237, to
20	calculate neptunium-237 activity in this item.
21	What we were questioning was the
22	choice of whole body counter geometry to

1	calculate the exposure, as opposed to chest
2	geometry. Because we have reviewed data from
3	several workers at that time period, which was
4	the early 70s.
5	And we saw that many of the
6	geometry that was used was chest count instead
7	of the 40cm arc geometry. And specifically
8	neptunium-237 and iodine-131 activities were
9	often were both registered in the chest count
10	geometry.
11	We agree with NIOSH that in the
12	region that neptunium was quantified in this
13	time period, it's better to quantify it through
14	iodine-131 activities.
15	We only question this stretcher
16	method, and we saw, and we agree with NIOSH that
17	it is only a question of calibration and the
18	right calibration factor that should be used.
19	So what we question is, first, why
20	not use chest count geometry as well?
21	Why, wonder why only counts from
22	chest geometry, why were they discarded, if

1	they were discarded? Because if they were not,
2	they should be used with another calibration
3	factor.
4	And so what we, and there are some,
5	also some countings that we did not see what,
6	there was no specification if it was chest
7	geometry that was used, or if it was 40 cm arc
8	geometry. And we would like to know what was
9	done with these, those countings, if there are
LO	discarded or not?
L1	So we were questioning the
L2	calibration factor that was used and what was
L3	done with the chest geometry counts because
L4	it's effective to take it away?
L5	We also noted and we are going to
L6	discuss this later, that the intake rate that
L7	was derived for the 1970 to 1974 intake period
L8	was 93.5 dpm per day. While the intake rate
L9	immediately before this period, 1968 to 1969,
20	was calculated as 1.79 dpm per day.
21	So it's a 50 times increase and we
22	don't know why this there is this huge

1	difference? Maybe a problem with the
2	calibration factor, maybe it's not the right
3	people that were counted. So there are many
4	hypotheses on that. And we're going to discuss
5	this a little bit later also.
6	So that's for Finding Number 9. Is
7	there any question on what I said? Sometimes
8	I don't get myself understood very well.
9	DR. TAULBEE: This is Tim. I don't
10	have any questions, but I can begin a little bit
11	of response or discussion about this if you'd
12	like.
13	DR. LIPSZTEIN: Okay, please.
14	DR. TAULBEE: Okay. And I'm going
15	to rely on Matt Arno, a little bit here coming
16	up to give a little better explanation of the
17	in-vivo counts as to what data we used
18	associated with this.
19	But just to kind of back up a little
20	bit, the reason that we, well there's three,
21	there's two different geometries, three
22	actually.

1	Three geometries, you've got the 40
2	cm arc, and then you've got the chest count
3	which was done with phoswich detectors.
4	DR. LIPSZTEIN: Yes.
5	DR. TAULBEE: This goes up to about
6	1974. Around 1975, is when we have a stretcher
7	geometry where a series of sodium iodide
8	detectors were placed in a concave pattern
9	underneath the flat stretcher
10	DR. LIPSZTEIN: Yes.
11	DR. TAULBEE: to give a kind of
12	simulated 40 cm arc type of exposure geometry.
13	And there's different calibration factors for
14	both of those.
15	We were able to pull those out of the
16	log, Jim Watson's lab notebook. So that's the
17	calibration data that we used to do this.
18	And I guess the other point before
19	I kick off here to Matt, to try and discuss which
20	data we used which I believe to be just the
21	40 cm arc and the stretcher geometries instead
22	of the chest count data and that is to address

1	your comment on the 93.5 dpm from '70 to '74 and
2	that 50 fold increase.
3	It's not a problem with the
4	calibration factor, it's the change in
5	methodology.
6	In the 1960s Savannah River,
7	according to DPSOL 193-302, that's the Bioassay
8	Control Procedure, was monitoring folks based
9	upon urine bioassay for neptunium-237.
10	Since they had not seen any
11	exposures of neptunium that did not have an
12	equal amount of plutonium in them, they stopped
13	doing a large quantity of neptunium bioassay,
14	or urinalysis for the workers.
15	They went to kind of an incident
16	based monitoring system where if the plutonium
17	was high, and they were in a neptunium area,
18	then they would initiate the neptunium
19	bioassay, which is why you don't have as many
20	neptunium urinalysis results during that time
21	period.
22	This changed in 1978 when they went

1	back to building 235, more to a routine
2	neptunium-237 urinalysis program.
3	So that reason for that 50 fold
4	increase has to do with the change in
5	monitoring, or the change of the MDA method.
6	That's the sole reason for it.
7	It's not due to in vivo counting
8	calibration factors or anything like that.
9	It's us changing our coworker model from
10	relying on urine bioassay, to in vivo bioassay.
11	And then when the urine bioassay
12	kicks in again, 1980, well actually '78 time
13	period, we could use it there, but we continued
14	on with in vivo through 1989. So that's the
15	reason for that big jump that you see.
16	Even the 93.5, again, results in a
17	very claimant-favorable approach. And we knew
18	this. And that was illustrated in the
19	presentation that I gave back on February 5th
20	when showing the urine bioassay data that we
21	have.
22	And the in vivo measurements being,

1	far exceeding it, but the bases are still
2	relatively low. So we didn't feel like this
3	was an unreasonably, or we had sufficient
4	accuracy with the dose, with the dose estimate.
5	So with that Matt, can you touch on
6	a little bit of the data that we used in the
7	coworker model?
8	DR. ARNO: Yes. One of the issue
9	there, is when we're doing the coworker
10	modeling, we basically have to for any given
11	time period, pick one type of data.
12	DR. LIPSZTEIN: Yes.
13	DR. ARNO: Either chest count data,
14	whole body count data, urinalysis data as the
15	case may be.
16	So in this early 1970s area where we
17	have both. Some chest count results and whole
18	body count results that Joyce was talking
19	about, we can't combine the whole body count
20	data and the chest count data for doing our
21	coworker study modeling.
22	We have to pick one or the other.

1	And we chose to pick the whole body count data
2	due to the preponderance of that data, and the
3	fact that there is more of it to use.
4	As Tim discussed about the MDAs and
5	the change in the intake rate, through all the
6	coworker studies that we've done in all the
7	sites, there's always a strong influence,
8	there's a strong influence on the intake rate
9	based on what the MDA is for the measurements.
10	Especially when you're dealing with
11	data that has a fair amount of sensoring in it.
12	But if you change the MDA of, your
13	method in terms of determining an intake, it's
14	going to have a dramatic impact on calculating
15	our intake rate. And that's what we have in
16	this case.
17	The urinalysis method is much more
18	sensitive so when we don't have that data, we
19	have to rely on something else. The whole body
20	count in this case.
21	And as Tim said, even though it's a
22	dramatic increase in the intake rate, it still

1	results in doses which are reasonable and
2	acceptable for the purposes of this project.
3	DR. LIPSZTEIN: Okay. I
4	understand that. Just some more questions.
5	So all the chest results were discarded when you
6	did the in vivo. Is there any reason why you
7	preferred the 40 cm instead of the chest?
8	And also on the next period one,
9	there was the stretcher geometry. I know, I
10	just looked at a sample of about 80 workers that
11	we took by random sample. And all of them were
12	measured using chest geometry instead of the
13	stretcher geometry.
14	So did you have much more stretcher
15	geometry than chest geometry, to just discard
16	the chest geometry data?
17	DR. ARNO: I think some of those
18	forms get a little bit confusing. Some of
19	those forms report both whole body count
20	measurements and chest count measurements on
21	the same form.
22	Like one of the forms typically has

1	the top half of the page is reporting whole body
2	count results, and then the bottom half of the
3	page is recording chest count results.
4	So you have to be careful in looking
5	at some of those forms. And they changed, even
6	though it's the same basic form, they changed
7	where on the page and whether or not it said
8	whole body in one place, or chest count in
9	another place.
10	But one of our basic reasons was,
11	there was more whole body count data to use than
12	chest count data. Especially looking at the
13	gamma ray energy regions of interest that we
14	were interested in.
15	DR. NETON: Matt, this is Jim
16	Neton, can I say something real quick here? I
17	think, I don't think that they routinely
18	quantified neptunium in the chest counts did
19	they?
20	DR. ARNO: No they did not
21	DR. LIPSZTEIN: No.
22	DR. ARNO: routinely continue

1	doing a lot of
2	DR. NETON: And that's the problem
3	Joyce, because I think the region that they used
4	for americium which would have been the closest
5	regions to the 86 keV P4 neptunium, they only
6	integrated like between 48 and 68 keV. And so
7	
8	DR. LIPSZTEIN: No, Jim. Jim, just,
9	that's after the 80s, before the 80s they have
10	iodine-131 and chest. They have everything
11	and chest.
12	DR. ARNO: One other important
13	thing to keep in mind is that neptunium is a Type
14	M material. It clears out of the chest into the
15	whole body relatively quickly. So it's
16	DR. LIPSZTEIN: Well, but, you
17	know, if you measure it just after the worker,
18	at least chest is a better measurement than the
19	whole body.
20	DR. ARNO: Joyce
21	DR. LIPSZTEIN: I don't think I
2.2	even question that. I think it's okay. I'm

1	just curious why there are so many chest counts,
2	so many chest monitoring that were not used.
3	And they have all the regions on the chest on
4	the earlier countings from 1970 until 1980.
5	They have everything on chest also.
6	And they have some measurements that are only
7	chest.
8	DR. ARNO: Okay, chest
9	measurements are typically looking at the lower
10	energy photons, and then you're recent memo
11	that came out, I guess last week, talking about
12	this 86.5 keV photons
13	DR. LIPSZTEIN: That's after the
14	80s. Let's talk first before the 80s, after
15	the 80s is another thing.
16	DR. ARNO: We're talking
17	DR. LIPSZTEIN: Before the 80s
18	because it's just that I found so many chest
19	geometry countings and it's, I don't know.
20	DR. ARNO: I mean you can find over
21	a hundred, but that's still less than the
22	several thousand that we're dealing with for

1	whole body counts.
2	DR. LIPSZTEIN: Okay, maybe I'm
3	just curious because from the '74 to '79 all the
4	workers that I looked at, they all had chest
5	geometry, not stretcher. That's, you know,
6	maybe a coincidence but I got the 80 workers,
7	and all of them had like that. But
8	DR. ARNO: Yes, I think
9	DR. LIPSZTEIN: that was
10	DR. ARNO: part of that is the
11	point I was making earlier, is that they're
12	reporting chest and whole body counts on the
13	same form. Like some of those forms will say
14	chest count on them, but you'll see that they're
15	reporting results for cesium.
16	Well they're not reporting cesium
17	in the chest. They're reporting cesium in the
18	whole body. Both types of data are on the same
19	form.
20	DR. LIPSZTEIN: I saw
21	DR. TAULBEE: Yes, if I can follow
22	on there, Matt and Joyce. If you look at a

1	photo of the stretcher geometry, it becomes
2	pretty clear.
3	We've got one that we've requested
4	from the site during our recent data captures.
5	And it shows an individual laying on the
6	stretcher geometry, with the sodium iodide
7	detectors beneath them. And then the phoswich
8	detectors are positioned over top of the
9	person's chest. So these 2 counts were done
10	simultaneously.
11	The form may say chest counting, but
12	as Matt was pointing out there, they're
13	actually a dual count. With the sodium iodide
14	being underneath with the whole body count in
15	that concave shape, as well as the phoswich
16	detectors positioned over their chest.
17	And they're all reported on the same
18	form.
19	DR. LIPSZTEIN: Okay. If you go,
20	then you, we were discussing after the 80s.
21	After the 80s, they had, I found just one case
22	because as I told you, we just looked at the

1	sample of the workers.
2	So after the 80s, when you go to the
3	chromium, use the chromium to detect the
4	protactinium-233. They had an accident in
5	which they examined the 86.5 measurement of
6	neptunium-237.
7	So I was wondering if you, at that
8	time, when for sure the phoswich detector was
9	used in the chest. You have both results as you
10	say at that time. The whole body, the 40 cm
11	geometry and you have chest count, if you can
12	use also the 86.5 keV to calculate
13	neptunium-237?
14	DR. ARNO: If you look at the gamma
15	ray abundance data. You take the 86.5 keV
16	gamma from the neptunium, and then any gammas
17	in that same general area that would come from
18	the protactinium-233. You wind up with a
19	summed abundance that is 14 percent.
20	DR. LIPSZTEIN: Okay.
21	DR. ARNO: And that's on a chest
22	count. You have to contrast that with our

1	whole body counts, have a summed gamma
2	abundance of, I believe it's about 48 percent.
3	So you're looking at a
4	DR. LIPSZTEIN: Yes.
5	DR. ARNO: difference in your
6	gamma abundance percentages. And then you
7	factor into that the type M material going to
8	clear to the body much quicker than what's going
9	to remain in the lungs.
10	And you wind up with a whole body
11	count that you can expect is going to be much
12	more sensitive than the lung counts.
13	DR. LIPSZTEIN: Yes, but then you
14	have the prebenoff (phonetic) if you leave them
15	that you don't have when you calculate
16	neptunium itself. And it has an almost 12 plus
17	percent.
18	DR. ARNO: Well regardless of what
19	adjustments may or may not be need to be made
20	
21	DR. LIPSZTEIN: That's what we use
22	now, is neptunium, right?

1	DR. ARNO: factor of four, five
2	or six or more that we're going to get by
3	switching to the chest counts.
4	DR. LIPSZTEIN: Yes, but then you
5	have prebenoff (phonetic) if you leave them
6	off, so that you don't have when you're
7	measuring the neptunium. And if they were
8	measuring americium, they surely can measure
9	neptunium.
LO	DR. ARNO: We'll also run into the
L1	issue that the americium measurements are going
L2	to be a compounding factor on the neptunium
L3	measurements.
L4	Whereas the iodide, the amount of
L5	you know, compounding influence of iodine-131
L6	and the whole body counts is expected to be much
L7	less due the rarity of the workers actually
L8	having significant iodine-131 intake.
L9	DR. LIPSZTEIN: Yes, that's the
20	other question. Why did you use chromium-51
21	instead of iodine-131 in this?
22	DR ARNO: When they switched in

1	the 80s they switched to a different reporting
2	style and they switched the energy ranges that
3	they were attributing to given radionuclides.
4	The chromium-51 labeled region of interest
5	overlapped the region of protactinium-233
6	gammas where located.
7	DR. LIPSZTEIN: Okay.
8	DR. ARNO: A change in how SRS
9	reported in their delineation of the regions of
10	interest.
11	DR. LIPSZTEIN: Okay. I still
12	think that maybe the neptunium would be better,
13	like we do now. Nowadays we use neptunium-237
14	because they don't know they can leave them off
15	neptunium and protactinium, but
16	DR. ARNO: Ideally that would be
17	good, but it's very hard to do what we can do
18	these days, with you know, germanium detectors
19	that have very good resolution and sensitivity,
20	and apply those same techniques to historical
21	data gathered with sodium iodides that we
22	DR. LIPSZTEIN: No, yes, but

1	DR. ARNO: play with.
2	DR. LIPSZTEIN: Anyway, the
3	phoswich I think is and going back to that
4	difference in the urine. I saw from one of your
5	slides, I was also not in the other meeting.
6	I saw in one of those slides, I'm
7	going to Finding 18 and 19 when we are comparing
8	the drop from, when it goes, you have the 50th
9	percentile intake rates for neptunium for '68
LO	to '69 was 1.79 dpm per day.
L1	And it increased 50 times from, in
L2	1970 to 1974 it was 93.5. I agree with you
L3	that's the difference between the two methods.
L4	I agree with it, and I know it is because of
L5	this.
L6	But as the method that was used is
L7	not a typical method to have the neptunium
L8	activity in the body. And you have for some
L9	period of time, you have many urine data after
20	'69.
21	In the 80s you have urine data.
22	Several years you have a lot of urine data. Can

1	you do a comparison what you would have for
2	those years, what you got with the whole body
3	counter?
4	Because we see urine, we know it's
5	neptunium. But with the whole body counter, we
6	never know if it is neptunium or another nuclide
7	and also we have the problem of equilibrium with
8	protactinium.
9	It's just three years you have a lot
LO	of counts with, that you have a lot of urine
L1	data. Can you compare them to know how fair we
L2	are with this method, with urine data?
L3	DR. ARNO: We have done that
L4	comparison and that was, Tim Taulbee presented
L5	a plot in the February 5th meeting showing that
L6	comparison.
L7	DR. LIPSZTEIN: Yes, that was only,
L8	that was claimant-favorable. I want to know,
L9	because I mean 50 times to be
20	claimant-favorable is for me
21	(Simultaneous speaking.)
22	DR. LIPSZTEIN: is okay, it's

1	claimant-favorable. I don't know if it is
2	scientifically correct. So I wanted to know
3	when you have the same year, if you can compare
4	those? Give SC&A the data, not just say it's
5	claimant-favorable, so that we know how we
6	stand on?
7	DR. TAULBEE: This is Tim, Joyce.
8	If I'm understanding what you're asking here,
9	is that we take the neptunium data that we have
10	and we compare that to that person's in vivo
11	data? Is that correct?
12	DR. LIPSZTEIN: Yes. It's just
13	three years that you have a lot of urine counts
14	and you have whole body counts at the same time.
15	And I saw in your presentation, you
16	probably have this data ready because it said
17	it's claimant-favorable. I want to know how
18	claimant-favorable it is?
19	What's the difference between the
20	two? So that we can see where we stand for.
21	DR. ARNO: We'd obviously have to
22	run those calculations. But in the late 60s,

1	when we switched from urinalysis to whole body
2	counts, the factor of 50 jump in the calculated
3	intake rate.
4	But when we get into the 80s, and
5	when we transitioned from the 80s to the 90s,
6	the change in the intake rate is only about 10
7	percent.
8	So we're looking at a much lower you
9	know, overestimate if you will, in the 80s
10	compared to what we would if we had enough
11	data to do that.
12	DR. LIPSZTEIN: I understand, no.
13	That's not what I'm talking. For example, in
14	'84 you had a lot of urine samples, what I'm
15	seeing from the, from your, from the slides.
16	And in '82 also there are a lot of samples, and
17	in 1980 you also have a lot of urine samples.
18	So if you take those three years,
19	give what would be, what was the intake based
20	on those on the urine data, 1980, 1982, and
21	1984, and compare it with the intake rate that
22	you derived from in vivo.

1	Because then you have the same year,
2	and then you can, and you know that urine
3	samples is neptunium, and you want to compare
4	it to, with the whole body, so we can say, oh
5	it's 10 times, it's two times, it's only so we
6	know where we stand for.
7	DR. TAULBEE: This is Tim. This is
8	something we can certainly do. It's going to
9	require us to do some calculations, but we can
10	do that.
11	DR. LIPSZTEIN: Okay, great.
12	Because I don't have the data, so I can't do it.
13	I don't have the urine data.
14	DR. NETON: Hey, Tim. This is Jim.
15	Isn't there a potentially better way to do this,
16	using the plutonium to neptunium ratio that
17	you've established?
18	DR. TAULBEE: Well that is another
19	issue, Jim. But let me finish this right here
20	with Joyce, and then I'll address yours.
21	DR. NETON: Hey, Tim could you turn
22	up your phone a little? Because I'm having

1	trouble hearing you.
2	DR. TAULBEE: I'm sorry. Is this
3	better?
4	DR. NETON: That's better.
5	DR. TAULBEE: Okay. I just moved
6	it closer to me, that's all.
7	If you look at that chart that I put
8	up, Joyce, from my presentation, of the
9	neptunium urine data.
10	DR. LIPSZTEIN: Yes.
11	DR. TAULBEE: There's it's going
12	to be this difference in comparison. It's not
13	comparing the intake. It's actually just
14	comparing the urine data.
15	What we did here, or what Matt did,
16	was he calculated based upon the in vivo
17	takes, the intakes. What the urine
18	concentration would be for a worker in those
19	time periods?
20	Those are the red dots on that
21	particular plot. The bar charts are the actual
22	urine data that we have, and the, box plots

1	rather, I'm sorry.
2	And if you look at it in the time
3	periods you're talking about, 1980, 1982, and
4	1985. You'll see that the, our, with the
5	exception of 1980, always above the 75th
6	percentile of the data. The actual urine data
7	that we have.
8	Now we can compare the intakes to
9	give you the field that you're talking about.
10	This factor, I mean on this plot of the urine
11	data based upon the in vivo data, in vivo, and
12	the actual urine data that we've got samples
13	for.
14	DR. LIPSZTEIN: Yes, but then we
15	know where we stand at those times.
16	MR. BARTON: This is Bob Barton.
17	Can I ask you a clarifying question here? Do
18	we have a feel for how many of these urine
19	samples of people who were actually monitored
20	via urinalysis for neptunium, that would also
21	be included in the in vivo records that are
22	being proposed to use to reconstruct neptunium?

