U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES CENTERS FOR DISEASE CONTROL NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH

+ + + + +

ADVISORY BOARD ON RADIATION AND WORKER HEALTH

+ + + + +

WORK GROUP ON TBD-6000

+ + + + +

THURSDAY MARCH 15, 2012

+ + + + +

The Work Group convened in the Brussels Room of the Cincinnati Airport Marriott, 2395 Progress Drive, Hebron, Kentucky, at 8:30 a.m., Paul L. Ziemer, Chairman, presiding.

PRESENT:

PAUL L. ZIEMER, Chairman JOSIE BEACH, Member WANDA I. MUNN, Member

NEAL R. GROSS

ALSO PRESENT:

TED KATZ, Designated Federal Official DAVE ALLEN, DCAS
ROBERT ANIGSTEIN, SC&A
DAN CHUROVICH*
LEROY DELL*
JOHN DUTKO*
JENNY LIN, HHS
JOHN MAURO, SC&A*
DAN McKEEL
JIM NETON, DCAS
JOHN RAMSPOTT

*Participating via telephone

C-O-N-T-E-N-T-S

Introductory remarks and review of Agenda (Paul Ziemer)4
Overview of NIOSH White Paper on doses from Betatron operations at GSI (Dave Allen) 12
Petitioner's comments and review of NIOSI White Paper(s) and other issues related to the SEC Petition for GSI (Dan McKeel) 169
SC&A review of NIOSH White Paper on doses from Betatron operations at GSI (Bob Anigstein)
Adjournment 299

1	P-R-O-C-E-E-D-I-N-G-S
2	(8:42 a.m.)
3	CHAIRMAN ZIEMER: I'll officially
4	call the meeting to order. I'd like to have
5	everyone take a quick look at your agenda.
6	The agenda was distributed by email. I have
7	some hard copies here, if anyone at the table
8	needs a hard copy and, folks on the phone, if
9	you didn't get it by the email distribution,
10	it also is on the website.
11	The focus today well, let me
12	before I talk about the focus today just point
13	out that when we initially set the time for
14	this meeting, we did that with a projected
15	assumption that we would have all the
16	materials that we needed in time for all of us
17	to digest them in a timely way. That only
18	partially occurred, at least for the Chair,
19	who was not able to, because of other
20	commitments, even look at the SC&A piece until
21	yesterday as well as the petitioner's piece.
22	But knowing that that was going to

1	be the case, I initially talked to Ted about
2	whether or not we might schedule a follow-up
3	meeting very rapidly within the next couple of
4	weeks, and we have been able to do that.
5	So my idea today would be that we
6	look at this as an information-gathering
7	meeting where we look first of all look at
8	the proposed models for the betatron work as
9	well as, we can go back to the earlier model,
10	source radiographic sources if we need to.
11	But, go through that carefully,
12	make sure that the Work Group understands that
13	model or that little portions of the
14	modeling, have an opportunity to hear from
15	SC&A and the issues that they have raised or
16	are raising about the betatron model, as well
17	as related matters, as well as hear from the
18	petitioner and the site expert on the issues
19	they have with and concerns that they have
20	with the NIOSH models as well.
21	So this will give us an
22	opportunity to get all of the information out

Then we'll have a couple of weeks so 1 there. 2 that we can individually digest it in more 3 detail and I'm very hopeful that two weeks from now, it'll come together and be in a 4 position to make a final judgment up or down, 5 6 which -- whatever we decide to recommend, to come up with a recommendation for the full 7 Board so that that can be acted upon after the 8 next full Board meeting. 9 10 So I think we'll have time to go through these all in detail. I want 11 to 12 the fashion that proceed in we would 13 through the NIOSH White Paper, have Dave go through some detail on that and explain their 14 thinking and approach for the modeling there, 15 16 have SC&A present the analysis that they have 17 done, what concerns that that they are raising and why, and then have the petitioner go 18 19 through their materials. We have extensive 20 comments from the petitioner and we want to understand the petitioner's 21 make sure we concerns and issues, so we have all the points 22

-	- C			1 1	1 - 1 - 7 -
	\cap	777 - 777	α n	tne	table.