1	Because that might be a more direct
2	comparison. I think maybe what was done is we
3	looked at it by year. And grouped the samples
4	together, and put it to a distribution like is
5	normally done.
6	But you get better information if
7	you can actually look at individual workers,
8	and say well they got monitored both methods.
9	And if we were going to reconstruct
10	their doses using both methods, you know, how
11	do they stack up with one another? I don't know
12	how possible that is.
13	If we have a feel for how much
14	overlap there might be? And if that, that type
15	of comparison to me is a little more helpful
16	because you're looking at individual workers
17	who if they submitted urinalysis samples they
18	probably were exposed.
19	So let's take a look and see based
20	on their records, their in vivo records, and the
21	urinalysis through to calculate their intakes
22	both ways. How does that compare? So I guess

1	I'd pose the question, is that even a
2	possibility?
3	DR. TAULBEE: Yes that is a
4	possibility. The only difficulty is on the
5	current NOCTS data, we have so few claims.
6	Where if we could do this on a few number of
7	workers?
8	We could do it for everybody that we
9	have it for, that's possible. But a lot of the,
10	or some of the neptunium data that we got came
11	out of logbooks and from other sources, where
12	we don't necessarily have an in vivo count
13	associated with them.
14	Without going back to the site to
15	get more data, which is of course possible but
16	much more time consuming and a much longer time
17	period.
18	MR. BARTON: I understand, so the
19	urinalysis data covers more than just the
20	claimant population. Whereas the in vivo data
21	is strictly for the claimant population that we
22	have. I understand that.

1	DR. TAULBEE: Okay. Correct Matt,
2	correct?
3	DR. NETON: Right.
4	DR. LIPSZTEIN: I'm curious about
5	Jim's question now.
6	DR. TAULBEE: Yes, one of things
7	that I indicated during our February 5th
8	meeting, was that there's, the site was using
9	plutonium as the basis.
10	Kind of for their monitoring to
11	cause the additional neptunium monitoring
12	during this time period of 19, I think it's
13	about 1970 through 1978.
14	And this is based upon the
15	contaminant of plutonium-238 in the neptunium.
16	And so that is another method of estimating this
17	particular dose. Is to use a ratio off of that
18	methodology.
19	Chose not to use that because at the
20	time, we didn't have complete data,
21	contamination ratio. And in fact today we've
22	seen the data, we've requested the data, but we

1	still don't have it in house.
2	Something else that we could
3	compare, to give you all a feel of what the, I
4	guess what the neptunium exposures would be,
5	would be to look at the plutonium and go off with
6	that ratio.
7	And the, I guess the true measure in
8	that time period, the early 1970s where we don't
9	have a lot of neptunium bioassay data. Does
10	that answer your question, Jim?
11	DR. NETON: Yes. Yes, I think it
12	does. I mean if I recall correctly, the
13	plutonium was much more predominant in the mix
14	than the neptunium, right? I mean even under
15	some very conservative circumstances.
16	That would be one way of bounding
17	these exposures using, you know, the urine data
18	developed, not relying on the in vivo count.
19	I think what we have here, is we've
20	got a couple approaches. And I don't hear
21	anyone really arguing that none of these
22	approaches are valid. I think we're kind of

1	arguing about technical details here.
2	It almost seems to me that this
3	problem's more of Site Profile issue than an SEC
4	issue, but that's just my impression, unless
5	you appear to have another thought.
6	DR. LIPSZTEIN: Yes, I have
7	problems also with using the protactinium to
8	measure the activity of neptunium. I'm well
9	aware that it's used, but you have to have
10	neptunium in equilibrium with protactinium.
11	And we don't know about it. And I
12	don't think NIOSH comment on this was
13	appropriate because it was saying about making
14	assumption of, on the time pattern of intake.
15	About assuming a chronic intake during a period
16	of time.
17	I think this doesn't have anything
18	to do with the time of the measurement and the
19	equilibrium between neptunium to
20	protactinium-233 proportion.
21	The proportion of protactinium-233
22	to neptunium-237 is only at the time of the

1	measurement. Is only related to the age of the
2	neptunium first, and also on how long after the
3	exposure the worker was monitored. So how much
4	has decayed inside the body also.
5	Doesn't have anything to do with
6	assumption about the intake model that was done
7	after you have the 50 percent, the 84th
8	percentile, the 95th percentile of the log
9	normal distribution of the in-vivo data of all
10	workers.
11	It has to do with what was the
12	proportion at the time of the measurements. So
13	this an uncertain effect. And also I was not
14	happy with NIOSH response that a GSD of three,
15	or over three would resolve everything.
16	No, the GSD of three or more than
17	three, has to do with the log normal
18	distribution of all the workers. Nothing to do
19	with individual measurements that is one point
20	in the log-normal distribution.
21	So one thing is the time of the
22	measurement, and the measurement you get for

1	one person. And the other thing is the
2	coworker distribution that has to do with the
3	log-normal distribution of all the results of
4	the workers.
5	So I think the proportion of
6	protactinium-233 to neptunium-237 is also an
7	important point to consider when you have the
8	measurements.
9	DR. ARNO: The ratio is important,
10	but it's also important to keep in mind you do
11	have to maintain a consistent set of
12	assumptions.
13	You cannot completely segregate the
14	methodology used to determine equilibrium for
15	the whole body count. And then the methodology
16	to do the intake modeling.
17	The intake modeling is based off of
18	a chronic intake which is used as a surrogate
19	for either, A, an actual chronic intake, or B,
20	a series of relatively small acute intake,
21	which is another valid and common exposure
22	scenario.

1	We will never know the length of
2	time between an intake or the point of
3	measurement
4	DR. LIPSZTEIN: I'm not
5	DR. ARNO: regardless of chronic
6	intake, or the age of the neptunium to which the
7	person was exposed. And even if we know the age
8	of the cans the person was working with, the
9	contamination in the lab or along the line, may
10	be from previous runs.
11	You will never know that
12	information.
13	DR. LIPSZTEIN: So that's a big
14	point, because if you never know this
15	information, it might have been monitoring
16	someone that was exposed to fresh
17	neptunium-237. And so the protactinium won't
18	reflect what was the neptunium exposure.
19	DR. ARNO: Even if you can never
20	know the precise number for a specific
21	measurement, it is possible to make some
22	reasonable assumptions about what people would

1	be exposed to. There was a known minimum decay
2	time between when the neptunium was purified
3	and when the work was done on it.
4	In the context of a chronic intake,
5	and knowledge about how often people were whole
6	body counted you can make reasonable
7	assumptions, especially in the context of the
8	assumption of a chronic intake.
9	You're thinking about a huge
10	DR. LIPSZTEIN: No, no. I think
11	you are mixing one thing with the other.
12	Forget the chronic intake. So that, the intake
13	is calculated for the 50th percentile count, or
14	with monitoring results from the whole
15	population of workers in that year.
16	I'm talking about each measurement
17	that is a point in that log-normal
18	distribution. Each measurement if you have
19	one worker, he is measured. He was exposed to
20	freshly monitored neptunium. You are
21	underestimating the neptunium content in the
22	body.

1	So you have, it is at the time of the
2	measurement. Nothing to do with intake
3	assumptions. It's the amount of neptunium at
4	the time of the measurement that you are
5	measuring for protactinium.
6	So if you have many workers exposed
7	to freshly neptunium-237 with no protactinium
8	in it, you are underestimating the neptunium
9	quantity in the body.
10	MR. BARTON: If I could just add on
11	to what Joyce just said. This is Bob Barton.
12	I think you know, as you said Tim, you know at
13	some point you just don't have the information
14	to do it perfectly.
15	I mean we'd all like to, but I think
16	what Joyce is saying is the assumption on
17	equilibrium we're essentially, the assumptions
18	that have been laid out according to it being
19	in equilibrium at the time of the measurement.
20	Now we know that's it's probably
21	somewhere in between the freshly separated, and
22	in equilibrium between the Pa-233 and

1 neptunium. So I guess, you know, where I come 2 out on this is you sort of stated your 3 4 assumptions in the response. You know, you 5 said usually there was a 25 day period before 6 irradiated, you know, billets were actually handled and processed. 7 And then you provided some rational 8 then, well you know, a lot of the exposure would 9 10 come from the, you know, contamination in the 11 plant. I quess we would kind of like to see 12 13 that substantiated a little bit more. I mean, you know, it sounds fairly reasonable. 14 know, you stated that it's 25 days, but then 25 15 16 days doesn't bring you to equilibrium. So you know, I guess we'd like to see 17 that rationale flesh out a little bit more with 18 19 some actual sited references. And steps to 20 really build the case that, you know, since we don't know, equilibrium is going to be the best 21 answer versus some other adjustment factor. 22

1	DR. ARNO: The problem here is
2	assuming that this is a measurement made after
3	an acute intake. Our coworker intake model for
4	calculating the intake has to be consistent
5	with how we interpret the bioassay data for
6	determining the log-normal distributions.
7	And that is based off of a chronic
8	intake. And we were assuming that the bioassay
9	measurement is midway in that chronic intake.
10	DR. LIPSZTEIN: Yes, but the
11	DR. ARNO: We need to keep status
12	(Simultaneous speaking.)
13	DR. NETON: This is Jim
14	DR. ARNO: consistent, if you
15	don't you're invalidating the way you're doing
16	the analysis.
17	DR. LIPSZTEIN: Not, I
18	DR. MAKHIJANI: That's exactly why
19	
20	DR. ARNO: Come on in.
21	DR. MAKHIJANI: This is Arjun.

1	DR. LIPSZTEIN: Yes.
2	MR. BARTON: Actually, I think Jim
3	was trying to say something first.
4	DR. NETON: Yes, let me just, I was,
5	can I suggest that, you know we have that
6	plutonium ratio data now. Could we not use
7	that to sort of validate some of, not validate
8	but evaluate the appropriateness of the whole
9	body counts?
10	DR. LIPSZTEIN: Would be great if
11	you'd do it.
12	DR. NETON: I don't know, you know,
13	because we know this is a maximum or
14	conservative ratio and then you do a, you look
15	at a whole body count and you say is that
16	consistent with what we, you know, with what
17	we're assigning. Because many of them are
18	going to be based on MDA.
19	DR. LIPSZTEIN: Yes.
20	DR. NETON: But we know, no,
21	protactinium there at all. Is that a
22	possibility Tim, or am I off base?

1	DR. TAULBEE: No, I think it is a
2	possibility. We haven't done that yet because
3	I don't have the, all of the ratio data yet.
4	But we can certainly do that.
5	DR. NETON: I think that we need to
6	go back and we have this ratio data which can
7	do a lot for us. I think we need to, I would
8	say that NIOSH probably needs to go back and
9	look at that.
10	And it can either bolster some of
11	these issues, or supplant some of them in
12	certain situations. So I think it's not going
13	to be fruitful here to debate whether
14	protactinium is in equilibrium or not at this
15	point.
16	DR. LIPSZTEIN: Yes.
17	DR. NETON: So I think
18	MR. FITZGERALD: Just to reaffirm
19	that, I think what you're saying is basically
20	it can be used to both, either validate the
21	current approach or supplant it, if it turns out
22	that there's some issues.

1	Certainly it offers a more data
2	based
3	DR. NETON: Right.
4	MR. FITZGERALD: way of doing the
5	estimate.
6	DR. NETON: Exactly and Tim pointed
7	out correctly. We didn't have this data until
8	a while ago. And we still don't even have them
9	physically.
10	We became aware of them and I think
11	there's a lot that can be done with this to
12	address the issues that are being raised here,
13	in my opinion.
14	DR. MAKHIJANI: Could I say a
15	couple of things? This is Arjun.
16	ACTING CHAIRMAN CLAWSON: Sure
17	Arjun, go ahead.
18	DR. MAKHIJANI: Yes, just two
19	things. In regard to the equilibrium
20	question, I think in real life there's going to
21	be a distribution of, you know, protactinium in
22	relation to neptunium, from fresh to fully in

1	equilibrium.
2	And we don't know that distribution
3	until you establish what kind of activity has
4	happened, which is going to be quite hard.
5	I mean actually to, in relation to
6	the time of measurement and the time of exposure
7	and so on. So that's, I think that's a very
8	important thing. So, because it makes a lot of
9	difference to what dose you come up with.
10	And regarding the point that was
11	just being made, with plutonium and neptunium
12	ratios, I think we do have to establish the dose
13	enough, plutonium contamination in all the
14	exposure situations, or essentially the major
15	exposure situations at least.
16	That we weren't dealing with near
17	pure neptunium targets as they were being
18	fabricated. And to exclude the idea that there
19	was something close to pure plutonium, that we
20	have the necessary ratios.
21	I know the difference in, there's a
22	big difference in half-life and specific

1	activity but still we do need to establish the
2	purity of neptunium and it was not dominant in
3	some situations.
4	DR. TAULBEE: This is Tim, and this
5	comes from that data that Joe looked at, at the
6	same time we were capturing it there in the
7	vaults.
8	Where we have virtually month by
9	month contamination, plutonium contamination
10	measurement values for both the HB line and then
11	the oxide coming out the other end, which is
12	effectively purified, cleaned up more than what
13	coming off the frames in the canyon.
14	We had both ratios of data available
15	to us and so I think that's pretty well
16	established that plutonium is a significant
17	component of this exposure throughout the
18	monitoring time period.
19	(Simultaneous speaking.)
20	DR. TAULBEE: I'm sorry, whoever
21	spoke after me.
22	(Simultaneous speaking.)

1	DR. NETON: Yes, this is Jim. I
2	mean that's why they decided to stop monitoring
3	for neptunium in the first place. Because they
4	realized that the neptunium was a better
5	indicator of intake than the, that the
6	plutonium was a better indicator of intake than
7	the neptunium.
8	I think we'll proceed. And I'd
9	like to proceed, as I suggested and that we go
10	back and take a look at that and see what the
11	path forward is for either validating,
12	verifying, or supplanting using some of this
13	plutonium data that we have.
14	It makes a lot of sense, to me I
15	mean, to me it's a good source of information
16	that we could take advantage of.
17	MR. FITZGERALD: And for reference
18	sake Arjun, this is in the, and correct me if
19	I'm wrong Jim, it's in the Works Technical
20	Reports. The monthly reports that were
21	generated up through the 80s I believe.
22	DR. TAULBEE: That's correct. We

1 only, I believe, we only have data in those 2 reports up through 1983 possibly 1984, but that's 1984 is when they stopped manufacturing 3 4 the neptunium targets. So they kind of end 5 about the same time. 6 ACTING CHAIRMAN CLAWSON: So first 7 of all, Ted, I don't know whose taking minutes on this because I have no access to this, but 8 it sounds like NIOSH is going to go back and 9 10 according to Jim, and we're going to use the plutonium ratio, to be able to look at this, is 11 that correct, Jim? 12 13 Well Brad, I think DR. NETON: we're going to look at that and see how that 14 might play out for us. 15 I'm not saying we're 16 going to fully use plutonium ratios but we're going to see what use we can make of it, under 17 what scenarios. 18 19 ACTING CHAIRMAN CLAWSON: And T 20 understand. But personally, thanks everybody for giving me a headache right off the bat, at 21 22 the beginning of trying to follow this, but that

1	sounds good to me.
2	But I do have one question and that
3	was back on the Findings, well 1 through 9. One
4	of my questions was, and I understood in there
5	that there was an americium difference back and
6	forth.
7	But that we couldn't, I got from it,
8	that we could not tell what kind of, if it was
9	a chest count or if it was a genomic issue?
10	Because they were both reported on the same
11	form.
12	And the only way we'd be able to know
13	what type of process, what they were looking for
14	is by looking at what they were, the detector,
15	or what they were looking for? I didn't
16	understand that.
17	I thought and maybe I'm just
18	misunderstanding this. But I thought that I
19	heard NIOSH responding that the only way, they
20	were both on the same form.
21	And you'd have to look at what they
22	were, the radionuclide they were looking for to

1	be able to determine what, if they were doing
2	it in a genomic, well what, is that correct?
3	I was trying to, we kind of jumped
4	into 18 and 19, and I just wanted to clarify this
5	back on 1 through 9. Is this correct? That
6	when they were doing these
7	DR. TAULBEE: I'll
8	ACTING CHAIRMAN CLAWSON: Go
9	ahead, Tim, I'm sorry.
10	DR. TAULBEE: I'll take a stab at
11	that. From 1974 through the 1980s there was a
12	dual count that was conducted when the person
13	was laying on the stretcher.
14	There was a phoswich detector over
15	top of their chest, and then there's a series
16	of sodium iodide detectors underneath their
17	body. As they were laying on this bed, this
18	stretcher bed.
19	And the results are reported on the
20	same form, for both the phoswich, which is
21	considered a chest count. And for the whole
22	body count, which is the remainder of the body

1	from the sodium iodides underneath them.
2	When you look at the form, you can
3	look at the top part, and you can tell that these
4	are off of the stretcher geometry.
5	And then at the bottom you'll see
6	where it says chest count, and you'll see where
7	they're given the x-rays for plutonium, for
8	americium and enriched uranium at times.
9	Those are the chest counts coming
10	from the phoswich detectors. So when you look
11	at the form as a whole, you can see both counts
12	on them. Does that help, Brad?
13	DR. LIPSZTEIN: Yes, but
14	sometimes, it's only chest. And sometimes
15	it's only whole body.
16	DR. TAULBEE: That
17	DR. LIPSZTEIN: Sometimes it's
18	only chest.
19	DR. TAULBEE: Is that post-1975?
20	Is that, because I'm thinking that's pre-1975?
21	DR. LIPSZTEIN: There are some
22	post-1974 too, but many are between '70 and '74,

1	but many after '74 until the 80s. And then on
2	the 80s then you have both on the same.
3	DR. TAULBEE: Now
4	DR. LIPSZTEIN: After the 80s then
5	you have both, always. Before the 80s
6	sometimes you have just chest, but as I
7	understood you are not considering the ones
8	that are only chest. Right?
9	DR. TAULBEE: That is correct.
LO	You know, looking at the different forms here.
L1	The, let's see, that, okay a 1978 one here.
L2	Okay, you know, as Matt was discussing, well now
L3	even the 1978 here, there is both chest and the
L4	whole body.
L5	And then the 1980 form here, I'm
L6	looking at an example, it's both chest and whole
L7	body. They're there. They're not labeled
L8	explicitly, but if you look at the channels, the
L9	regions of interest, the channel count data, I
20	guess the channel numbers in a sense, you can
21	tell whether it's chest or whether it's whole
22	body.

1	Well we have a report or well it was
2	an internal document that was written that kind
3	of goes through each of these different forms
4	and explains the different regions of interest.
5	And how we calculate the activities.
6	I think I guess we could form, turn
7	this into a report, if this would help you all
8	understand the data that we're using here. We
9	could certainly do that.
10	MR. BARTON: This is Bob Barton,
11	you just kind of mentioned a form, I think where
12	Joyce's observations are coming from, were
13	actual, the actual claimant files. So
14	DR. LIPSZTEIN: Yes.
15	MR. BARTON: I don't know. I
16	don't know if this is a possibility that maybe
17	you know, they use the same form, but they
18	didn't always fill out you know the counts in
19	each, because maybe they weren't doing both
20	style counting at the same time in every case.
21	Or you know, I mean if it's, I guess
22	I need clarification was it a standard form you

1	were just referring to? Or I mean are you
2	looking at actual applications of that form as
3	they appear in the claimant files?
4	DR. TAULBEE: These are the forms
5	as they appear in the claimant files. Looking
6	at post-1975, it's always an electronic
7	printout.
8	Now sometimes they've written on
9	the electronic printout, but the printout will
10	have channel data associated with it. If you
11	read the form, the printout, I'm sorry.
12	But prior to 1975 there is more hand
13	written forms and what you'll see in the NOCTS
14	files is you'll see one page, it'll say whole
15	body counted data, and the next page it might
16	say chest counted data.
17	In reality, that chest data is on
18	the back of that whole body count data form.
19	DR. LIPSZTEIN: I agree with that,
20	I saw all of this, but I also saw many reports
21	that were written chest, and some '74, '79
22	especially. There was, most of the forms I

1	took the data from NOCTS, from claimant files.
2	And it was like as I said, was a
3	random number of workers that I looked at.
4	What called the attention to me, is that all of
5	the ones that I looked were written chest on
6	them.
7	So it was not theoretical, but I
8	think that we are reaching an agreement that you
9	were going to look at this data as compared to
LO	the plutonium, right?
L1	DR. TAULBEE: Yes. Could you send
L2	me the list of those claimant files that you
L3	looked at? And we can certainly take a look at
L4	it and then, and instead of trying to talk in
L5	the abstract here, we can actually?
L6	DR. LIPSZTEIN: Okay, I'll do it.
L7	DR. TAULBEE: I'll appreciate it.
L8	DR. LIPSZTEIN: I'll put it on the
L9	O: drive, okay?
20	DR. TAULBEE: I'm not sure I have
21	access to your 0: drive.
22	DR. LIPSZTEIN: Oh, okay, I'm

1	sorry. Okay, I'll see which people of SC&A
2	that you get it.
3	MR. KATZ: Tim, you have access,
4	it's your 0: drive. So you have access to
5	everything SC&A has.
6	DR. TAULBEE: Okay. Does this
7	appear under the Advisory Board, Radiation
8	Worker Health Directory?
9	MR. KATZ: Tim, that's where I
10	think she'll put it.
11	DR. LIPSZTEIN: Yes.
12	DR. TAULBEE: If you put there
13	under the Savannah River Site SEC, then I should
14	be able to find it.
15	MR. BARTON: Could I ask an
16	overarching question because I agree with
17	Joyce. I think Jim Neton has given us a really
18	promising path forward with the plutonium ratio
19	comparison.
20	And I pose this question, if you
21	had, had this data that was just recently
22	captured prior to formulating the current

1	coworker model, I mean would you have used that
2	plutonium ratio data instead?
3	I mean do you feel it's a more viable
4	and scientifically defensible way to go than
5	what was currently proposed?
6	DR. TAULBEE: Yes, I do.
7	MR. BARTON: Well then, so we
8	actually do
9	(Simultaneous speaking.)
10	DR. NETON: That's why I'm
11	suggesting we go back and look at this and see
12	to what extent it's useful. And it may be the
13	best set of data that we could use.
14	MR. BARTON: Okay, and then so then
15	I think that's really the path forward, and but
16	I would just reiterate Arjun's caution that we
17	need to make sure that when we're looking at
18	these ratios, that these ratios do capture
19	situations where maybe the neptunium is a
20	little purer, and there might not be as much
21	plutonium there.
22	And it sounds like Tim said, that,

1	that's definitely the case. That we have that
2	data, it's solid, it's going to be
3	representative of all the situations we need to
4	cover.
5	And so I would say, you know, be
6	explicit when you guys do that analysis. But
7	listen, these really are the bounding ratios,
8	and you know, when we look at these bounding
9	ratios we look at this coworker model, you know,
10	however it pans out.
11	But I think we need to keep focused
12	on that we're not missing any situations where
13	there isn't that plutonium ratio data where
14	there could be a significant exposure to
15	neptunium.
16	So I would only caution that, but it
17	sounds like a really good plan to me.
18	DR. TAULBEE: Now let me throw out
19	a little bit of a caution on that, because some
20	of those values of the plutonium ratio are less
21	than. Where the plutonium contamination was
22	less than .05 for example.

1	So you know, that would be the
2	average for example and they give a minimum and
3	a maximum, and we have an estimate of the number
4	of samples.
5	So it's not that every single one
6	there is, you know, the average is showing that,
7	you know, the plutonium contamination is .1 or
8	something like that.
9	There are months, especially you
10	get into the later 70s, where that ratio does
11	begin to decrease a bit. And so it goes into
12	a non, I don't want to say non-detectable type
13	of scenario, but the values that they're
14	reporting were a less than value.
15	So it does play a little bit back
16	into you know, what Arjun was mentioning of
17	dealing with really pure neptunium if you will,
18	and that was our whole, one of our main reasons
19	for going with the whole body count initially
20	early on. Was we didn't know how that value
21	changed over time.
22	Right now I just have a general feel

1	of how it changed, based upon looking at the
2	reports, and the data that we captured.
3	But we don't have that data in hand
4	to actually have the analysis and to be able to
5	trend it and see what is actually happening with
6	it.
7	But I do agree this is the way I
8	would, if we had the data early on, we would have
9	gone down that path of the plutonium
10	contamination methodology. And as I clearly
11	was monitoring based upon plutonium because
12	they felt that, that was the most accurate as
13	well.
14	DR. MAKHIJANI: This is Arjun.
15	Can you hear me?
16	DR. TAULBEE: Yes.
17	DR. LIPSZTEIN: Yes.
18	DR. MAKHIJANI: One thing for this
19	less than, if you have a positive neptunium
20	result above the MDA, and less than plutonium
21	results. This is going to be a big
22	methodological problem.

1	Of course if most of the
2	measurements are positive for both, then you
3	don't have a big problem. But if you have many
4	measurements of plutonium, less than and
5	neptunium less than.
6	Or plutonium less than and
7	neptunium positive, this of course would not
8	allow us, you know, would create difficulties.
9	I just want to put that on the record.
10	DR. TAULBEE: Yes, you're correct
11	there, Arjun. The scenario where this falls
12	apart is where you have a positive neptunium and
13	a negative plutonium. And we do recognize
14	that.
15	I have not seen that, I'm not saying
16	it doesn't exist, but that's not something that
17	I've seen yet.
18	And from the cases where I've seen
19	people having exposure, neptunium exposure
20	where they had a nasal smear that came up
21	positive and they did follow up bioassay, then
22	the cases, the case that I was looking at

1	yesterday for example, the plutonium was on the
2	order of like 5 dpm and the neptunium was
3	non-detected.
4	So you know, that plays into the
5	opposite role of where this plutonium
6	methodology works and is far more sensitive.
7	DR. MAKHIJANI: Right, I just want
8	to yes, I just want to raise that flag and then
9	we'll, you know, I'm not disagreeing with
10	anything that's being said in terms of going
11	ahead. And John, you can put me on mute.
12	MR. FITZGERALD: Jim, Joe. What,
13	I know this data was collected last fall. Is
14	there any sense of when it might be available?
15	DR. TAULBEE: I had conversation
16	with Savannah River yesterday about this to try
17	and get that data. Because they have not, our
18	notes from our classified vault visit, they
19	haven't even begun reviewing MD2 funding
20	issues.
21	I'm currently trying to get those
22	bumped up from a priority standpoint to where

1	they will release some funds to the
2	classification reviewers, so that they can
3	review them, and we can get the data, at least
4	from that standpoint.
5	I'm hoping in the next few weeks
6	that we can actually get the data in-house from
7	our notes. Which is where we extracted all
8	that data, Joe, if you recall?
9	MR. FITZGERALD: Yes.
10	DR. TAULBEE: So that's what I'm
11	hoping for right now.
12	MR. FITZGERALD: All right.
13	Thanks.
14	ACTING CHAIRMAN CLAWSON: Well, I
15	guess I'd like somebody to, Joe, possibly you
16	can help me out, let's just summarize our paths
17	forward on this so that we understand what we're
18	doing.
19	I'm, Jim, I appreciate what you've
20	put out there because I personally think that
21	will help a lot too. But we also need to get,
22	we need to get this data in hand so that the

1	people evaluating this can be seeing the same
2	information, that all of will be seeing the same
3	stuff.
4	So what's the path forward on this,
5	Joe? And Jim, I guess, or Tim.
6	MR. FITZGERALD: Yes, I think you
7	know, Joyce and Matt and everyone else has
8	certainly identified some of the questions that
9	we're having relative to validating the in vivo
10	versus the bioassay.
11	And I think what Jim has offered is
12	a pathway which would be much more, perhaps
13	efficient, than going back and you know, doing
14	some de novo analyses between the urine and the
15	in vivo, going a little bit further into
16	individual data comparisons.
17	And in this case, as Tim noted, we
18	collected or observed a lot of very specific
19	Pu/neptunium ratio data that's in the monthly
20	technical reports.
21	So assuming that data will be
22	available I think that would be the comparison

1	that would be most useful to do at this point.
2	And I think I like the perspective that once
3	that data is available it can be used to do the
4	kind of validation we're talking about, much
5	more readily and credibly.
6	And if that validation demonstrates
7	that the approach falls short, then I think
8	what Tim and Jim have said is it would offer an
9	alternative methodology that would be in fact
10	more advantageous in modeling respects than the
11	one that had been used from a couple years back.
12	So this is responsive I think. And
13	maybe Joyce can help me. I think we've kind of
14	bridged between several findings in the
15	neptunium arena, you know, 9, 10 and 11 at
16	least. Maybe even further.
17	And this would offer some of the
18	validation that we lack and that we're raising
19	questions about relative to the current
20	approach for using the in vivo, in vitro, the
21	different methodologies and how they compare.
22	Joyce, I know you covered a lot of

1	ground. Is this path responsive to at least
2	the issues in 9, 10, 11? I know we kind of moved
3	forward along that line.
4	DR. LIPSZTEIN: Yes, I do. I think
5	it goes, I think all the issues that I had, it
6	covers it.
7	MR. FITZGERALD: All right. So
8	Brad, I think this would be the path forward,
9	and the action. We, SC&A as Joyce offered
10	would put the sampling that she did on the
11	individual claimant files up on the O: drive for
12	Tim and his crew.
13	And NIOSH would await receiving the
14	ratio information from Savannah River, at which
15	point they would, as I understand it, would
16	assess, you know, what would be appropriate in
17	terms of analyses. And then would go forward.
18	And I don't know Brad, whether the
19	Work Group would want some kind of indication
20	from NIOSH at that point, what that decision
21	would be?
22	In other words now that the data is

1	available and they have a chance to look at it,
2	what specific they would do in terms of an
3	analysis of some sort?
4	With the Board meeting coming up,
5	that might be a useful, you know, feedback,
6	given the fact that the analysis itself might
7	take some time.
8	DR. MAKHIJANI: This is Arjun.
9	I'd just like to say one more thing. That the
10	issue that we've discussed today relate to the
11	procedure for dose reconstruction. Basically
12	using all worker data, mostly non-construction
13	worker data.
14	And but you know, we've also raised
15	a number of issues regarding whether than can
16	be used for construction workers, that are
17	quite separate than this. And still need to be
18	resolved.
19	DR. TAULBEE: And along those
20	lines, this is Tim. And along those lines on
21	this, we're you know, been using the plutonium
22	data we have a lot more plutonium data for

1	construction trades workers than we have
2	neptunium data for them. So yes
3	DR. MAKHIJANI: Maybe this will
4	address that, Tim. I just wanted to remind
5	people that, yes, both those issues do need to
6	be taken into account also before this can be
7	resolved.
8	DR. TAULBEE: And well I do have one
9	other thing I'd, just, I had two tasks listed
10	down for us. So one is to develop a model based
11	upon the plutonium contamination that Jim was
12	indicating there.
13	Do we still want to do, because the
14	other task I have is the comparison of the
15	neptunium urine bioassay for the few workers
16	that we do have that for, and their in vivo
17	counts.
18	Do we still want to do that
19	particular comparison? And illustrate, I
20	guess the order of or the increase of using
21	the whole body count in vivo data in our
22	protactinium equilibrium assumption.

1	I think we still want to do that
2	case, is that correct?
3	DR. LIPSZTEIN: That would be great
4	if we can. It's just three years that you have
5	enough data, right?
6	DR. TAULBEE: Yes.
7	DR. LIPSZTEIN: That'll be great.
8	DR. TAULBEE: Okay. Those are the
9	only two tasks that I have listed here. Is that
10	everybody's understanding as well?
11	MR. BARTON: Tim, this Bob Baron.
12	When you mentioned that second task just now,
13	are you talking about comparing individual
14	workers? Is that what we're referring to?
15	DR. TAULBEE: Actually, yes. In,
16	the few individual workers we have, that was my
17	thoughts. But now that I think about it a
18	little more, of what Joyce just said.
19	I think she's wanting us to compare
20	the entire distribution as well for in vivo for
21	those years. And the combined bioassay where
22	we have a lot of data as well. So maybe this is

1	two parts?
2	MR. BARTON: Okay, I thought that
3	the distribution clearance, and the
4	distributions had already been done. And that
5	was within the February 5th presentation.
6	DR. TAULBEE: It had not been done
7	for intakes.
8	MR. BARTON: Okay. I understand.
9	DR. TAULBEE: We did for the actual
10	urine data, but not actually documenting,
11	showing the intakes. I mean Matt's already
12	done the calculations effectively, it's just
13	we've got to pull from a different place and
14	write it into a report.
15	MR. FITZGERALD: So you're saying
16	it would be a two part to that?
17	DR. TAULBEE: There would be two
18	parts to it, but it would all be in one, I think
19	in one report.
20	MR. FITZGERALD: Right.
21	ACTING CHAIRMAN CLAWSON: Yes. I
22	guess, this is Brad. Does that sound good to

1	everybody?
2	MR. FITZGERALD: Yes.
3	(Simultaneous speaking.)
4	MR. FITZGERALD: With the proviso,
5	I think it would be very helpful for the Work
6	Group to know when NIOSH actually receives the
7	data and makes some kind of, and this is what
8	Jim was saying, some kind of decision based on,
9	you know, again the data has not been available
10	yet.
11	But to review that data and decide,
12	you know, what makes sense as far as analysis.
13	you know, what makes sense as far as analysis. Just sort of a milestone for the Work Group so
13	Just sort of a milestone for the Work Group so
13	Just sort of a milestone for the Work Group so there's some indication of where this is going.
13 14 15	Just sort of a milestone for the Work Group so there's some indication of where this is going. Because this would pretty much wrap
13 14 15 16	Just sort of a milestone for the Work Group so there's some indication of where this is going. Because this would pretty much wrap around most of the remaining neptunium issues.
13 14 15 16 17	Just sort of a milestone for the Work Group so there's some indication of where this is going. Because this would pretty much wrap around most of the remaining neptunium issues. Not all of them but most of them.
13 14 15 16 17	Just sort of a milestone for the Work Group so there's some indication of where this is going. Because this would pretty much wrap around most of the remaining neptunium issues. Not all of them but most of them. ACTING CHAIRMAN CLAWSON: Okay.
13 14 15 16 17 18 19	Just sort of a milestone for the Work Group so there's some indication of where this is going. Because this would pretty much wrap around most of the remaining neptunium issues. Not all of them but most of them. ACTING CHAIRMAN CLAWSON: Okay. Well does this, I guess the Board Members, does

1	ACTING CHAIRMAN CLAWSON: Okay,
2	well. I guess my question is here, Ted and I
3	want to make sure this gets documented, so I
4	just
5	MR. KATZ: Brad?
6	ACTING CHAIRMAN CLAWSON: Yes.
7	MR. KATZ: This is Ted. Yes, this
8	isn't a problem. So we can have, you know, Joe,
9	at the, once the meeting is closed you know,
10	tomorrow or the next day or whatever.
11	When you can get to it, Joe will just
12	send out a brief synopsis of the action items
13	on the table so that everybody is clear about
14	what's coming.
15	MR. FITZGERALD: Yes, I've been
16	taking notes and I will circulate that and
17	people can check and make sure I got the nuances
18	correctly.
19	ACTING CHAIRMAN CLAWSON: Okay.
20	This is what I wanted to make clear because I
21	think this is a good clear path. And I'm with
22	you, Joe. I'd like to know when NIOSH finally

1	does get this data.
2	Now SC&A also has action items for
3	Joyce to be able to give them their, this, where
4	her information comes from, the files. And so
5	I, with that I think we're pretty well done with
6	these until we get this other information back.
7	Is that correct?
8	MR. FITZGERALD: That's correct.
9	Tim could you repeat your two part, I mean I got
10	some of it, but not all of it?
11	DR. TAULBEE: After I get off of
12	mute, sure, sorry. The first part will be
13	comparing the distributions of the intake
14	values that we come up, from the in vivo data
15	for 1980, '82 and '85 I believe.
16	And we'll compare that to the intake
17	that we get from the urine bioassay
18	distributions for those years where we have
19	sufficient urine bioassay. So that's part A.
20	Part B, would be to take the few
21	workers we have in NOCTS that we know worked
22	with neptunium and had neptunium bioassay and

1	compare their in vivo data to their neptunium
2	urinalysis data.
3	And calculate the, I guess the
4	intake? Is that correct as to what you were
5	looking for there, Bob and Joyce?
6	MR. BARTON: Yes, this Bob. I
7	think that's pretty much what we're looking at.
8	The only thing I can add, is I don't think you
9	have to necessarily restrict it to only those
10	that have neptunium urinalysis and the whole
11	body counts.
12	Because you could still offer up
13	some weight of evidence, arguments if you just
14	have the neptunium urine bioassay. You can
15	calculate an intake based on that.
16	And then you can go and compare it
17	to what the coworker model would have assigned
18	to these neptunium workers, had they not been
19	monitored. Which is really to me kind of the
20	end game there.
21	I mean if we have a bunch of
22	neptunium workers, we know were probably the

1	highest exposed to neptunium and we have some
2	records for them, we can reconstruct their
3	intakes and compare it to what that coworker
4	model says they would have gotten.
5	And that can go a long ways toward
6	putting a lot of these issues to bed.
7	DR. TAULBEE: Okay, so you want us
8	to focus on the claims where we have neptunium
9	bioassay data, and then I'd compare them to the
10	current coworker model. Correct?
11	MR. BARTON: I think that would be
12	beneficial. I don't know how cumbersome that
13	would become if you have you know, if you have
14	a very large subset that had both the urinalysis
15	and whole body counts, you know, maybe we can
16	focus on that.
17	But I mean I don't think we have to
18	necessarily be restricted by it. I think
19	simply comparing your analysis versus the whole
20	coworker model could offer up some decent
21	evidence as well.

Okay.

DR. TAULBEE:

22

1	ACTING CHAIRMAN CLAWSON: Okay,
2	well I guess my question is, does anybody need
3	to take a break yet? Or do we want to proceed
4	on?
5	I'm not hearing that anybody wants
6	a break. I guess we'll go on to Finding 12. Is
7	that the, or is that, that's got the neptunium
8	too, so.
9	MR. FITZGERALD: Joyce, I know you
10	kind of skipped ahead a little bit. I think
11	we're on 12, but maybe you can advise us on that?
12	DR. LIPSZTEIN: I think we covered
13	everything. Because we were discussing
14	everything at the same time. So I think we
15	covered everything on neptunium. I don't see
16	anything that we didn't. I think that we
17	covered everything.
18	MR. BARTON: Yes, this is Bob
19	again. I think really that path forward kind
20	of covered the bases on a lot of these
21	neptunium, maybe even all of these neptunium
22	findings.

1	DR. LIPSZTEIN: Yes.
2	MR. BARTON: Insofar as we have to
3	wait to see what that plutonium ratio analysis
4	will bring, but you know, most of these findings
5	are technical concerns that may be obviated by
6	the path forward that we've just chosen.
7	DR. LIPSZTEIN: Yes, we discussed
8	everything. Because we started discussing and
9	we went all along, all the findings, so.
10	MR. FITZGERALD: Okay, as far as
11	the other SC&A folks on the phone, before we
12	move on from neptunium to thorium, anything
13	else that needs to be said?
14	Okay, Brad, I think we can
15	DR. MAKHIJANI: Yes. Hi, this is
16	Arjun. I think, I don't know how we kind of
17	threw thorium in there also. I thought we had
18	moving on from neptunium there are quite a lot
19	of thorium specific issues.
20	I don't know that we discussed them
21	all in preparation for this call. And I didn't
22	see anything from Joyce, going

1	DR. LIPSZTEIN: No, no I thought we
2	were finished with neptunium, not thorium.
3	MR. FITZGERALD: No, we're talking
4	about
5	DR. MAKHIJANI: there a lot of
6	thorium related issues that are very specific
7	to thorium. And that will not be covered by
8	this ratio approach, because
9	DR. LIPSZTEIN: Yes.
10	DR. MAKHIJANI: thorium dose
11	reconstruction is proposed along completely
12	different lines. At least after 1990 or 1989.
13	MR. FITZGERALD: Arjun, we are
14	about to get into thorium.
15	DR. MAKHIJANI: Oh, we're about to,
16	sorry. I misunderstood you.
17	MR. FITZGERALD: Yes. No, I'm
18	just trying to make sure we can close out the
19	neptunium findings.
20	DR. MAKHIJANI: Oh, okay.
21	MR. FITZGERALD: But I'm hearing
22	that

1	DR. MAKHIJANI: I misunderstood.
2	MR. FITZGERALD: everybody
3	feels satisfied that the path forward pretty
4	much envelopes those issues and we can just move
5	on to thorium now.
6	DR. MAKHIJANI: Okay, I'm fine.
7	Yes.
8	MR. FITZGERALD: All right.
9	MEMBER LOCKEY: Hey, Ted, Ted Katz.
10	MR. KATZ: Yes.
11	MEMBER LOCKEY: This is Jim Lockey,
12	I was able to join you now.
13	MR. KATZ: Okay, thank you, Jim.
14	Thanks for signing up, signing in. And Jim,
15	for the record has no conflict, correct?
16	MEMBER LOCKEY: That's correct.
17	MR. KATZ: Okay, carrying on.
18	Yes, I guess Joe you can move into thorium
19	business now.
20	MR. FITZGERALD: Okay, yes. And
21	Tim was correct that we got as far as I believe
22	through Findings 3. I guess we didn't quite

1	get into all of Finding 4. We did touch on
2	thoron a little bit.
3	What I'd like to do because it has
4	been several weeks just for continuity sake.
5	Bob Barton, could you, you were on the February
6	5th call as well, could you recap where SC&A
7	stands, starting with Finding 1 and 2? Just to
8	make sure that as we move forward that, that
9	doesn't get lost.
10	MR. BARTON: Sure Joe. Finding 1
11	essentially regarded the source term for
12	thorium at SRS. Originally in our review of
13	Addendum 3, we felt that maybe the focus had
14	been too narrow, perhaps only focusing the
15	coworker model to assigning doses in the 773-A
16	Building.
17	Now since then NIOSH has revised
18	OTIB-81 which is their, I guess you call it the,
19	General Coworker Document, which contains the
20	coworker models for you know, uranium and
21	plutonium, as well as the intake values for
22	thorium and neptunium.