- 2 And I did commit to Dr. McKeel at
- 3 the front end that I would make sure that we
- didn't end up, you know, at the last minute,
- 5 with just petitioner stuff at 2:59 or
- 6 something.
- 7 So wherever we are, if we're not
- 8 there right after lunch, we are going to jump
- 9 to that. The intent is to give them a chance
- 10 to go through their materials, both Dr.
- 11 McKeel and Mr. Ramspott, to go through their
- 12 materials in whatever area of detail they
- want. No 10-minute limits, Dan.
- DR. McKEEL: Thank you very much.
- 15 CHAIRMAN ZIEMER: But I'm planning
- 16 to leave at 3:00, so --
- DR. McKEEL: I'm planning on
- 18 starting at 1:00.
- 19 CHAIRMAN ZIEMER: In any event,
- that's my intent today and I hope everybody is
- 21 okay with that so that you don't feel
- 22 pressured today to say, okay, I've got to come

1	to a final decision on it. Because there's a
2	lot of issues here, number one, and we have
3	some conflicting points of view, and we want
4	to make sure that everybody has a chance to
5	put their information on the table and if
6	Board Members have questions, they have the
7	opportunity to ask, and so on.
8	So I will proceed in that manner.
9	We all know that at the Work Groups, we can
10	be very flexible, in terms of you are free to
11	raise questions, for example, during Dave's
12	presentation. He's not the only one that can
13	talk and, in fact, petitioners can also raise
14	questions as the Board Members do.
15	So we'll look at this as just a
16	discourse and you know, I don't want I
17	don't want SC&A and the petitioners to make
18	their case particularly when Dave's making
19	his, and I don't want them to make their case
20	when you're making yours.
21	But I think it's fair to raise
22	questions, what do you mean by this, why did

1	you do this? So we'll proceed on that basis.
2	So we'll begin with the NIOSH
3	White Paper and, just for the record, there
4	are three main documents that we have before
5	us. There's other a whole plethora of
6	documents that we have from seeing this, but
7	we have the January White Paper from DCAS
8	called Dose Estimates for Betatron Operations.
9	We have the SC&A document of March
10	it doesn't have a date. It just says March
11	2012.
12	DR. ANIGSTEIN: March 12th.
13	CHAIRMAN ZIEMER: Okay,
14	officially March 12th. "Response to Battelle
15	TBD-6000 Appendix BB General Steel Industries:
16	dose estimates for betatron operations."
17	And then we have Dr. McKeel's
18	document which, at the top is called Docket
19	140 General Steel Industries Addendum 1 to 2-
20	28-12 submission and I think there's another
21	one. Yes. Let me get the right one out here.
22	Critique of NIOSH January 2012 White Paper

1	dose estimates for betatron operations.
2	So actually there's actually two
3	papers from the petitioner, make sure we have
4	both of those. And then each of you also has
5	perhaps some PowerPoint materials that you may
6	wish to use.
7	So let's begin with the NIOSE
8	White Paper and there's a section at the very
9	beginning and I'm going to sort of ask I'm
10	going to sort of lead you off with a question,
11	because the first thing that you have in here
12	is the section called "new betatron building."
13	I mean, you have your introductory remarks,
14	but
15	On new betatron building, there is
16	a section about the cobalt survey and how you
17	have utilized that in terms of evaluating
18	radiation levels, and I know there are a
19	number of questions that have been raised
20	about that.
21	But I want to make sure that I
22	understand and that others here understand why

1 this was done, and so let me precede your

2 comments by simply stating that as far as

3 shielding -- we are talking about, in a sense,

4 evaluation of shielding capabilities and how

5 they relate to distances of locations in that

6 building, as I understand it.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

And I just want to point out, just sort of for the record, because one of the questions I think that arises is: why are you even doing this? What does this source have to do with the period in question? And I just want to point out, from a basic point of view, aside from the issues that are being raised, that -- because I have done a lot of shielding design and I've taught a lot of shielding design and others have here, that if I know something about how a particular source at a particular location delivers exposure through a shield, I can then use that information and say what would I would get if I change the shielding material, what will I qet if change the source term, the energy, or its

4	- · ·	_
1	locati	α
	TOCALI	- 011 :