1	And I think that's maybe where to
2	start, with Finding 1 because that's really the
3	name of the game there, as far as who are you
4	going to be assigning these coworker intakes
5	to?
6	And are you covering the correct
7	locations? And so maybe the best thing to do,
8	I've never used Live Meeting before, but let me
9	see if I can get OTIB-81 up there so that
10	everyone can see it. Let's see.
11	DR. ARNO: Which revision of
12	OTIB-81 are you trying to post?
13	MR. BARTON: This would be Revision
14	2, it was released this past December. Let me
15	see if this works.
16	Can anybody see a change there?
17	It's just at Table 5-1.
18	DR. TAULBEE: Yes, I can see it.
19	MR. BARTON: Okay, so that worked.
20	Okay, so here is essentially in my mind the real
21	road map to how these different coworker models
22	are to be applied. And that includes the

1	neptunium and thorium coworker models that
2	we're discussing today.
3	And what you can see here, is in this
4	left column, we have a list of facilities at the
5	SRS site. And then columns 2 through 5 we have
6	different time periods.
7	Obviously these last three refer to
8	the SEC period so they're kind of more pertinent
9	to today's discussion.
10	And then the final column you have
11	here are the radionuclides of concern.
12	Essentially the radionuclides that you're
13	going to assign to these different areas.
14	And obviously those time periods in
15	the middle of this table you see for instance,
16	if you had a dosimeter code in the 1973 to 1990
17	of 1C through 6C, then you would essentially be
18	assigned to the reactor areas.
19	And you would be assigned to warrant
20	a tritium and fission products coworker intake.
21	Now one thing I want to note, that
22	it was very difficult and almost bordering on

1	impossible for SC&A to actually go in and verify
2	the accuracy of these codes as they're applied
3	simply because they're not really annotated or
4	cited.
5	So, I mean to do it, during the
6	February 5th meeting it sounded, or my
7	impression was, that this table was essentially
8	a conglomeration of different resources.
9	Be it operating procedures, other
10	types of reports, interviews perhaps and maybe
11	even just some experience working with the SRS
12	claimant files or documents.
13	So we can't really comment on
14	whether 1C, you know, does that actually refer
15	to the reactors? I'm sure it does.
16	But I mean it would be nice if NIOSH
17	could pull together sort of a reference list or
18	you know, annotate these different dosimeter
19	codes so we can kind of see how they arrived at
20	these different assignments.
21	Because like I said, this kind of is
22	the name of the game of who you're going to

1	assign these different coworker models to.
2	So I don't know if that's something
3	that can be pulled together rather quickly, but
4	it would certainly help us in reviewing this
5	table. I don't know if NIOSH really wants to
6	comment on that?
7	DR. TAULBEE: Yes, this is Tim. We
8	have from the various reports and other health
9	physicist files from the Savannah River, we
10	have compiled a history if you will, of these
11	dosimeter codes over time.
12	We have a breakdown of them from
13	1959. We have the breakdown from 1972 into
14	1973 where they list the old codes and then, the
15	new codes. And then we have additional
16	documents later in time for these codes, from
17	1977, 1984, and then 1991 time frame change as
18	well.
19	MR. BARTON: Okay. It would be
20	very helpful to us if you know, could pull
21	together I guess a list of SRDB numbers, or
22	whatever form sort of those references are in.

1	I assume they're annotated
2	somewhere. That would be very helpful for us
3	if you could pull that together.
4	But beyond that, a couple of
5	concerns that we noticed with this table.
6	Essentially what we, went in and we just pulled
7	you know, a handful of claimant files.
8	And said, all right, let's see what
9	these dosimeter codes actually look like in the
10	actual claimant files. How would this table
11	actually apply to the different claimants?
12	And one of the concerns we have and
13	this may be obviated once we get to look at the
14	sort of the source of all this, is you see there
15	are numerous dosimeter codes for some of these
16	areas.
17	I mean for example, let's scroll
18	down here a little bit. Central shops, I mean
19	there's a ton of different codes.
20	So that kind of gave me pause and
21	there's never really, not really a clear
22	pattern in my mind as to why all these different

1	numbers and letters would refer to the same
2	location?
3	And beyond that, you'll notice that
4	as you inspect this table, and let's see if I
5	can find a good example here. All right for
6	example let's take the code 5F here.
7	Code 5F could refer to the unknown
8	facility. F-Area, A-Line, which if you look at
9	F canyon again 5F is there. The 221-F, B-Line
10	and 5F. The plutonium field fabrication and
11	experimental facility, and the 235 Vault.
12	So that's essentially six different
13	areas that could be assigned based on a similar
14	dosimeter code. And if you look at those six
15	different areas, they all have different sort
16	of mixes of radionuclides that you could
17	assign.
18	So I guess that's one question we
19	had, is how this table would apply in that kind
20	of situation?
21	I would assume that in that
22	situation you would essentially apply the full

1	mix, essentially every radionuclide that
2	appears in those six areas, you have to assume
3	they could have been exposed to. Am I
4	interpreting that correctly?
5	DR. ARNO: Need to clarify that a
6	little bit, this table is an aide to the dose
7	reconstructor. The dose reconstructor is
8	going to have other information from the
9	claimant's DOE, and DOL files as well as the
10	record of a telephone interview.
11	So they will use data from all of
12	those sources to assign the individual to a work
13	location. And then base the intakes off that
14	work location.
15	MR. BARTON: Okay, I understand
16	that. As far as location information goes, one
17	thing that would kind of give me pause, I mean
18	you mentioned the CATI report which is a very
19	useful tool to the dose reconstructor.
20	But really when I look at this table
21	and to kind of emphasis my point, I'm going to
22	scroll down here to the very bottom where we

have the, not identifiable or unknown facility. 1 2 So in a situation where you really can't establish where they are, you essentially 3 4 are assigning the entire mix of coworker radionuclides. 5 6 So when I look at the table what I 7 really see is sort of a, I like to call it a table of exclusion. Because if you can find, you 8 9 know, establish a worker in a specific 10 location, you know, they get whatever mix of radionuclides is there. 11 But I mean if you can't, you're getting the full mix. 12 13 So really what we're saying is if you have a dosimeter code that appears in this 14 table, you might get less of the coworker 15 16 intakes than if you did not have a dosimeter code that was in this table, or we don't know 17 what the code meant, or there was just no, the 18 19 dosimeter code was blank. 20 So a lot of these concerns relate to that uncertainty of how you're going 21 actually apply this table to a claimant. 22

1	I wanted to say that's an implementation issue.
2	And what I want to get into next is
3	we did in fact observe gaps in the dosimeter
4	codes in the few claimant files we did look at.
5	This was especially true in the 1973 to 1981
6	period
7	DR. TAULBEE: Bob, can I
8	MR. BARTON: when the primary
9	source is the HPRED database.
10	DR. TAULBEE: Bob, can we
11	MR. BARTON: and from what we
12	observe there just simply aren't dosimeter
13	codes included there. I mean the field is
14	there, but it's blank.
15	DR. TAULBEE: Bob.
16	MR. BARTON: Now we also observed
17	this to a go ahead.
18	DR. TAULBEE: Bob, this is Tim.
19	Let's first focus on the first part here because
20	there's some other things I wanted to mention
21	here about this table, to expand upon that.
22	And then we can go into the issue that you have

1	identified with HPRED, okay? Is that all
2	right?
3	MR. BARTON: Sure.
4	DR. TAULBEE: Okay. The use of
5	this table as Matt was pointing out, is just one
6	part of the tools for the dose reconstructor.
7	In many cases for people like working in the
8	F-area, you'll notice that plutonium is listed
9	there for, as part of the mix.
10	Well most of the people that worked
11	in that particular facility, actually had
12	plutonium bioassay as well. So we wouldn't be
13	applying the coworker model to them.
14	So one thing to keep in mind, this
15	is a case where we have a person who is
16	monitored. We have a dosimeter code so we know
17	that they worked in, in the case of 5F for
18	example, in that '73 to 1990 time period.
19	They could have worked in the F
20	Canyon, they could have worked on the FB-Line,
21	they could have worked on 235-F in the vault
22	area, or they could have worked in the 235-PuFF

1	facility.
2	If they don't have any bioassay,
3	then yes, we will apply a plutonium coworker
4	model, or uranium coworker model, a neptunium
5	coworker model, an americium, curium,
6	californium, thorium coworker model.
7	So that's the use of this particular
8	table. Is to help the dose reconstructor if
9	they have no other information about where this
10	person worked. They'll look at that dosimeter
11	code and then assign based upon their
12	particular scenario. So that's how this table
13	is being used.
14	One other thing I'd like to point
15	out is that the time periods are critical for
16	evaluating this. Because the codes were
17	reused in other time periods and it means a
18	totally different facility.
19	So you really have to look at the
20	dosimeter code at that particular time period
21	of when that measurement was, to make this
22	determination of which facility, and then which

1	coworker model. Does that make sense?
2	MR. BARTON: Sure, I understand.
3	And to point out that example that I gave of one
4	dosimeter code for six different facilities,
5	that's just for a single time period.
6	I'm not trying to compare dosimeter
7	codes across these different time periods that
8	are established here.
9	But I guess the second thing is the
10	point was made that there would be other
11	location information that could be used to
12	establish where the worker was.
13	Well in my experience, the only
14	other really location information that we have
15	is based on internal dosimetry. Now there's
16	the CATI report.
17	But are we going to start using the
18	CATI report to apply to this table to sort of,
19	and again you'd be using that CATI report to
20	exclude claimants from being assigned certain
21	intakes. You see what I'm saying? I mean
22	DR. TAULBEE: Not to exclude on

1	the, it's more to get a feel for where this
2	person worked and were they exposed to this
3	particular material in that time period?
4	MR. BARTON: Right, but if you
5	cannot not establish with reasonable accuracy
6	for a certain time period where that person was,
7	it essentially falls into that last bin in the
8	table where you're getting assigned
9	everything.
10	DR. TAULBEE: That's correct.
11	MR. BARTON: Right, so I mean this
12	is all about when you have gaps in those
13	dosimetry codes, you know, how do you deal with
14	that uncertainty?
15	And when you don't quite know where
16	they were. And these instances can span many
17	years, even in the SEC period where you don't
18	know where they were. They would have to fall
19	into that bin.
20	Now I mean, am I hearing that when
21	you have gaps like that, you would look at a CATI
22	report and use that information to try to place

1	them into one of these categories?
2	DR. TAULBEE: Well no, not
3	necessarily. I mean CATI is just one piece.
4	We wouldn't use that exclusively. We would use
5	the whole weight of evidence effectively to
6	place where this person conducted their work.
7	So there isn't one piece that's
8	used. Unless it's the only piece that we have,
9	in which case, yes, they generally go into that
10	final category.
11	And this is where it gets into what
12	we call claimant-favorability. Of we've got
13	equal evidence of they either worked in the one
14	area versus another, we don't know. And so we
15	assign a claimant-favorable approach which
16	would be all of the coworker.
17	MR. BARTON: No, I understand and I
18	completely agree when you don't know, you have
19	to assign all of the coworker.
20	I guess my point was, based on our
21	very limited, again, you know, hand full, less
22	than 10 claimants we looked at, it looked like

1	to me on the full weight of evidence.
2	Now again, I don't think you can
3	look at internal dosimetry files and say, oh
4	well, we're going to use those to fill in gaps
5	for coworker intakes because this is the whole
6	point, they don't have the internal dosimetry
7	files.
8	The CATI report I don't think can be used
9	to exclude a worker, that's essentially, since,
10	if you don't know where they are, they're
11	getting the full work up.
12	If you use a CATI report to fit them
13	into one of these categories, what you're
14	essentially doing is going to be taking away an
15	intake from a certain radionuclide based on
16	what Table 5-1 prescribes. You see what I'm
17	saying there?
18	DR. TAULBEE: I think so, but let me
19	give you an example of let's say a CATI report
20	says that they were a forester. And was
21	working in the outside areas of the site.
22	We wouldn't necessarily assign the

1	full coworker model to this particular person.
2	And if we don't have any monitoring data, well
3	they weren't expected to have been monitored.
4	MR. BARTON: I understand that,
5	that kind of situation. Or if the CATI report
6	said they only worked in an administrative
7	building that was across the street and they
8	never had to enter the plant. That's kind of
9	the special cases.
10	But I'm talking about when you have
11	radiological workers who were badged, but you
12	see their badging records don't contain those
13	area codes. Well now you're left with, you
14	know, you're left with putting them in the not
15	identifiable column, and giving them the full
16	work up.
17	And again, our concerns revolve
18	around really the potential for a great many
19	number of workers who need the coworker model
20	applied are going to fall into that bin.
21	DR. TAULBEE: Okay, this is a
22	perfect segue into your next question, where

1	you noticed that in HPRED sometimes the area is
2	not listed. One of the things in the memo that
3	was stated here, is that the primary source of
4	external dosimetry information is the HPRED
5	data base.
6	I don't consider that to be the
7	primary source of dosimetry information. That
8	was a database that's been created based upon
9	quarterly dosimetry reports and logs. And a
10	series of tapes that they've rolled in
11	together.
12	If you go and look at the quarterly
13	dosimetry reports, the area information is
14	listed there. So even though you found some of
15	these I guess, blanks from the claimant files.
16	And it's, it may not be in the
17	claimant file, but if you go to the quarterly
18	dosimetry reports, you can find which area they
19	worked in.
20	I did a case, I helped a dose
21	reconstructor review a case earlier this week
22	where that was the case. The area wasn't

1	listed there.
2	We went to the quarterly reports and
3	it was listed there for every single quarter
4	that they were exposed, that particular area.
5	And we were able to identify that.
6	So if you've identified these gaps,
7	let's work together on them, and I'll show you
8	where these quarterly reports are and how to use
9	them. And you can go through and you can find
10	which areas people worked in.
11	MR. BARTON: I'm completely with
12	you Tim. I understand the quarterly reports.
13	I would say that in my observation, sometimes
14	that it's the case like you just said. The
15	quarterly reports are all there. They're log
16	books with many other workers, and you could use
17	that to fill in the gaps.
18	But in some cases all you have in
19	that time period is the HPRED. And we've,
20	that's all that's there currently in the NOCTS
21	database. Now I don't know if you have those
22	additional log books somewhere else?

1	If they don't appear all the time,
2	in NOCTS, for your claimants, but I no, I did
3	look at the full file. I didn't just look at
4	the first readouts of dosimetry data.
5	A lot of times those files were
6	missing.
7	DR. TAULBEE: Yes, we have
8	MR. BARTON: Again this is a very
9	limited sampling.
10	DR. TAULBEE: We do have a complete
11	set of those quarterly reports. Where, what
12	you're seeing in the files where there is
13	additional files from NOCTS are added, is where
14	we went through and did a, oh gee, what's it
15	called? Word identification, I'm missing a
16	term there.
17	Oh, OCR, Optical Character
18	Recognition, and for the people that we
19	identified who were NOCTS claimants, we pulled
20	out those pages and put them into the claimant
21	files.
22	There are some of the forms that it

1	didn't pick up the person's name. The letters
2	were too close together. But we do have the
3	complete set of those forms. So I can show you
4	where they're at in the SRDB, and provide you
5	that information so you can do some of this
6	additional digging if you want as well.
7	MR. BARTON: Okay, so what I'm
8	hearing is you're saying that, you know, where
9	I saw there were gaps in the actual quarterly
10	log books, that, that information is all in the
11	SRDB.
12	And so if you had to apply this
13	coworker model, you could easily go in and pull
14	those additional log books to fill in some of
15	these gaps.
16	DR. TAULBEE: That is correct.
17	MR. BARTON: Okay, well that
18	certainly alleviates a lot of the missing data,
19	I'll call it, as far as what we witnessed in the
20	claimant files.
21	One other thing, now let me ask you,
22	it seemed to me that when I was looking even at

1	the quarterlies, that what's reported there was
2	only if there was a positive dose reported. So
3	I assume the full data set would have those zero
4	records too?
5	DR. TAULBEE: That is correct.
6	MR. BARTON: Okay, again that's the
7	
8	DR. TAULBEE: That is the case of
9	the claim I was working on earlier this week.
10	Is they had zero dose and so that the file
11	actually only showed the last one, that
12	illustrated they had zero dose.
13	But if you went back to each of the
14	other quarters, in the previous year and a half,
15	you could find the location for all of the zero
16	doses as well.
17	MR. BARTON: Okay, that's really,
18	really good to know that, that information is
19	out there to fill in those gaps.
20	I guess the last concern I just want
21	to point out, is what we also noticed. And this
22	wasn't necessarily a specific claimant record,

1	but that the dosimeter codes in Table 5-1, do
2	not appear to be complete.
3	In that there are, we identified,
4	you know, over 20 codes that just don't appear,
5	you know, in this table. And I don't know how
6	many more there are, but you know, when you look
7	at this table you see there kind of, you know,
8	sort of put in sequence.
9	For example the 7 series, I'll call
10	it. So 7A, 7B, 7C in 1973 to 1990, you know,
11	I mean if you were going to fill in sort of the
12	alphabet there, we'd certainly observe some of
13	the ones that weren't included in this table.
14	But again that was only in a limited claimant
15	sampling.
16	So one concern is that the actual
17	dosimeter codes as you can use them to apply to
18	a certain location don't appear to be complete,
19	and there may be very many, significantly more
20	dosimeter codes that would again fall into that
21	not identifiable bin.
22	DR. TAULBEE: Can you give me an

1	example of some of the codes that you've
2	observed that may not fall in there?
3	MR. BARTON: Sure. Let's see
4	here. Here's the 7 examples. So all I did
5	here was just list them straight. Can
6	everybody see this? See the Excel file?
7	DR. TAULBEE: Actually I can't.
8	MR. BARTON: Okay, well I'll guess
9	I'm off of Live Meeting, but anyway for example
10	7A and 7B were associated with the Central shops
11	in Table 5-1. 7C was not observed in the table
12	at all.
13	7D and 7E weren't in the Table, but
14	we observed them in the claimant files. 7F and
15	7G, you know, it goes on like that. That sort
16	of thing.
17	So I mean it appeared to us based on
18	a very limited sampling that there may be very
19	many codes out there that haven't been
20	established or associated with a particular
21	facility.
22	I can certainly put out a list of

1	what we've found so far, but again that's only
2	from a handful. We really don't know
3	quantitatively how many more might be out
4	there.
5	Did I lose everybody?
6	ACTING CHAIRMAN CLAWSON: No.
7	This is Brad. I'm just trying to follow you,
8	and I understand where you're going on that,
9	Bob.
10	And I just want to put one thing out
11	to Tim on this, because, being from the Dose
12	Reconstruction Work Group, I hope that when the
13	dose reconstructor, and I understand that they
14	use several different items here, I hope that
15	he's making it known how this information would
16	come.
17	Because this would be very, very
18	hard for our side to be able to review something
19	like this because I think he could get
20	information from so many different areas.
21	DR. TAULBEE: Okay, yes. I guess
22	

1	DR. ARNO: Tim, this is Matt, I
2	mean, is there a way for
3	DR. TAULBEE: Let me see if I can't
4	pull up one of these TLD badge code location
5	documents to show you what it is that I'm
6	looking at here, Bob. Maybe this will help
7	some.
8	MR. BARTON: Sure.
9	DR. TAULBEE: Bear with me here as
10	I try actually, Ted, or somebody can you help
11	me in using Live Meeting? How do I select me
12	as the document person?
13	MR. KATZ: Tim, you don't have to
14	select yourself. You just need to go to
15	content and share something and you'll take
16	over.
17	DR. TAULBEE: Okay.
18	DR. ARNO: This process is very
19	similar to what's done in Hanford quite
20	frequently in applying coworker intakes at that
21	facility. Hanford is very similar to Savannah
22	River in terms of the activities going on and

1	things of that nature.
2	There is information in the
3	external dosimetry files that provide where a
4	worker was located. It is quite common for
5	workers to be assigned, basically, the coworker
6	intakes for all the radionuclides. Either
7	because the person there's good information
8	on why that person is not known, or simply as
9	an overestimate method if the claimant's, you
10	know, not of the verge of going compensable.
11	This is not that different from
12	what's done at Hanford and other sites.
13	DR. TAULBEE: Okay, I'm just going
14	to try and share my desktop here for a minute.
15	Can you all see the TLD badge coded location
16	document?
17	MR. KATZ: Yes, Tim.
18	DR. TAULBEE: There you will see
19	and this is probably where you're seeing other
20	codes, Bob, that you know are not listed there
21	in the table. And you'll notice many of these
22	7s are from the A Area. Being there's 7-19,

1	7-20, 7-22 type of scenario. I think this is
2	what you're talking about. And you'll see this
3	is the HP location from the 1977 version that
4	has this.
5	The previous one, this would be
6	1959. And off to the left is the HP Area codes
7	listed there. If I scroll down here, you'll
8	see that these are the department codes
9	associated with the April 1977 version.
10	And, you know, here, if you look at
11	an HP Area code in a claimant file and it says
12	oh, let me pull up F, here. If I can find
13	it, 200-F. Yes, the 200-F, the code would be
14	2F, for example. And then if they were working
15	in, say, 235 Building or PuFF, the department
16	code would be 205.
17	And so this is the 1977 version.
18	Here is the 1984 version. And you can see that
19	some of these codes, like 9F, for example,
20	aren't listed in our table, I'm sure because
21	it's a firehouse.

And so not all of the codes, you are

22

1	correct in your observation, are listed there
2	in the Table 5-1, but we do have what locations
3	these are.
4	And so this is the 1990 version of
5	the old codes and then the new codes. And you
6	can see there's many places where the dosimeter
7	badge racks were held.
8	MR. BARTON: Now, when you say
9	badge rack, I envision that's when the
10	dosimeter's dropped off. Correct?
11	DR. TAULBEE: That is correct.
12	That is where they kept their badges at night.
13	MR. BARTON: So we're going to
14	assume that that's going to be directly
15	associated with the area of work?
16	DR. TAULBEE: It is for most places
17	except for Central shops, who could have worked
18	pretty much anywhere. Which is why you'll see
19	in Table 5-1 we account for them being able to
20	tasked out of Central shops and going to the
21	canyons, or going to the reactors.
22	Which is why in Table 5-1 we have

1	that kind of a large quantity of things there
2	for construction trades workers who were out of
3	Central shops.
4	MR. BARTON: Okay, I understand
5	that. I guess a follow-on question to what you
6	stated before, in that you kind of gave the
7	example of the firehouse. I mean, is it
8	NIOSH's position that any code that's not in
9	Table 5-1 is really just a non-radiological
10	area? And so, you know, it would be
11	inappropriate to assign a coworker intake to
12	those workers who were, you know, badged in
13	these areas that don't appear in this table?
14	DR. TAULBEE: It would be one that
15	I would go and look at more closely as to what
16	they did. In some cases, I'm recalling a case
17	from a few years ago, one person was working out
18	at the A Area. He was working out of the power
19	plant, out of the utility.
20	When we read his CATI, he talked
21	about going to the reactor areas, to the power
22	plant component of that, and he had some

1	positive dose.
2	And so, as a result, we would assign
3	tritium and mixed fission products to that
4	individual. Even though he was badged out of
5	another area.
6	So this is a case where we're not
7	necessarily excluding somebody because of, you
8	know, them being in a non-radiological area
9	where they might have gotten their badge, or
10	where they kept their badge. But we look at all
11	the information in what is said.
12	MR. BARTON: Well, in that example
13	you said he was badged out of A Area. What
14	potential radionuclides of concern might have
15	been present in A Area?
16	I mean, if it's more than tritium
17	and plutonium, you're kind of in trouble there
18	because, again, in that specific case, you
19	know, you'd be assigning only those
20	radionuclides when the only basis for saying he
21	was in an A Area was he said in his CATI report
22	he went to the reactor areas.

1	Do you see where I'm coming from
2	there?
3	DR. TAULBEE: A little bit, but I
4	guess I'm looking at kind of the whole weight
5	of the evidence associated with this. And, you
6	know, A Area was a big area, okay?
7	You've got 773 Area, which is the
8	Technical Laboratory, and there we have, you
9	know, that's one of them listed there in Table
10	5-1.
11	But across the street from the M
12	Area, there's a whole series of facility
13	services, if you will, that have dosimetry
14	badges associated with them because they could
15	be dispatched to other areas.
16	And at that point, we begin to look
17	at other scenarios. And, you know, and looking
18	at the dose of the badge as well. We use that
19	as well. If somebody's got some positive dose
20	and they're saying they went to the reactors,
21	and they were in the reactor building.
22	MR. BARTON: Well, how do you know

1 they couldn't have been somewhere in the A Area 2 where they could have received that? I guess what I'm saying here is when 3 4 you have that sort of uncertainty, you know, 5 obviously we're limited by the information of 6 how accurately we can place workers. 7 I guess I'm concerned that certain information, such as the CATI report, or the DOL 8 which to my knowledge is largely 9 files. 10 provided by the claimant as well, that in the face of that uncertainty, I would think you 11 would want to sort of give them the benefit of 12 13 the doubt and assign, you know, as many of the radionuclides that apply to that area. 14 In the case that you just gave, if 15 16 for instance there were areas in the A Area where they assign more than you would assign in 17 the reactor areas. You know, if it were me, I 18 19 would think you would want to give them the benefit of the doubt, that, hey, listen, our 20 evidence says he could have been somewhere in 21 22 A Area. His CATI says that he went to the

1	reactor area, so maybe we don't know when, there
2	may not be any temporal specification there.
3	I guess, you know, for me, I think
4	you'd have to err on the side of the claimant
5	in the face of that kind of uncertainty and
6	inability to always pin someone down to a
7	certain location.
8	DR. TAULBEE: I think this is a case
9	of a dose reconstruction type of review. And
10	not really an SEC from this standpoint as to how
11	this goes. This is a general method.
12	There's going to be different cases for every,
13	you know, every single scenario. I can't give
14	you a blanket, yes, we'll always assign
15	plutonium here. I can't do that.
16	MR. BARTON: No, I understand you
17	can't, but I think, you know, a document like
18	this, which is essentially giving instructions
19	to the dose reconstructor, could tell the dose
20	reconstructor, you know, I mean, it wouldn't
21	have to say every single case, but, you know,
22	when there is doubt or, you know, uncertainty

1	in where they were, you sort of have to err on
2	the side of, well, they could have been in one
3	of these really nastier areas. And maybe it's
4	appropriate to assign all of the radionuclides
5	to that area.
6	And, you know, I hear you that
7	that's sort of a dose reconstruction review
8	standpoint. But in my mind this is the sort of
9	thing that should be included as specific
10	instructions to the dose reconstructor and not
11	leave it sort of up in the air for an individual
12	to make that call.
13	I mean, instructions don't have to
14	be, if you see this code, then, you know, you'll
15	assign this, this, and this. It could be you
16	see this code, then apply it to multiple
17	facilities and give them the benefit of the
18	doubt. Give them whatever mix is the
19	combination of those two facilities.
20	DR. TAULBEE: I believe we do that.
21	And I don't when there is doubt, significant
22	doubt, and we believe this person was exposed

1	to the different materials, we do assign the
2	full complement there, if we don't know.
3	But there are scenarios where
4	somebody was a secretary, as I was saying, where
5	we would not assign the full complement even
6	though, you know, there is a dosimeter issue
7	from one of these other administrative or
8	service facility areas.
9	MR. BARTON: And I certainly
10	wouldn't want to argue that. I know there are
11	situations where you can clearly delineate who
12	was a radiological worker and where they might
13	have gone. And would have been severely
14	limited in which locations, you know, they
15	could have gone. I certainly agree with that
16	example. I'm talking more the uncertainty in
17	a radiological worker.
18	And I guess it also becomes sort of
19	a judgment call. And you say if there is
20	significant enough uncertainty then you assign
21	the full compliment.
22	Well, what is significant enough

1	uncertainty? I mean, is it yeah, that comes
2	down to a judgment call. I mean, it seems like
3	the temporal gap issue may be rather moot. I'd
4	certainly like to look at that a little more.
5	But when you have uncertainty, say,
6	you know, with the dosimeter code, if it turns
7	out we really just don't know what that
8	dosimeter code is, you know, I think then that
9	would fall into sort of that last bin of, you
10	know, if you really can't pin them down, you
11	kind of have to assume they were in the worst
12	areas.
13	MR. KATZ: Bob, this is Ted. I
14	just think I mean, I think you've made your
15	point very clearly. And I think Tim has made
16	his point clearly too. And it is a dose
17	reconstruction issue. But I don't think
18	there's much to be gained by beating this thing
19	to death at this point.
20	I mean, I think, you know, if there
21	are comments about how their dose
22	reconstruction methods should be how

1	specific they should be, I think that can be
2	addressed further in writing, but, I mean, it's
3	very clear and we're not getting anywhere.
4	MR. BARTON: Okay, I guess the only
5	thing I'd add to that that could potentially be
6	a SEC issue would be the plausibility aspect of
7	it.
8	I mean, if it turns out if you did
9	sort of a study and you found, you know, all the
10	workers that require a coworker intake. Well,
11	if there's so much uncertainty where they were,
12	you have to apply, for instance, the thorium to
13	them.
14	That could potentially be a
15	plausibility issue since we know thorium
16	operation were restricted to a small
17	population. That's the only comment I would
18	make that could still sort of be in that SEC
19	arena.
20	But I agree the rest of it, as far
21	as instructions to the dose reconstructor, is
22	really I guess a Site Profile issue on the

1	implementation.
2	But if it turns out you'd have to
3	apply thorium to, you know, thousands of
4	workers at the site, and, you know, we know
5	that's clearly not plausible.
6	I mean, one could question that, and
7	of course it would be a judgment call for the
8	Board, but I guess, in an SEC context, that's
9	the only thing I can say about it.
10	MR. FITZGERALD: I guess,
11	listening to this, I sort of had the same sense
12	that the only way you this is almost an
13	empirical thing. The only way you would really
14	know whether the instructions, judgments and
15	the information that was available to the dose
16	reconstructor enabled the assignment based on
17	location would be almost a survey of what's been
18	done already.
19	I mean, there's no way of knowing if
20	in fact the information's sufficient to make
21	those assignments without just simply knowing,
22	you know, what the experience has been to date.

1	I mean, Tim, is there any way to know
2	that based on the dose reconstructions that
3	have been done? Whether or not, you know,
4	there's been any problems?
5	I mean, if it in fact always goes
6	or often goes to default, which means you assign
7	everything, then that would raise some
8	questions about the plausibility along the
9	lines of what Bob said.
10	But if it turns out to be the
11	exception, then I would say it's probably not
12	an issue.
13	DR. TAULBEE: This is Tim. This is
14	going to sound really interesting
15	interesting at least to me in my response
16	here. We actually have not used OTIB-81 yet.
17	And the reason is, is the SEC is open still.
18	And so the way that this is planned
19	to be applied is once the SEC is closed, and if
20	OTIB-81 is agreed to by the Work Group and the
21	Board from that standpoint, then we will
22	implement it. And we'll go back and re-look at

1	all of the we'll do a large Program
2	Evaluation Report and re-look at all SRS
3	claims.
4	We've not done that yet because we
5	don't know for sure that you all are in an
6	agreement for us to even do dose reconstruction
7	effectively at Savannah River for this whole
8	time period.
9	The two radionuclides that I can see
10	us going back and making changes to a
11	significant fraction of dose reconstructions
12	are to thorium in the earlier years, and then
13	the thorium from 773-A in the '74 to '89 type
14	of time frame.
15	And then neptunium as well.
16	Neptunium is probably going to be one of the
17	coworker models we end up applying to a lot of
18	people, especially from the 200-F Area.
19	Other than that, virtually every
20	other claim that we have for radiological
21	workers, we have monitoring data for them. So
22	we have internal monitoring data.

1	If you recall back when we did this,
2	the initial presentation on the Evaluation
3	Report, almost 80 percent of the SRS claimants
4	have some internal monitoring data as part of
5	their NOCTS file.
6	So those bioassay control
7	procedures I was showing you on February 5th
8	were implemented. So we don't need a coworker
9	model, we have their individual plutonium
10	bioassay.
11	The people in 773-A, from the
12	chemistry department, from the high-level
13	caves, we have americium, curium, californium,
14	thorium data. So we wouldn't be applying this
15	coworker model to them. We will use their
16	data.
17	MR. FITZGERALD: And Tim, that's
18	helpful because I think, Bob, just to clarify,
19	it sounds like it comes down to whether the
20	operational and the facility-specific location
21	information is sufficient for
22	thorium/neptunium. And of course I know

1	that's a lot of what the data capture's been
2	about for the last six months.
3	But doesn't it come down to that?
4	Whether there's sufficient information to know
5	what facilities and to tie those facilities to
6	workers?
7	I think what you were coming to is,
8	on some of the construction workers where
9	perhaps there is no specific tie in, they would
10	by default get the thorium/neptunium, and if
11	that's a large population then you're raising
12	that question of plausibility.
13	But it sounds like it comes down to
14	whether the information where the operations
15	were and tying that information to the workers
16	is the bottom line.
17	MR. BARTON: Yeah, I agree with
18	that. It's an issue of how sufficient is this
19	information for tying workers into individual
20	areas. And when you go to do that, is it
21	plausible that, for example, all these workers
22	were exposed to thorium?

1	And it sounds like from, Tim's
2	comments, is maybe that would be difficult to
3	do since they haven't actually applied this
4	method yet.
5	I guess one way to wrap your head
6	around it would be to do sort of a pilot study,
7	a claimant sampling of more than just the
8	handful that we looked at.
9	And also I'd like to add on to that,
10	Tim's additional information on what records
11	are out there that aren't currently in a NOCTS
12	file goes a great deal to alleviating the
13	concerns we had that you would really just have
14	a lot of workers falling into that
15	you-don't-know-where-they-are bin.
16	So, I mean, perhaps it's something
17	worth looking into just so, you know, we could
18	see where these extra files are, and that, yes,
19	they are complete. And, yes, if need be we
20	could always pull those records and know where
21	the worker was. That's very important.
22	And I guess the other side of that

1	is, I mean, I'd personally like to take a look
2	at some of these records that show what codes
3	apply to which area. And see how some of the
4	ones we've identified that aren't in Table 5-1,
5	you know, what areas did they actually refer to?
6	And if it turns out that, yeah, they referred
7	to non-radiological areas, that's another very
8	powerful piece of evidence.
9	DR. LIPSZTEIN: May I speak? May I
10	say something? I think that also you say that
11	you have a lot of people with data on thorium,
12	americium and plutonium. It's true you have a
13	lot of data on plutonium and americium or
14	curium. But you don't have the data really on
15	thorium.
16	What you have is a method where you
17	were trying to apply the results from americium
18	and curium to thorium because you say they were
19	expected together. But you have to know to
20	whom applied those data.
21	Because there were many people that
22	were not exposed to thorium, but were exposed

1	to americium and curium. So you have really to
2	know exactly to whom applied those data to
3	thorium.
4	DR. TAULBEE: Joyce, this is Tim.
5	That is not correct, in that the americium,
6	curium, californium, thorium bioassay, urine
7	bioassay method, is a gross alpha count. Okay?
8	That is what it is. It incorporates all four
9	of those radionuclides.
10	DR. LIPSZTEIN: I agree with you.
11	Okay.
12	DR. TAULBEE: I'm sorry?
13	DR. LIPSZTEIN: I agree with you in
14	that.
15	DR. TAULBEE: Okay, so now you've
16	got workers in 773-A in the 1972 through 1989
17	time period that were working in individual
18	labs. Some of them were working with
19	americium. Some were working with curium.
20	Some were working with thorium. Some were
21	working with all three of them. Some were
22	working with plutonium.

1	And so we're taking that gross alpha
2	count for that worker, that
3	americium-curium-californium-thorium count,
4	and we are estimating the dose based upon what
5	their cancer was, which is the most
6	claimant-favorable to them. What would result
7	in the highest dose?
8	So we're not trying to distinguish
9	whether they were an americium worker, or a
10	curium worker, or just a thorium worker, or
11	whether they worked with all of them, or
12	plutonium.
13	We are I shouldn't have confused
14	it there with plutonium, but of those count, or
15	of those workers, we're going to just simply
16	assign the one that results in the highest dose
17	that's the most claimant-favorable.
18	This again gets back to that
19	approach of equal evidence. If we know
20	somebody just worked with americium, then we're
21	going to assign the americium. If we know
22	somebody worked with just thorium, we're going

1	to assign the thorium. If we don't know, we're
2	going to assign the most claimant-favorable.
3	DR. LIPSZTEIN: I understand, but
4	the problem is that sometimes you have when
5	you use the coworker model and use it for
6	thorium, then you have even for one person,
7	if you don't know where the person works, and
8	if you make the assumption that he worked with
9	Type S thorium, for example. And instead he
10	didn't work with thorium but he worked with Type
11	M americium, you wind up calculating a dose that
12	is almost 100 times higher than what he really
13	was. It is claimant-favorable, but is it
14	scientifically okay to do this?
15	DR. TAULBEE: I think it is from the
16	claimant-favorability standpoint of equal
17	evidence and the unknown. In our federal
18	regulations, we talk about that when there is
19	a benefit of or when there is doubt as to what
20	the exposure was, we will give the benefit to
21	the claimant.
22	And that is the perfect example that

1	you just gave. Yes, somebody worked with
2	americium, we didn't know that, they could have
3	worked with thorium, they could have worked
4	with curium.
5	We went ahead and assumed, based
6	upon their cancer and which radionuclide
7	concentrates there, we assigned the highest and
8	most claimant-favorable. We gave that benefit
9	of the doubt of the dose estimate to that
10	worker.
11	If we have evidence that says they
12	didn't work with thorium, they worked with
13	americium, we'll use the americium. But that
14	changes, all things being equal, giving the
15	benefit of the doubt.
16	DR. LIPSZTEIN: So you think that
17	assigning a dose 100 times higher than he really
18	had, it's okay?
19	DR. TAULBEE: I do think it's okay,
20	if we don't know whether they worked with
21	thorium or americium. Yes. If I can't tell
22	whether they worked with one or the other, then

1	yes. I'm okay with assigning that higher dose.
2	DR. LIPSZTEIN: Yeah, because you
3	know that americium is tight. It's like, for
4	example, if you assign for the same urine
5	excretion, it's not only a 100 times, more than
6	a 100 times.
7	The same excretion results for
8	americium would result in a lung dose of .25
9	rem. If you assigned that to thorium Type S,
10	it's 80 rem. So that's a huge difference. I
11	don't think
12	(Simultaneous speaking.)
13	DR. LIPSZTEIN: it's
14	scientifically. Yes, okay. I'm hearing.
15	DR. NETON: I can give you multiple
16	examples of where this type of issue resides in
17	our program. I mean, we, for example, if a
18	person is monitored for 20 years for plutonium
19	and never had a positive plutonium result,
20	we're going to assume that person was exposed
21	and they were excreting uranium, or plutonium,
22	equal to one half the MDA for their entire

1	career.
2	I mean, and the fact may be that the
3	person never inhaled one atom of plutonium.
4	So, you know, I understand what you're saying,
5	that these values can vary, but the fact is if
6	you don't know, you don't know.
7	I mean, you have to make some type
8	of an assumption. And when we do, we err on the
9	side of the claimant.
LO	(Simultaneous speaking.)
L1	DR. LIPSZTEIN: I've been working
L2	with thorium for a long time and I know that if
L3	a worker is exposed to a Type S thorium, it's
L4	very, very, very difficult to see something in
L5	urine.
L6	So if you have something in urine,
L7	of course with the extraction method of the
L8	time, of course not with using the other methods
L9	that we use today. But using gross alpha, or
20	even alpha spectrometry, you have to have a
21	very, very, very high exposure to thorium Type
22	S to see something in urine.