2	In fact, I have done that in the
3	past all the time with students, that, okay,
4	here's a source, a known source in a known
5	facility and we put it here, we point it in
6	this direction and here's what you get on the
7	other side of the wall. What happens if I
8	change the source, change the direction,
9	change the distance, even change the wall
10	material, what am I going to get? It's a
11	standard procedure, based on physics.
12	Now, that only works, of course,
13	if nothing else changes and the petitioner is
14	going to raise that question, so I understand
15	that. But do I understand the reason you are
16	doing this to be something like what I
17	described? Or, now that I have sort of said
18	what I thought you said, tell us why you did
19	this.
20	MR. ALLEN: Yes, you're right. I

was looking at it as essentially calibrating

verifying

the

model

or

the

21

22

model

or

1	calibration, but it's essentially verifying
2	the model of the building itself, the betatron
3	building, because that was the one place where
4	we had a known source and known radiation
5	levels at various locations.
6	We have some drawings of the
7	building, we have some dimensions. There's a
8	little bit of conflict from one drawing to the
9	next on dimensions et cetera, so I revised the
10	model that SC&A put together some time ago to
11	update it for the new information that we have
12	been obtaining from the NRC and used that
13	survey to make sure that that was a realistic
14	model of the betatron. We weren't missing some
15	other big unknown. So like I said,
16	essentially it was used to validate an MCNP
17	model of the betatron building, to put it
18	short and sweet.
19	CHAIRMAN ZIEMER: Okay, so you are
20	basically taking the cobalt readings and
21	saying, okay, this tells me something about
22	the nature of the shield walls, at least at

1	the time the cobalt was used
2	MR. ALLEN: Yes.
3	CHAIRMAN ZIEMER: for that
4	purpose, and it helps you refine distances, or
5	confirm distances.
6	MR. ALLEN: Distances,
7	thicknesses, densities et cetera.
8	CHAIRMAN ZIEMER: Yes, yes, okay.
9	So that's the basic use of that. Now
10	MR. ALLEN: At that point that
11	gives me what we can verify as a good model of
12	the new betatron buildings, then I can start
13	putting different sources that have the
14	betatron in there and see what kind of have
15	some confidence in the radiation levels that
16	has given me outside of the betatron building,
17	or in various locations within.
18	CHAIRMAN ZIEMER: Now, let me ask
19	the Work Group Members, there were some
20	questions on why they would use that
21	methodology
22	MEMBER MUNN: No, that's clear

1	CHAIRMAN ZIEMER: Bob, do you have
2	a question on that? It looked like, from a
3	methodology point of view you are okay with
4	that. Now there is there are some
5	questions what's the starting activity of
6	the source and I think you registered that
7	DR. ANIGSTEIN: Yes.
8	CHAIRMAN ZIEMER: You can raise
9	that later.
10	DR. ANIGSTEIN: Yes. Yes.
11	CHAIRMAN ZIEMER: Methodology-
12	wise. Dr. McKeel, I know you have some other
13	questions on it, but you understand why they
14	did it, even though the source itself was
15	outside the time value?
16	DR. McKEEL: Yes, let's come back
17	to that other point later. My concern is with
18	you're modeling a betatron facility using a
19	cobalt source that wasn't even used in that
20	building until after the covered period.
21	So my question is, MCNP is
22	perfectly capable of modeling the betatron

1	itself.	So	you	know,	you	are	modeling	the

- 2 cobalt source with MCNPx, why not model the
- 3 betatron, which is really the function of that
- 4 building during the covered period?
- 5 So I guess I would have to be --
- to be frank, it seems like a bizarre thing to
- 7 do. It's modeling something that is not the
- 8 source that was used there at all during the
- 9 covered period.
- 10 And I understand what you are
- 11 saying, but my view, as a fellow scientist
- from another field, is: why don't you use the
- 13 most direct evidence that you can get rather
- 14 than some indirect measure that you have to
- 15 extrapolate back to, and as I did point out,
- 16 those two sources are really quite different
- on many different levels, a betatron and a
- 18 cobalt source, the radiation pattern, the
- 19 collimation of the beam, the energy spectrum,
- 20 all sorts of things are different about that
- 21 other thing. So I would say to choose --
- 22 choose the model is still odd. That's all I