1	(Simultaneous speaking.)
2	DR. LIPSZTEIN: So, no, what I'm
3	saying is that if you assign those if you see
4	something in urine and you assign it to Type S
5	thorium exposure, it's going to be
6	unrealistically high because it's very, very,
7	very rare that someone exposed to thorium Type
8	S you would see something in urine using alpha,
9	total alpha or alpha spectrometry.
10	(Simultaneous speaking.)
11	DR. LIPSZTEIN: But I'll accept
12	what you
13	DR. NETON: And Tim has done the
14	calculations and they're not that different
15	than what you see with other actinides for Type
16	S.
17	DR. LIPSZTEIN: Oh, yes.
18	DR. NETON: The actinides are
19	higher, for example
20	DR. LIPSZTEIN: Like plutonium,
21	but not americium Type M. So you'll see a lot
22	more in urine. But if you are okay with this,

1	I think it's scientifically, for me, that I work
2	with thorium for my whole life, so I think
3	through
4	(Simultaneous speaking.)
5	DR. LIPSZTEIN: and it's very
6	weird to have a high dose of thorium, but
7	anyway, it's okay. I understand what you are
8	saying.
9	MR. FITZGERALD: Yes, this is Jim,
10	let me interject. I think this is one of those
11	issues that I referenced in my little note a
12	couple days ago, that we and I'll defer to
13	Brad and the Work Group, but perhaps we owe
14	NIOSH and the Work Group a somewhat more
15	detailed treatment of this. Just to make sure
16	that, you know, these questions are unpacked a
17	little bit more.
18	And maybe as part of that, as Bob was
19	pointing out, propose a path forward, whether
20	it be a little bit of a sampling or whatever for
21	the Work Group to consider.

I don't think we're going to resolve

22

1	anything today on this issue, but I think we do
2	owe that to the Work Group. Is that
3	reasonable, Brad, Ted?
4	ACTING CHAIRMAN CLAWSON: I think
5	so. I actually have a more specific I'd like
6	to see something in writing myself, actually,
7	so that NIOSH has something to be able to
8	respond to, which is correct, and what our exact
9	issues are.
10	We can debate this for hours if we
11	wanted, but I'd rather get on to some other
12	things. If we're not going to be I can see
13	both sides on this. And I think that would be
14	positive to do, Joe, thanks.
15	MR. FITZGERALD: And I think, as
16	NIOSH has pointed out, we ought to take a look
17	at the standard practice at other sites, like
18	Hanford, and compare that with the methodology
19	here.
20	Because I think, in fact, if it's
21	standard operating procedure, or standard
22	practice, then, you know, then we ought to be

1	fully aware of that in this context. Bob, is
2	that reasonable?
3	MR. BARTON: Yeah, Joe, that sounds
4	good to me. I'd also add that, you know, coming
5	into today I had significantly more concerns.
6	Now Tim has presented some information, such as
7	the additional data sources, which will, you
8	know, greatly go to alleviate that.
9	And I'd like to work with Tim to sort
10	of see if we can fill in some of these gaps.
11	And, you know, just resolve that, yeah, we're
12	comfortable that we can place people where they
13	should be for the purposes of assigning
14	coworker.
15	And I think taking a closer look at
16	the claimants is the way to do that.
17	MR. FITZGERALD: So, Brad, I would
18	
19	DR. MAKHIJANI: This is Arjun.
20	Could I say a couple of things? Hello, can you
21	hear me?
22	ACTING CHAIRMAN CLAWSON: Yes,

1	Arjun. Yes, Arjun, go ahead.
2	DR. MAKHIJANI: Just a couple of
3	things. I wanted to respond to a comment that
4	Jim Neton made earlier about plutonium and
5	using MDA over two.
6	Presumably people were monitored
7	for plutonium because they were in plutonium
8	areas. And using MDA over two when you get a
9	less than detectable result seems a very
10	reasonable thing to do, because there is
11	nowhere else to place that. You could use a
12	distribution, but more or less the same thing.
13	I think this thorium, using
14	americium for thorium when you get more than two
15	orders of magnitude difference in the dose is
16	a completely different thing. And as I
17	understand the situation, the dose estimates
18	have to be scientifically reasonable.
19	And if you don't know and are simply
20	assigning thorium instead of americium and you
21	have an uncertainty of more than two orders of
22	magnitude, I think this is I mean, maybe this

1	is a question that the SEC Work Group should
2	take up, as to whether a two orders of magnitude
3	or a factor of 300 uncertainty is a reasonable
4	thing to do.
5	DR. ARNO: This two orders of
6	magnitude is very common at other sites as well.
7	Especially when you're dealing with gross alpha
8	data. And when you're dealing with any
9	nuclides that have solubility that vary from F
10	to S, two order of magnitude difference in
11	doses.
12	DR. LIPSZTEIN: This time you are
13	going to much more than two orders of magnitude,
14	it's from .25 to 80. And between Type M and
15	Type S is about 40 times thorium.
16	But if you go to americium, then
17	it's because it's 80, then two for Type M,
18	and then .25 for americium, the dose's
19	difference.
20	My biggest problem is that I don't
21	really believe that data above the detection
22	limit could be from thorium without people

1	knowing that the worker was really heavily
2	exposed to thorium Type S.
3	But that's a problem, that's a
4	problem with thorium monitoring. It's in
5	every place, that's the same problem.
6	DR. ARNO: Yes, I mean, if you
7	compare a Type F plutonium dose to the
8	DR. LIPSZTEIN: No, Type M and Type
9	S. No, there is no thorium.
10	DR. ARNO: But you said two orders
11	of magnitude is unusual, and I'm saying it's
12	not. When you go from plutonium Type F or M,
13	all the way up to Type Super S, you can get three
14	orders of magnitude in the difference in the
15	dose assigned.
16	Especially when you start talking
17	about the lungs or the thoracic lymph nodes.
18	I mean, the way we apply claimant-favorability
19	in this project results in many orders of
20	magnitude difference in dose depending on what
21	assumptions you make regarding the
22	radionuclide that was in the intake and what

1	solubility you assign.
2	MEMBER LOCKEY: Hi, this is Jim
3	Lockey. You know, I think, as a Board Member,
4	our direction is to be claimant-favorable, and
5	the approaches that are being taken are very
6	claimant-friendly and -favorable. I don't
7	have any problems with that. We're not doing
8	a scientific study. These aren't being used to
9	design an epidemiology study, this is health
10	outcomes.
11	Our directions is to provide a
12	matrix to be claimant-friendly. And I think
13	the approach is appropriate.
14	ACTING CHAIRMAN CLAWSON: Well,
15	Joe, I'm going to and thanks, Dr. Lockey, for
16	your input. I think this whole thing comes
17	down to it is claimant-favorable as long as you
18	can put the information in there and the people
19	can be assigned to the right areas.
20	But there's some underlying
21	questions here, and as Joe has stated earlier,
22	I believe it would be beneficial for us to be

1	able to put these issues down in writing so that
2	we know exactly where we're at on it and proceed
3	on from there.
4	Is there any issue with proceeding
5	on like that? Because I don't think we're
6	going to be able to get this resolved today.
7	MEMBER LOCKEY: Yeah, I agree, we
8	should put down something in writing so we can
9	look at it again so that we know what the issues
LO	are.
L1	ACTING CHAIRMAN CLAWSON: Does
L2	that sound all right with oh, I'm sorry, I
L3	stepped on somebody. Go ahead.
L4	MR. KATZ: Oh no. I was stepping
L5	on you, Brad. I'm sorry. I was just going to
L6	suggest that all sounds good. I was just
L7	going to suggest, it's 12:30 now and maybe
L8	this is a good place to take a lunch break?
L9	ACTING CHAIRMAN CLAWSON: Oh, I was
20	going to stop for breakfast, but okay. Yeah,
21	if that's all right with everybody, why don't
22	we do that and we'll show back up at 1:30?

1	MR. KATZ: Yeah, that sounds great.
2	I mean, we can do it shorter if everybody wants
3	to do it shorter, that's fine too. Whatever is
4	good for everyone else is fine with me.
5	Everybody fine with an hour break? Anybody
6	want to shorten that?
7	DR. TAULBEE: An hour sounds good
8	to me.
9	MR. KATZ: Okay. Very good, then
10	we'll reconvene at 1:30?
11	ACTING CHAIRMAN CLAWSON: Okay.
12	Ted, just a quick question. Are you in your
13	office, or would you be by your cell phone?
14	MR. KATZ: Yeah, cell phone. You
15	want to give me a ring?
16	ACTING CHAIRMAN CLAWSON: Yeah,
17	I'll call you in just a minute here, okay?
18	MR. KATZ: Okay, thanks.
19	ACTING CHAIRMAN CLAWSON: Okay,
20	we'll see everybody back at 1:30. Thank you.
21	MR. KATZ: Thanks, everybody.
22	(Whereupon, the above-entitled

1	matter went off the record at 12:29 p.m. and
2	resumed at 1:33 p.m.)
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
16	(1:33 P.M.)
17	MR. KATZ: Okay. So we're ready
18	and we can carry on from where we left off.
19	Joe, maybe you want to lead the way?
20	MR. FITZGERALD: Yeah, let me
21	recap. I mean, I think we certainly have
22	chewed on this quite a bit. So I think it lends

1	itself to SC&A providing more specific details
2	in written form on where we're coming from on
3	some of these plausibility questions. And this
4	is, again, directed at Finding 1 on the thorium.
5	And we were asked to look at 5.1,
6	Table 5-1, in more detail on the February 5th
7	meeting. And so I think, from what we've
8	discussed, it looks like we need to do a little
9	more analysis, and I know Bob wants to look at
10	some of these quarterly reports that Tim was
11	referring to.
12	And so we need to do more on this,
13	and we'll get something back to the Work Group
14	hopefully within the next several weeks just to
15	put this in more specific form. And maybe
16	identify sort of a path forward to resolving the
17	question, at least as far as any necessary
18	review. So that's what we'd would offer on
19	this first thorium item.
20	ACTING CHAIRMAN CLAWSON: Does
21	that sound good with this is Brad. Does that

1	NIOSH?
2	MEMBER LOCKEY: Jim Lockey, that
3	sounds great.
4	ACTING CHAIRMAN CLAWSON: Okay.
5	MR. FITZGERALD: I'll write this up
6	very specifically in my notes I'll be
7	circulating by tomorrow.
8	ACTING CHAIRMAN CLAWSON: Okay.
9	Well, we can proceed on to the next one. I'm
10	just trying to bring up media here so that I can
11	see what the next one is.
12	Joe, why don't we go you've
13	probably got the papers right in front of you.
14	Why don't you go ahead and just go on to the next
15	issue?
16	MR. FITZGERALD: Well, I think
17	Finding 2, I think NIOSH's response or concerns
18	on thorium after what was it, 1970? No, I'm
19	sorry, after 1990, certainly what was provided
20	was, to us, a new approach based on using
21	MEMBER SCHOFIELD: Hi, Brad. I'm
22	up there.

1	MR. FITZGERALD: Hello?
2	ACTING CHAIRMAN CLAWSON: Okay.
3	Thanks Phil. Go, go ahead.
4	MR. FITZGERALD: Okay, using a
5	derived air concentration value of two times
6	ten to the minus 13. And using that as a basis
7	for looking at dose estimation after 1990.
8	And I think what was in the NIOSH
9	response, and Tim can clarify, that's going to
10	be treated perhaps in more detail in a follow
11	up review or report or OTIB or something.
12	And so what we have right now is what
13	was in the response that was given, but not much
14	more in the way of details or references and
15	what have you.
16	So I guess that sort of puts us in
17	a position of, if there is going to be a follow
18	up OTIB or report, we probably would want to
19	look at that, rather than try to do a review at
20	this point. We really don't have many of the
21	specifics or the references or anything else.
22	DR. TAULBEE: This is Tim. That's

1	correct. I mean, our approach was to first
2	present this to the Work Group and kind of get
3	some feedback as to what questions you have so
4	that we could kind of flesh those out a little
5	more in the reports.
6	And so we kind of got a little bit
7	of feedback during that February 5th meeting,
8	so we'll draft up a report here of what our
9	approach is and we'll get that out to you all
10	so that you all can chew on it.
11	Basically it's going to take a lot
12	of this same information that I walked through,
13	kind of the weight of evidence approach that I
14	went through on February 5th, and just
15	formalize, document it, in a sense.
16	There won't be any new information
17	from that standpoint, that wasn't in the
18	presentation. But it will be more in a written
19	form, so that you can, I guess, if you have
20	questions or develop comments from that
21	standpoint. Does that sound okay to you, Joe,
22	Brad, other Members of the Group?

1	ACTING CHAIRMAN CLAWSON: That's
2	fine.
3	MEMBER LOCKEY: Yeah.
4	MEMBER SCHOFIELD: That's good.
5	ACTING CHAIRMAN CLAWSON: This is
6	Brad. That sounds good. Mark, did I hear you
7	come on the phone?
8	(No response.)
9	ACTING CHAIRMAN CLAWSON: Okay.
10	Yes, that sounds good to us, Tim. And I agree
11	with what you had to say and we'll proceed on
12	from that one.
13	MR. FITZGERALD: Unless Bob has
14	something else to offer, Bob Barton, I would go
15	to Finding 3, which I think we touched on as well
16	at the
17	MR. BARTON: I agree, Joe, I think
18	we have to wait and sort of see the full package
19	before we can comment on the new approach to the
20	post-1990.
21	MR. FITZGERALD: Yeah, we did have
22	some discussion last time as we did with

1	Finding 3. Finding 3, quite frankly, and we
2	had some original issues as to whether or not
3	all the incidents had been identified, and were
4	they in fact available in databases.
5	And NIOSH has done additional
6	review and has pretty much confirmed this is
7	pretty much what is available. We have not
8	found any evidence of additional information,
9	so that's, you know without doing additional
10	site data capture, I guess we would ask the Work
11	Group, how do you want to proceed?
12	I mean, as far as whether all of the
13	available incidents information had been
14	identified, we don't dispute what NIOSH has
15	done. The original question was whether it was
16	complete enough or not. And that's kind of
17	where we're at, at this point. So I guess we
18	would defer that to the Work Group.
19	ACTING CHAIRMAN CLAWSON: Well,
20	Joe, help me understand this, I'm trying to
21	think back to when we got into this. It was

Τ	just run through the issue again. I'm trying
2	to picture what we have here.
3	MR. FITZGERALD: Well, the
4	question was whether or not, you know, the full
5	body of information available for incidents, as
6	reported to Savannah River that might have
7	involved thorium, whether it was in fact
8	encompassed in the review that NIOSH had done
9	for the Site Profile, and then the SEC.
LO	And in light of further data capture
L1	and the discussion we had well, actually, the
L2	NIOSH response to this particular finding, I
L3	guess we've just come to the conclusion we can't
L4	identify any additional sources.
L5	And, you know, certainly the data
L6	capture's been fairly complete on the point.
L7	So what we're saying is without doing any
L8	further review, we think, you know, this is it.
L9	I mean, I think this is all the information we
20	have at this point.
21	ACTING CHAIRMAN CLAWSON: Okay.
22	And, Joe, part of the issue on this was getting

1	you guys into Savannah River and being able to
2	look at some of these documents, wasn't it?
3	This was part of the issue of the problem with
4	Savannah River Site of not being able to get
5	into the data.
6	And since that time, you have made
7	a trip down to Savannah River, and also has Tim,
8	is that correct?
9	MR. FITZGERALD: Yeah, we've been a
10	couple times and we've interviewed a number of
11	workers. And that included any instances of
12	unreported incidents. You know, we're relying
13	on the database, the so-called Special Hazards
14	Investigations Database. That's what's
15	referenced in the Addendum 3.
16	And our question was, how complete
17	is that? There was some evidence that it did
18	not in fact encompass all the kinds of events
19	at the site. It's just the major ones.
20	And what we wanted to do was
21	establish whether there were other incidents
22	that may have not got into that database that

1	had occurred involving thorium.
2	Now, you know, it's like proving a
3	negative. We have not found anything that
4	suggested that, to date. And we've looked at
5	least twice now onsite.
6	ACTING CHAIRMAN CLAWSON: Well,
7	you know. Go ahead, I'm sorry.
8	DR. TAULBEE: This is Tim. If I
9	could just add, this kind of goes back to that
10	discussion that I gave on February 5th of
11	there's a tiered structure to the incident
12	reporting.
13	The Special Hazards
14	Investigations, and then there was the
15	Facility-Specific Incident Reports which are
16	DPSP reports, or DPST reports. And then
17	there's the Health Physics Logbooks. And then
18	inside the Monthly Works Technical Reports are
19	incidents listed as well.
20	But the main source from the dose
21	reconstruction standpoint, for us, for
22	incidents, is in the claimant files. And we've

1	cross-checked to where people who were involved
2	in some of these incidents, at all three stages
3	of that, that I just listed there: Special
4	Hazards, Facility, and then the Health Physics,
5	you see that information within their records,
6	within their individual files within NOCTS.
7	And so this is you know, we went
8	through them, we've looked for thorium
9	incidents, and frankly we really haven't found
10	any in this time period. Mostly because, in
11	the 1972 to 1989 time period, you're dealing
12	with very small quantities of thorium, and
13	there just haven't been any known incidents to
14	this.
15	MR. FITZGERALD: Okay. And just,
16	again, we did want to talk with some of the
17	identified thorium workers, former thorium
18	workers, going back into the 70s just to more
19	or less validate that. People who actually
20	handled thorium, whether there were events that
21	may or may not have found their way into any of
22	these databases and what not. And we found no

1	evidence of that. So I just wanted to make sure
2	that was clear to the Work Group.
3	ACTING CHAIRMAN CLAWSON: Well,
4	you know, we can only do so much. I don't know
5	if I can act for Mark or anything else on this
6	like the Chair, but as far as I can see, if we
7	can't find any more data on this, there is
8	nothing more that we can do.
9	We've done our due diligence to
10	this. And we've uncovered every stone that we
11	can. So I'd basically say that this one would
12	be closed. Other Board Members can voice their
13	concerns.
14	MEMBER LOCKEY: Jim Lockey. I would
15	agree with you. You've done everything you can
16	do to find additional data. It's not there, so
17	there's nothing left to do. I think we can
18	close it.
19	ACTING CHAIRMAN CLAWSON: Okay.
20	MEMBER SCHOFIELD: I agree, Brad.
21	I think we should close it. I mean, they're just
22	beating a dead horse if they keep looking more.

1	ACTING CHAIRMAN CLAWSON: Okay,
2	well, with that said, I'd say that this one is
3	closed. And we can continue on to the next one
4	unless anybody, NIOSH or SC&A, has any other
5	issues with that.
6	Hearing none, I'd did somebody go
7	ahead or was somebody trying to speak?
8	(No response.)
9	ACTING CHAIRMAN CLAWSON: Okay,
10	with that said, we'll continue on, Joe.
11	MR. FITZGERALD: I think this is
12	about where we left off on the 5th, which was
13	a discussion on thoron. And I don't you
14	know, we sort of segued into a couple other
15	subjects at the same time. So I'm not sure we
16	actually did close out the discussion.
17	So I want to just open it up to my
18	colleagues, particularly Bob Barton. Is there
19	anything more? I mean, you certainly have the
20	response on thoron, particularly as it relates
21	to the tank farm.
22	But is there any other questions?

1	I think we had some clarifying questions
2	regarding whether all the sources of thoron
3	were accounted for.
4	MR. BARTON: Yeah, Joe. This is
5	Bob Barton. Essentially what we were looking
6	for with this finding was to see if NIOSH, you
7	know, what their plan was. If they intended to
8	address the issue of sort of the thoron
9	source term leaking form areas of the site that
LO	had significant thorium storage areas.
L1	And one of them that was identified
L2	and NIOSH mentions is the Tank Number 15. I
L3	think another one might be the Tank Number 12,
L4	but, you know, I really don't think we got into
L5	it much.
L6	I'd kind of like to hear, because I
L7	don't recall actually hearing it, if NIOSH
L8	intends to what, if anything, they intend to
L9	do about potential exposure to thoron?
20	So I guess I would turn that back to
21	NIOSH to kind of have them present their
22	position and then we can go from there.

1	DR. TAULBEE: This is Tim. Our
2	general position is that, with regard to the
3	tank farms and the venting of the thoron coming
4	out of those, Savannah River has done an
5	analysis of what those thoron concentrations
6	are.
7	So people who were working in the
8	tank farms, that would be something that we
9	would just take what those doses were that they
10	measured coming from that, and assign it.
11	For the other areas, in particular
12	773-A, there is lots of air sample data in the
13	post-1990 time period. Well, actually, even
14	all the way through there is initial count data,
15	there's 24-hour count data, six-hour count
16	data, 24-hour count data where we could go
17	through and estimate what the thoron
18	concentration is, or a component of that radon,
19	of that total radon, if you will.
20	But I guess my question to you all
21	would be for that time period where we're
22	dealing with only, you know, 100, maybe 150

1	milligrams of thorium in the building of 773-A,
2	is this something that you want us to go back
3	and look at from the Advisory Board, I guess,
4	the Work Group Members here?
5	It's something we could do. It
6	would involve capturing more data from that
7	earlier time period of '72 to '89. It's
8	certainly doable, but again we just don't think
9	the source term is really large. Certainly,
10	the source term coming out of the tanks would
11	be bounding for that area. At least in my
12	opinion.
13	But to prove that would take effort.
14	And we can do that, but it certainly would just
15	take time and effort. So I'd like to get
16	feedback from Work Group Members as to whether
17	that's something you want us to pursue.
18	MR. BARTON: This is Bob Barton.
19	Maybe I can add our original concern really
20	was related to those tank farms. And can I ask,
21	though, you'd mentioned sort of the survey
22	DR. MAKHIJANI: Bob, this is Arjun.

1	Could I just add one more thing?
2	MR. BARTON: Please.
3	DR. MAKHIJANI: I think we had
4	mentioned the storage areas of thorium, so I
5	think Tim is right about that. And it might be
6	useful to have at least some check on whether
7	the tank farm thoron measurements are bounding
8	or not.
9	MR. BARTON: Yes, Arjun. Yeah, I
10	agree. And that's exactly where I was going
11	to. I think the intent of our original finding
12	was really related to those tanks: was it a
13	significant source term of thorium that
14	produced thoron?
15	And I guess I'd kind of ask Tim. You
16	had mentioned that, you know, you have survey
17	data. Are you referring to the reports from
18	the mid-90s? Because I do remember seeing
19	those references. They did some survey work
20	around definitely the Tank 15, and also Tank 12,
21	between 1995 and 1997, to sort of you know
22	characterize it.

1	And actually in those reports they
2	talk about some modifications that could be
3	made and whether you should have workers in the
4	area when they are actually purging those
5	tanks. And I guess I'm asking is that the
6	resource that you're looking to use to bound the
7	thoron potential at those tanks?
8	DR. TAULBEE: That is correct, yes.
9	MR. BARTON: Okay. And I guess
10	then my only question would be, is there any
11	reason to think that that would not be
12	appropriate to use for the earlier parts of the
13	SEC?
14	Because, like I said, I think those
15	analyses were done in the mid-90s. And I don't
16	know if there were any modifications to the way
17	they would do the purgings. Or the way they
18	had, you know, the stack height or whatever it
19	is that would make the earlier period
20	different. Or if there is actual survey data
21	out by those tanks that sort of verifies the
22	larger project that was done in the mid-90s. I

1	guess that would be my only question.
2	DR. MAKHIJANI: If I might add
3	something to that. I know in the 80s sometime
4	maybe they changed their maintenance
5	procedures about the tanks. Maybe late 80s.
6	So they may have changed their ventilation and
7	maintenance procedures. I'm not 100 percent
8	sure about that. But I think that happened
9	there. So this point may be fairly material.
10	And it would be useful to compare this source
11	term with wherever the maximum storage of
12	thorium was, as a check.
13	DR. TAULBEE: Well, the amount of
14	thorium that's in those waste tanks far exceeds
15	any other storage area onsite.
16	And correct me if I'm wrong on that,
17	Mike or Matt, but I'm believing it's somewhere
18	around 30,000 kilograms or something like that?
19	The next closest source would be
20	the RBOF Building, which is the spent fuel, and
21	there the thorium is stored under water, and
22	it's sealed in fuel elements. So there is no

1	potential for exposure to thoron there.
2	And so then you're dropping from
3	30,000 to 8,000 kilograms of thorium in the
4	RBOF. And the other area would be the 773 where
5	you're all the way down to 150 kilograms.
6	So clearly the tanks would be, in
7	my thought, the largest source term of thorium
8	that would be available for an exposure. As
9	we're looking at the other
10	(Simultaneous speaking.)
11	DR. MAKHIJANI: attenuated by
12	the liquid in the tanks?
13	DR. TAULBEE: Well, that's a hard
14	question to answer, but yeah
15	DR. MAKHIJANI: That's sort of a
16	little bit what's behind my concern here, is
17	that we need a little bit of a demonstration
18	that these source terms are, you know, that the
19	right source term in being used. And that the
20	right periods are
21	DR. TAULBEE: I mean, if we're
22	going to go through that type of effort, I would

1	just go back to the original air samples that
2	are in the building and use that.
3	I mean, that's the actual data, and
4	so the actual exposure would be dropped
5	tremendously. So if you want us to do, you
6	know, an evaluation of it being bounding, it's
7	just as easy to go get the original data and come
8	up with another model for the buildings, which
9	would be a
10	DR. MAKHIJANI You know, it's not
11	for us to say, but I'm just raising a point of
12	scientific correctness here.
13	ACTING CHAIRMAN CLAWSON: This is
14	Brad. One of my questions is this is for
15	SC&A. Have we reviewed the data and this
16	information I guess, Bob, this more directed
17	towards you or Arjun. Have we reviewed the
18	data on this and evaluated? Have we taken a
19	look at it for its accuracy and so forth?
20	MR. BARTON: We have not directly
21	evaluated it as far as comparing the air
22	sampling and potential thorium areas which is

1	the tank farms.
2	That was sort of where my question
3	was directed towards NIOSH as to it feels like
4	we're kind of hanging our hat on the analysis
5	done in 1995 and again in 1997, which identified
6	that with the current configuration, they
7	didn't want workers up on the catwalks around
8	those tanks when they were being purged.
9	As much because of the
10	topographical data. Tank 12H was kind of
11	surrounded by a berm and a little bit lower and
12	so, I guess, you know, it's just sort of a
13	new issue as far us discussing it. Because we
14	really didn't get to it last meeting.
15	And it sounds like NIOSH's position
16	is to use the data from the tank farms to bound
17	thoron exposures sitewide. Am I correct in
18	that assumption?
19	DR. TAULBEE: Yes, I mean, that was
20	my approach to it. But, again, if that isn't
21	reasonable, we can always go get the data and
22	analyze it.

1	MR. BARTON: Okay, I mean, that's
2	maybe a question for discussion. I mean,
3	logically I would think that those tank farms,
4	as you purge them, would represent the bounding
5	source term. But that argument certainly
6	needs to be buttressed by more than my opinion.
7	And the other facet with that was,
8	you know, the reports that we're kind of
9	referring to occurred in the mid-90s. And I'm
10	not saying the source term was appreciably
11	different but perhaps the actual configuration
12	around the tanks where those catwalks were or
13	the size of the stack, might have been
14	different.
15	So I think that would be a line of
16	investigation that would be worth taking as
17	well. Just to make sure that when we're using
18	sort of, for lack of a better word, surrogate
19	data from the later years to apply to potential
20	thoron exposures in the earlier years, to
21	assure that we're not missing something that
22	was materially different in those earlier

1	years.
2	DR. TAULBEE: This is Tim. Just
3	want to follow up on that. That thorium had
4	been in the tanks since the late 1960s up
5	through about 1971 about 1971 was the last
6	bit that was sent to those tanks following the
7	U-233 campaigns.
8	So it's been in there the entire
9	time period of evaluation. It hasn't changed.
10	MR. BARTON: Well, sure. I said
11	that. I don't think the source term materially
12	changed. But did sort of the exposure
13	configuration? Because what we see even in the
14	1997 report when they, you know, did a fairly
15	extensive review of the potential for a thoron
16	problem, they gave recommendations on how they
17	should either change the stack height or limit
18	worker access to the catwalks around the
19	different tanks. I believe it was like 9
20	through 13.
21	And so, you know, they were looking
22	at improvements then. And do we have any

evidence? 1 I don't know that there is any that, 2 you know, improvements were made even earlier that would sort of make it difficult to use that 3 4 mid-1990s data as а bounding source of 5 exposure. 6 DR. TAULBEE: I don't have any 7 evidence of changes, but that doesn't mean they didn't occur. If you want us to go to that type 8 of level to go back to drawings and see if there 9 10 was changes to the stack height or the venting procedures and so forth, it's just as easy for 11 us to go get data from the site within the 12 13 buildings of interest that handled thorium as Mainly 773, and just recalculate a new 14 well. thorium model or a new thorium dose based on 15 16 those. MR. BARTON: I was actually 17 Sure. more referring to changes in exposure potential 18 19 to the actual tank farm workers who were out 20 when purges were occurring. Not necessarily whether that data would properly 21

bound exposures to people who were inside the

22

1	plant. But actually to worker who might have
2	been up around those catwalks or, you know, in
3	and around the purge section of the site when
4	it was happening. I guess that was our
5	(Simultaneous speaking.)
6	MR. BARTON: that was my point
7	anyway.
8	DR. TAULBEE: farms as well.
9	ACTING CHAIRMAN CLAWSON: What was
10	that, Tim? I didn't hear that.
11	DR. TAULBEE: There's air sample
12	data for the tank farms as well.
13	MR. BARTON: Okay, so that goes
14	back to the earlier 70s as well? And we can
15	look at that and use that.
16	DR. TAULBEE: We could, but we have
17	to go capture it first.
18	MR. BARTON: I see. Well, that's
19	kind of where we're at on that. I mean, we have
20	a good characterization of those tanks where
21	the majority of thorium was.
22	Again, in the mid-90s, the source

1	term probably didn't change very much, but
2	maybe the configuration changed. You know,
3	with the current information, we can't really
4	go much further than that.
5	ACTING CHAIRMAN CLAWSON: Well,
6	this is Brad. I understand where we're at on
7	this issue but part of my problem is that I'm
8	having trouble following where we're at.
9	NIOSH has put out a way that they
10	figure they'll be able to do it. And to be able
11	to justify it, we've got to be able to evaluate
12	the data.
13	But what I hear Tim saying is, is,
14	well, if we're going to do that, then we're
15	going to change the process of how we're going
16	to do it.
17	My question is, do we have a
18	established method right now that NIOSH has
19	proposed to us to be able to do? And that's
20	correct, isn't it, Tim?
21	DR. TAULBEE: Well, we're going to
22	be using the concentrations from these ventings

1	as a bounding approach. And that was our
2	approach.
3	But SC&A is bring up all these other
4	issues that it seems like you want us to go and
5	try and track down. And if that's the case, I
6	mean, I feel that the ventings are by far the
7	most significant exposure to it.
8	But, I mean, that's just my
9	professional opinion. If you want me to prove
10	that, then why don't we just go and capture the
11	actual air sample data and demonstrate what the
12	actual concentration was?
13	So, yes, we would be changing our
14	approach if we have to go and try to justify our
15	current approach as bounding. I think it's
16	bounding just based upon my experience, but
17	others might disagree with that.
18	ACTING CHAIRMAN CLAWSON: Well,
19	and understand, we're and I guess I'm looking
20	at this from a Board Member, Tim. I'm not ever
21	questioning your professional judgment or
22	anything else like that.

1 But to put some of the data out 2 there, I want to make sure that we have all the data that we have used, and that we can actually 3 4 justify and prove to anybody looking in from the outside of it, that this is bounding, this is 5 6 the best that we've got. And from SC&A's 7 standpoint, that they have justified all of the information and the data, and we've run this to 8 9 around. This is just part of the process that 10 we're in. And I guess my conundrum here is on 11 one hand you've got something set out here for 12 13 But if we're going to make you justify this information, then you're going to change it. 14 That's where I've got my issue at. 15 16 I guess what I would like from -you're going to have to justify it no matter 17 We're going to have to make sure that 18 what. 19 this is the proper information that we've got, that we've got adequate information to be able 20 to make this kind of a judgment. So my question 21 22 to you is, we're going to have to do that, so

1	you're thinking of changing the process and
2	just go pull all the sample data from the the
3	air sample data from the stacks? Correct?
4	DR. TAULBEE: No. Yes and no.
5	ACTING CHAIRMAN CLAWSON: Oh,
6	okay.
7	DR. TAULBEE: The final part
8	there, pulling it from the stacks, no. There
9	is air sample data not from the stacks that is
10	there in the workplace area. And they were
11	doing other sampling and other tasks.
12	When they did those other tasks,
13	for the workers standing on top of the tanks,
14	they would take an initial count for
15	radon-thoron. And they would do a measurement
16	of that. That is the data I'm talking about
17	going to get.
18	The only reason I'm suggesting to
19	do that and change our approach, which I
20	understand you're concerned with, is that
21	frankly I believe it's easier and faster to go
22	get that data than it is to try to demonstrate

1	that there weren't any of these other changes
2	that changed that plume, venting from the 1990s
3	measurements. I simply think it's an
4	efficiency standpoint.
5	ACTING CHAIRMAN CLAWSON: And I
6	understand that. And I guess from I know,
7	as a Board Member, where I'm at now, I would tell
8	you that, well, okay, then we need to be able
9	to look at this data. And we need to be able
10	make sure.
11	Because I don't want to be put up
12	in front of the people and say, well, how come,
13	how can you just take this as this. We need to
14	be able to run this in.
15	So if you're going to pull this
16	data, this is my understanding, and forgive me,
17	I didn't mean to misrepresent you there. I just
18	kept hearing the stack and the air sample data
19	and stuff like that and probably got confused.
20	Then basically this comes down to this is back
21	into NIOSH's court. And they are going to
22	proceed with a different path forward and

1	they'll get back with the Board on this.
2	DR. TAULBEE: Okay, I agree to
3	that. Thank you.
4	ACTING CHAIRMAN CLAWSON: Any of
5	the other Board Members feel any differently?
6	And feel that they need Jim?
7	MEMBER LOCKEY: Jim Lockey.
8	What's going to be the NIOSH path forward, then,
9	so I understand?
10	DR. TAULBEE: Our path forward
11	would be for us to go to the site and take a
12	representative sampling of air samples over
13	time from the tank farm area and evaluate those
14	initial counts, the six-hour counts, the
15	24-hour counts, and come up with what the thoron
16	component of the total radon would be. And
17	that would be the dose we would assign to the
18	workers in that area.
19	MEMBER LOCKEY: You're going to go
20	back to the site and actually do air sampling?
21	DR. TAULBEE: Actually get air
22	sampling data from the 1970s up through the

1	1990s.
2	MEMBER LOCKEY: So then you're
3	going to retrieve that data, okay.
4	DR. TAULBEE: Yes, we'll do a
5	sampling. We won't capture it all. Because
6	it's hundreds of thousands of pages.
7	ACTING CHAIRMAN CLAWSON: Tim, is
8	this electronic or is this all paper?
9	DR. TAULBEE: It's a mix.
10	ACTING CHAIRMAN CLAWSON: It's a
11	mix.
12	DR. TAULBEE: Yeah. Well, it's
13	not electronically available from a database
14	standpoint. But some of it is available
15	PDF-wise to where Joe can look at it now and I
16	can look at it now.
17	And then others we'll actually have
18	to pull some boxes, especially back in the
19	earlier 70s through probably the early 80s.
20	ACTING CHAIRMAN CLAWSON: Okay.
21	Dr. Lockey, does that answer your question?
22	MEMBER LOCKEY: It did, thank you.

1	ACTING CHAIRMAN CLAWSON: What's
2	your feelings on it, Jim? You know
3	MEMBER LOCKEY: What are my
4	feelings about it?
5	ACTING CHAIRMAN CLAWSON: Yeah, do
6	you agree with me that basically we've got to,
7	if this is what we're going to do, we've got to
8	review the data and go from there.
9	MEMBER LOCKEY: I think looking at
10	the data is always the best approach on
11	anything. I don't know enough about it to say
12	what the probability of what SC&A is saying in
13	regard to perhaps a exposure level that's not
14	represented by the bounding limits that NIOSH
15	is already using.
16	I don't know that probability.
17	Whether it's a ten percent probability or 50
18	percent probability. Not knowing that, I
19	always say go look at the data, and the data will
20	tell you where to go.
21	ACTING CHAIRMAN CLAWSON: Okay.
22	Phil?

1	MEMBER SCHOFIELD: No, I agree
2	that we've got to get all of that data for them
3	to look at to verify what the model is.
4	ACTING CHAIRMAN CLAWSON: Right.
5	Well, Bob, is this going to you know, you're
6	going to have to review this, you or Joe, or any
7	of them. Is this a good enough path forward?
8	You think this will satisfy the issues that
9	you've raised?
10	MR. BARTON: Yeah, Brad, I think
11	that is probably the best path to go with. I
12	mean, just as a general philosophical point, I
13	think anytime you're going to use situations
14	from a later time period and apply them
15	beforehand, you kind of have to have some
16	connection to say that conditions were
17	sufficiently the same, that it's fine to go
18	ahead and use, you know, the mid-90s evaluation
19	for the earlier years.
20	And, to me, what I'm hearing, I
21	mean, I think this is probably the best way to
22	do it. I mean, as Tim said, just from an

1	efficiency standpoint, I mean, you can go in and
2	look at structural drawings to see what the
3	height of the catwalks was.
4	But, I mean, even then, you know,
5	what's the connection to how that affected the
6	exposure potential? I think getting the air
7	sampling and comparing it to what NIOSH is
8	proposing for the thoron issue, is the way to
9	go.
10	And there hasn't been a formal,
11	necessarily, write-up on or has there? I
12	mean, maybe Tim can remind me, is there an
13	official write-up on how NIOSH currently
14	proposes using that mid-90s evaluation to bound
15	the thoron exposure?
16	DR. TAULBEE: I'm actually not
17	sure. I'd have to go back to ER Addendum 3 and
18	dig out what it was that we said about the thoron
19	there. I couldn't answer that off the top of
20	my head. Sorry.
21	ACTING CHAIRMAN CLAWSON: Okay,
22	well, then with that said, then, this one will

1	fall to NIOSH, and we'll proceed on. Joe?
2	MR. FITZGERALD: Yeah, I think
3	going from that was Finding 4. Really, the
4	vast majority of the next, I guess almost 15
5	findings, from 5 to 23, had to do with
6	OPOS-related, or NCW versus CTW comparisons.
7	Which, I think, in the last Work
8	Group meeting, I think it was everybody's
9	consensus that that would better deferred to
10	the SEC Work Group review of that report, which
11	by the way was just issued. SC&A did send that
12	out. I guess it was Friday, late last week.
13	And we did make a comment, though,
14	that quite apart from the question of applying
15	OPOS, we do have some very fundamental concerns
16	over the comparison between the NCW and the
17	construction trade worker groups in terms of
18	data accuracy standpoint.
19	Though OPOS is the methodology, but
20	I think we still have very much site-specific
21	concerns about whether that's feasible or not.
22	So I just want to throw that in.

1	But for this discussion, for this
2	Work Group, I would recommend we probably move
3	beyond those findings.
4	Seventeen, we did touch upon last
5	time, which was a question of whether chelation
6	samples were included. And I think there was
7	agreement. And NIOSH's response in the
8	discussion was that they would not be. Did I
9	get correct?
10	DR. ARNO: I guess just two things
11	there. Within the bioassay records it's noted
12	that DTPA had been administered. Those have
13	already been removed. But we did not go back
14	and look at the other information about who was
15	given chelation therapy to exclude records on
16	that basis yet.
17	MR. FITZGERALD: But I think in
18	principle there's agreement that they would be
19	excluded?
20	DR. TAULBEE: Yes, I believe
21	that's the case.
22	MR. FITZGERALD: Yes, I think

1	that's where we came out. But
2	DR. NETON: Yeah, this is Jim. We
3	agree with that. Technically, it's not
4	appropriate to use chelation data in a coworker
5	model when you know it.
6	I mean, if it slips in there because
7	you don't know it, as you indicate in your
8	finding, that we be claimant-favorable. But
9	where we do know it's a chelation person, it
10	should be avoided.
11	MR. FITZGERALD: So then it just
12	becomes a question of just verifying,
13	implementation more than anything else.
14	So, Brad, I don't think we have an
15	issue on that. We seem to be in agreement on
16	Number 17.
17	ACTING CHAIRMAN CLAWSON: Okay,
18	then. With the other Board Members'
19	concurrence, then we could close that one.
20	MEMBER SCHOFIELD: I have no
21	problem closing it.
22	MEMBER LOCKEY: Jim Lockey. No

1	problem.
2	ACTING CHAIRMAN CLAWSON: Okay.
3	MR. FITZGERALD: That moves us
4	swiftly forward to Finding 18, which actually
5	Joyce has spent a considerable amount of time,
6	as you probably can see by the attached
7	spreadsheets. And I would not want to pretend
8	I could describe everything that she's done in
9	terms of her analysis. So, Joyce, are you on
10	the phone?
11	DR. LIPSZTEIN: Yes, I'm on the
12	phone.
13	MEMBER LOCKEY: On Number 18,
14	which gets to be a little complex, could you I
15	guess slowly take us through, take the Work
16	Group through what the issue is and what we
17	would think the implications are?
18	DR. LIPSZTEIN: Okay. I'm not a
19	chemist is the first thing I want to say. I'm
20	a physicist, not a chemist. But I looked at the
21	raw results, some americium, curium, which
22	might have thorium in it.

1	And I examined this raw data and the
2	raw data is, as you can see by the table that
3	we put on the spreadsheet, it comes like several
4	discs.
5	There were ten disc results. You
6	can see dpm for 1.5 liters and down. They are
7	all different disc results for the same sample.
8	And then you have the report value. Okay?
9	So I've noticed that in several of
10	the discs the results were very different, one
11	from the other. And I was asking how reliable
12	are those results if they are so different one
13	from the other?
14	So we got an answer that when you
15	have results that are near the detection limit,
16	you would find a lot of variability. And I
17	understand that. But then I decided to divide
18	the results in parts.
19	So first I made a table with all
20	results that were greater than three dpm per 1.5
21	liters. Why greater than three dpm per 1.5
22	liters? Because the MDA of the method is

1	reported as .3 dpm per 1.5 liters.
2	On that range, from greater than 10
3	MDAs, about 15 percent of the results are the
4	green ones. They are results which I think
5	have a great variability.
6	One example for that, if you take
7	the third green results, one disc is 53, the
8	other one is 23. And you get an average of 38.
9	Then you have the 4th disc results. You have
10	8.64. Then you have 6.79. Then you have 2.72.
11	Then you have 15.3.
12	So you have a big variability
13	between 2.72, which is almost three, to 15. It's
14	five times. So even in that range of results
15	greater than 3 dpm per 1.5 liters, you have 15
16	percent of the results that has this kind of
17	uncertainty.
18	Then I went to look at the results
19	that were between one dpm and three dpm per 1.5
20	liters. So between 3.3 times the minimum
21	detection activity and 10 times the detection
22	activity.

1	And, of course, as we expected, as
2	you go down you have more variability. So we
3	came up with 26 percent of the samples had what
4	I call very high variability.
5	Then I have the results that were
6	another table with results from .32 dpm per 1.5
7	liters to .99 dpm divided by 1.5 liters per day.
8	1.5 liters is the urine excretion in a day.
9	So these are results that are
10	when the final result is above the detection
11	limits, and between the detection limit and
12	three times the detection limit. And I have 43
13	percent of the results that have a lot of
14	variability.
15	So I don't know if we should trust
16	results that have a large variability of
17	results. And what to do with those samples?
18	Then, as I looked at the table, and
19	you can see, most of the results that are above
20	3 dpm won't be used anyway, because 90 percent
21	of those results were from DTPA, when the DTPA
22	was given.

1	I don't know about, you know some
2	of the results I don't have information, if DTPA
3	was used or not. But 90 percent of the results
4	we know that DTPA was used.
5	Then you go to the other range, from
6	1 dpm to 3 dpm, then you have that 75 percent
7	of those results were from the usage of DTPA.
8	So most of the results were from results that
9	were below .99 dpm per 1.5 liters.
10	That's where most of the results
11	are going to come to do the coworker model. And
12	they have a lot of uncertainty. So I don't know
13	what is acceptable, what is not acceptable.
14	But if I don't know. I think
15	that if I were in my lab, I would like to know
16	what was happening that you have such high
17	uncertainty on results from the same sample.
18	And then I went I know that it
19	was told here on this conference call that the
20	OTIB-81 was not discussed yet, but I'm looking
21	at results that you used for the urinary
22	excretion, the 50 percentile and 85th

1	percentile of the urinary excretion rate of
2	americium, which will give us the data for
3	thorium.
4	And from '72 on, that's the time
5	period that we are looking at, they are all
6	below the detection limits. So they are
7	results with a high range of uncertainty. So
8	I don't know if they can really be used like
9	that, using the number itself that you got.
LO	So I doubt very much those results
L1	that are well below the detection limit when you
L2	have such an uncertainty on the results. Can
L3	you get what I'm talking about?
L4	DR. TAULBEE: This is Tim. I
L5	understand what it is you're talking about but
L6	I disagree with some of your conclusions.
L7	DR. LIPSZTEIN: Okay.
L8	DR. TAULBEE: Of the
L9	DR. LIPSZTEIN: So let me hear.
20	DR. TAULBEE: excessive
21	uncertainty. A large number of this
22	uncertainty can be explained by simple counting

1	statistics. Not all of it. I agree there are
2	some other process things that were going on.
3	But I, in our response we're trying
4	to point out that one of the major advantages
5	of doing multiple counts on the same sample is
6	you're getting more accurate answer. You get
7	more towards what the true meaning is. And
8	that was the goal here that Savannah River was
9	doing.
10	DR. LIPSZTEIN: Yes. But would
11	you trust the results like, you are well above
12	the detection limits first. Not the bottom of
13	detection limit. You have 63 and 23, then you
14	have another one that has 8.6, 6.8
15	DR. TAULBEE: But that
16	DR. LIPSZTEIN: 2.7 and 15.3.
17	You have even some results that they sum a
18	positive result with a negative results to give
19	an average result. That's very strange.
20	DR. NETON: Tim, this is Jim.
21	I've got a question, or two questions actually.
22	Am I correct in understanding that they would

1	take a sample and split it and do four separate
2	discs on one sample?
3	Or are, you know, multiple discs?
4	Kind of unusual.
5	DR. TAULBEE: I don't know that for
6	sure
7	DR. NETON: Are these individually
8	separate counts on the same disc? I don't
9	quite follow what they were doing here.
10	DR. TAULBEE: My belief is they
11	were counting the same disc multiple times.
12	But Matt can you shed some light on that?
13	DR. ARNO: No, I can't. It's hard
14	to tell from available records whether they
15	were counting the same thing multiple times.
16	Or whether they actually had separate aliquots
17	from one sample.
18	DR. NETON: It would be really good
19	to understand that. I think Joyce raises an
20	issue. And I think it deserves us to follow up
21	a little bit further on, I think. The ranges
22	are pretty large.

1	The other thing that concerns me is
2	the DTPA usage. These were Type M actinides,
3	right? So these were being measured for
4	americium, curium, and thorium came through as
5	well, right?
6	And Californium. My understanding
7	of exposures, at a facility like Savannah River
8	was, you wouldn't have had a huge number of
9	people chelated for those nuclides. It was a
10	by and large chelation for plutonium. I'm a
11	little
12	DR. ARNO: A lot of times that's
13	right. People were chelated to plutonium and
14	americium contamination in the plutonium came
15	out at the same time.
16	DR. NETON: Yes, that's true.
17	Yes, because I was going to say if it's a
18	chelation for plutonium, it would have been
19	taken out as part of the other procedure.
20	But it is true that the americium
21	would come through, but it certainly would be
22	a trace amount compared to the plutonium.

1	I think there's two issues here and
2	I think we need to maybe follow up a little more.
3	I'm not sure what we can do.
4	But I tend to agree that the
5	variability seems, well I don't understand
6	what's driving the variability, whether it's
7	time and statistics or the chemical procedure
8	itself.
9	Because if it's multiple aliquots
10	it could be a chemical recovery issue. And
11	that's being reflected in the samples. So I
12	think we need to understand better what's
13	driving that variability before I could even
14	comment. And my
15	DR. ARNO: We also need to put this
16	in a little bit of perspective. A lot of these
17	samples that Joyce identified, were for people
18	that either had DTPA, which means they'll be
19	excluded when we revise this data.
20	Or it was for a person that had some
21	intake, even though they didn't receive DTPA,
22	they were sampled extensively every single day

1	for a couple weeks. And that data all becomes
2	one result when OPOS evaluation is done.
3	And even if we go away from the OPOS
4	type process, that would still be a person that
5	would be subject to some sort of exclusion or
6	some sort of averaging of their results.
7	So even if there is a large
8	variation from disc to disc, we're talking
9	about averaging of that. And then multiple
10	samples and averaging of that.
11	And when you get into looking at the
12	statistics of, you know, a large number of
13	samples, a large number of counts, the
14	individual variability becomes much less
15	important because you are looking at the
16	average quantity.
17	DR. NETON: Yes, I realize. I
18	agree with that. I think we do need to dig into
19	this a little more. I was wondering if those
20	individual discs weren't actual individual
21	urine samples? I don't know. Do we know that,
22	Matt?

1	DR. ARNO: It's very clear that the
2	discs were all from the same urine samples.
3	Just not clear if the same disc was counted
4	multiple times, or if it's multiple discs.
5	DR. NETON: Well, I think, I think
6	I agree that we need to follow up on this. A
7	little more detail to shed a little more light
8	on it that we can. So I think we'll, our action
9	item there is to dig into this a little more.
10	I do agree when you go from
11	something like 15 to 50 that does give me a
12	little concern. And I'm not saying it's not
13	appropriate, I just need to understand a little
14	better what's driving that.
15	MR. BARTON: Yes, Jim, this is Bob
16	Barton. I'm in complete agreement there.
17	This is really one of those things where when
18	we started looking at the data, you just kind
19	of scratch your head and say, well how were you
20	arriving at these seemingly radically
21	different results?
22	When there may be a very good reason

1	for that. And you know, it's fine to use these
2	data as is. You know, I agree, I think we need
3	to understand why there's that variation.
4	DR. NETON: Yes, a lot of the lower
5	ones could be definitely accounted for by
6	TIB-6. But if you have a detection limit of .3
7	and you're up around 15 dpm, that result should
8	not be quite as variable as is being reported,
9	so. We'll go look at it and get back to the
10	Working Group.
11	ACTING CHAIRMAN CLAWSON: Okay,
12	that being said. Is, not seeing anymore, that
13	action item falls on NIOSH and we'll look
14	forward to seeing what they have to come back
15	with. Joe.
16	MR. FITZGERALD: Yes, the
17	remaining set of very similar issues on
18	solubility, 24, I put them together and I'm
19	getting a lot of background noise. I don't
20	know if somebody has their conference line
21	open?
22	Oh, that's much better thank you.

1	Bob, I'm just trying to characterize our
2	discussions on 24 through 26. I don't think we
3	had any disagreements on how the solubilities
4	were addressed technically.
5	But some question about what if
6	some validation could be done on the coworker
7	model? I guess my question is has that been
8	subsumed by the earlier agreement to do, for Tim
9	to do such an analysis? I thought the analyses
10	that was pertinent to the analysis that
11	offered.
12	MR. BARTON: Yes, we actually did
13	discuss that on the 5th with regards to the
14	thorium issue. And then earlier today with
15	regard to neptunium.
16	And I think it's the same line of
17	discussion, that you have known thorium
18	workers, you really want to go ahead and look
19	and see, you know, A, are they included in your
20	coworker model? At least to some part, some
21	extent.
22	And these workers if, you know, you

1	have a list of, you know, 20 or so workers I
2	think was said at the February 5th meeting.
3	Go ahead and look at their in vivo
4	results if they are in the coworker model. And
5	how do they sort of stack up against the rest
6	of the population?
7	I mean one result of that might be
8	see, well, hey, I mean they're right in the
9	middle, you know. These thorium workers that
10	we know were thorium workers are sort of
11	subsumed into this larger coworker model.
12	Alternatively, you could see that
13	they're much lower, or alternatively you could
14	see, wow, their results are way at the top end
15	of the tail. And then maybe we have more of an
16	issue.
17	So I think and again I believe NIOSH
18	agreed to this at the next meeting, that you
19	know, that if they had a list of however many
20	known thorium workers, they could take those
21	names and look into this database and see where
22	their results stack up.

1	DR. TAULBEE: This is Tim. That's
2	correct. I had that as an action item from the
3	last meeting, and we have begun to schedule that
4	particular work to be done.
5	MR. FITZGERALD: To sum up on that
6	one, I thought that, you know, we had looked at
7	the solubility and discussed that. And I
8	thought we didn't really have any differences
9	on the actual technical approach.
10	But we had that larger question
11	which as Tim just noted, we thought that would
12	be the more fundamental answer to that. And so
13	Bob, I guess is there anything else on that
14	particular set of issues?
15	MR. BARTON: No, that's really all
16	I had on that. I mean we kind of discussed the
17	use of different solubility types and how
18	that'll affect the calculated doses before in
19	this discussion.
20	And that was sort of an add-on to
21	the discussion last week of, you know, it would
22	just really be a good idea and a good weight of

1	evidence argument to say, hey, look, you know,
2	we know there are some thorium workers.
3	These are the ones that are in our
4	distribution, and these are what the results
5	look like. And in so far as you can tie those
6	results to thorium activities, you know, that
7	might get a little murky.
8	And there might be some caveats to
9	that, but I think it's an effort that's worth
10	doing that would not necessarily be all that
11	cumbersome.
12	It would be something, you know, if
13	you only have a handful of workers, you know,
14	it wouldn't be too hard to look up those names
15	in your electronic database and take a look at
16	what their records look like in comparison to
17	the coworker model as a whole. That's really
18	all I had.
19	MR. FITZGERALD: Yes, I think
20	we're okay on the solubility questions on 23
21	through, I'm sorry, 24 through 26. And really
22	the commitment that Tim was referring to. With

1	the bigger issue we thought was the more
2	important pathway to resolution.
3	So I would leave it to the Work
4	Group on those 3 findings, but we feel
5	comfortable on the solubility issues.
6	ACTING CHAIRMAN CLAWSON: Joe,
7	this is Brad. So you want to close the
8	solubility of these issues, but these other,
9	they still lap back to what Bob was saying about
10	checking out, you know, checking the data out
11	basically?
12	MR. FITZGERALD: There is some
13	overarching questions that get to validating
14	the data. And I think what NIOSH has offered
15	as far as neptunium as well as thorium, would
16	be in that direction.
17	So we would say that would be the
18	pathway to go, and the specific questions we had
19	on solubility, I think were answered on
20	February 5th.
21	ACTING CHAIRMAN CLAWSON: Okay, so
22	with these, what is it, 23, 24?

1	MR. FITZGERALD: 24, 25 and 26.
2	ACTING CHAIRMAN CLAWSON: Okay, on
3	these the solubility question of it is closed
4	though. It got an overarching issue, but the
5	solubility issue has been closed and you're
6	satisfied with it, right?
7	MR. FITZGERALD: As far as I'm
8	concerned and I think Bob has confirmed that.
9	So I think we're okay on the solubility issues.
10	Joyce did you have anything?
11	DR. LIPSZTEIN: No.
12	MR. FITZGERALD: Hello, Joyce.
12 13	MR. FITZGERALD: Hello, Joyce. DR. LIPSZTEIN: Yes, but I think we
13	DR. LIPSZTEIN: Yes, but I think we
13 14	DR. LIPSZTEIN: Yes, but I think we discussed this already. I'm not completely
13 14 15	DR. LIPSZTEIN: Yes, but I think we discussed this already. I'm not completely satisfied but I'll accept it.
13 14 15 16	DR. LIPSZTEIN: Yes, but I think we discussed this already. I'm not completely satisfied but I'll accept it.
13 14 15 16 17	DR. LIPSZTEIN: Yes, but I think we discussed this already. I'm not completely satisfied but I'll accept it. MR. FITZGERALD: Okay. So I think
13 14 15 16 17	DR. LIPSZTEIN: Yes, but I think we discussed this already. I'm not completely satisfied but I'll accept it. MR. FITZGERALD: Okay. So I think DR. LIPSZTEIN: Because I think
13 14 15 16 17 18	DR. LIPSZTEIN: Yes, but I think we discussed this already. I'm not completely satisfied but I'll accept it. MR. FITZGERALD: Okay. So I think DR. LIPSZTEIN: Because I think that really when you have insoluble thorium, we

1	ACTING CHAIRMAN CLAWSON: Okay.
2	Any of the Board Members have any objection to
3	closing the solubility issue of this portion of
4	this?
5	MEMBER LOCKEY: This is Jim
6	Lockey, I'm fine to close this.
7	MEMBER SCHOFIELD: This is Phil,
8	I'm fine with it.
9	ACTING CHAIRMAN CLAWSON: Okay
10	with that we'll proceed on. Joe. And
11	somebody thank you for forwarding the
12	information, the Live Meeting. It was kind of
13	back there a few.
14	MR. FITZGERALD: Well I think
15	we're done because really the balance of what's
16	left, 27 through 32 refer back to the 1990 to
17	2007 period, which is the approach based on the
18	DAC, you know, the air concentration
19	measurement.
20	This is the report that Tim briefed
21	out on February 5th, which the Work Group asked
22	NIOSH to go ahead and you know, draft it up for

1	review. And so these findings relate back to
2	the, you know, those activity levels.
3	So I would say 27 through 32 refer
4	back to Finding Number 2, which is the
5	application of the DAC hours to 1990 and beyond.
6	ACTING CHAIRMAN CLAWSON: Okay.
7	MR. FITZGERALD: So we'll await
8	for that report, that draft report and SC&A
9	would commit to reviewing that and providing
10	any findings and issues back to the Work Group
11	and NIOSH.
12	DR. MAKHIJANI: This is Arjun.
13	Joe, I didn't quite understand that. This is
14	Arjun. I, these particular findings relate
15	to, you know, the compilation of the data, which
16	hasn't been done.
17	And we weren't actually able to
18	figure out whether, you know, what the merit of
19	this approach was and the coworker model and how
20	it was going to be assigned.
21	And that was part of it, the
22	FASTSCAN data and whether they could actually

1	catch any thorium. And so we're sort of beyond
2	the DAC hour question, I think.
3	Maybe Joyce can correct me if I'm
4	wrong.
5	DR. LIPSZTEIN: I think because of
6	DAC, I wasn't on the February 5th Work Group
7	meeting, but I think that because you can't see
8	with the FASTSCAN, that's why there was this new
9	DAC method for assigning thorium dose instead
10	of the whole body counter dose.
11	DR. MAKHIJANI: Okay, so
12	MR. BARTON: Yes, Arjun. This is
13	Bob Barton we're essentially at a spot where we
14	have a new paradigm shift. There's a whole new
15	model on the table that NIOSH is proposing to
16	reconstruct thorium doses in the 1990 and on
17	period.
18	So we're kind of waiting
19	DR. MAKHIJANI: Have we seen the
20	compilation of that data? Not yet I guess?
21	MR. BARTON: Of the air sampling
22	and such, no. We're sort of waiting on NIOSH

1	to put that package together.
2	DR. MAKHIJANI: Okay, sorry. So
3	excuse me about that. Yes, sorry about that.
4	MR. FITZGERALD: Yes, again I
5	think it was decided it would be better to see
6	those details and to I guess defer any kind of
7	judgment or analysis until we have full
8	DR. MAKHIJANI: No, no I stand
9	corrected, Joe.
LO	MR. FITZGERALD: Yes.
L1	DR. MAKHIJANI: John, put me on
L2	mute.
L3	MR. FITZGERALD: So Brad, I think
L4	that's just about it. And I'll do the best I
L5	can to put these notes together as well as the
L6	actions. And I'll lean very heavily on my
L7	colleagues to help me on some of this.
L8	But make sure it's as detailed as
L9	possible and get it back to the Work Group
20	hopefully by COB tomorrow.
21	ACTING CHAIRMAN CLAWSON: Okay,
22	and Tim you'll do the same with your action

1	items?
2	DR. TAULBEE: That's correct,
3	although I'm not sure I'll have it done by
4	tomorrow. But certainly early next week.
5	DR. NETON: I think, I thought Joe
6	was going to collect them all and then we were
7	going to
8	MR. FITZGERALD: I'll volunteer to
9	collect them all and I'll lean on Tim to edit
10	at will. Some of these have nuances. Like I
11	say, I was scribbling as fast as I could but if
12	I missed anything, please feel free to edit
13	this.
14	It will go back and forth until
15	everybody's satisfied.
16	DR. NETON: Yes, I think that makes
17	the most sense. We'll be happy to do that.
18	ACTING CHAIRMAN CLAWSON: Okay,
19	thanks. Is there anything else needs to be
20	brought before the Work Group at this time?
21	Not hearing any, Ted, I move that
22	we can adjourn.

1	MR. KATZ: Yes, thank you, Brad for
2	stepping in for Mark for one. And thanks
3	everyone else. I think was incredibly
4	productive and well done. So thanks for
5	everyone's efforts going into this and during
6	the meeting.
7	ACTING CHAIRMAN CLAWSON: Okay.
8	Everybody have a wonderful day and until we hear
9	or see you next time, bye.
10	(Whereupon, the meeting in the
11	above-entitled matter was concluded at 2:38
12	p.m.)
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	