1	would say.
2	CHAIRMAN ZIEMER: Okay, that's
3	your concern. Okay.
4	MR. ALLEN: And just to come back
5	to that, we did model the betatron and put it
6	inside that modeling and yes, you're right, we
7	could have started with the model of the
8	building and used the betatron, but the
9	information we had was some radiation
10	actual radiation survey with the cobalt
11	source, and that goes one step beyond simply
12	modeling it and actually allows you to
13	validate that model of the building
14	DR. McKEEL: I understand.
15	MR. ALLEN: so the extra step
16	to try to validate that
17	CHAIRMAN ZIEMER: And the program
18	will take into consideration the difference in
19	energies under the spectrum because the cobalt
20	is a monoenergetic. You've got two gammas but
21	they basically have the same energy. You have

more of a -- you have what looks more like a

22

1	bremsstrahlung spectrum from the but in
2	normal shielding calculations, you can take
3	care of that in any event, and you also have
4	some other factors that come into play, the
5	buildup changes with energy sources.
6	In any event, it's just a sort of
7	independent way to cross-check.
8	MR. ALLEN: Yes, I mean those
9	numbers were not
10	(Simultaneous speaking.)
11	CHAIRMAN ZIEMER: Yes, you didn't
12	use
13	MR. ALLEN: dose estimates
14	CHAIRMAN ZIEMER: Okay. Comment.
15	DR. ANIGSTEIN: Yes, I'll make a
16	comment. To cut to the chase, the reason they
17	did this, the cobalt source, is that was the
18	only one on which they had actual, real world
19	measurements.
20	They did not to our knowledge,
21	to the record, they did not do a radiation
22	survey of the with the betatron on. So

1	only with the cobalt source do we have
2	radiation survey measurements and therefore,
3	they used that to validate not the betatron
4	radiation, but the model of the physical model
5	of the building. Does it make sense? Can
6	MCNP predict? I think it was an excellent
7	exercise to say: can MCNP predict the measured
8	dose rate, given the information that we have
9	about the building?
LO	And the answer was, we both did
11	it. Dave did it. I did it. We came up with
L2	there were some differences in the
13	approach. We came up with somewhat different
L4	answers.
L5	But the basic answer was: yes, we
L6	are comfortable with the model. It comes
L7	close enough, I think within a factor of two
L8	is considered pretty good for radiation
L9	release theoretical modeling with all the
20	uncertainties there.
21	CHAIRMAN ZIEMER: Dan, you had a
22	comment.

1	DR. McKEEL: Yes, my comment was I
2	wanted to make that clear for the record. The
3	problem here with this site, particularly
4	related to dose reconstruction, but
5	particularly with related to the SEC, is there
6	is no real actual data on either betatron
7	facility, old or new, at any time during the
8	covered period or thereafter.
9	So with all due respect, I
LO	understand everything that has been said. I
11	accept that and I have been saying for a
L2	long time, years, that in order to validate a
L3	computer model and I have papers that we
L4	did this you know, you have to have real
L5	data to compare it against.
L6	So when you then turn around and
L7	use a validation which there's even some
L8	dispute on how close to the real and the
L9	actual and the computed data have to come
20	to be validated, I would say twofold is very
21	generous, and lots of times you can do better
22	than that

2	think that means that it validates it for
3	betatron model, where you don't have any real
4	data to compare against. So you can't actually
5	validate the betatron.
6	CHAIRMAN ZIEMER: And John, you
7	have a comment too?
8	MR. RAMSPOTT: Yes, this is John
9	Ramspott. My main concern is: it is totally
10	out of the AEC window. Any information being
11	used is totally out of the AEC window.
12	The contract period of General
13	Steel was 1955 to `66. The survey that they
14	are referring to is in 1971.
15	And I want to go back to a
16	comment, on the record, that's actually from
17	Dr. Anigstein's meeting with the workers at
18	General Steel Dave was in attendance in
19	Collinsville, 2007.
20	And the quote I'm sure you
21	remember it the workers and staff were
22	looking at a drawing from 1991, from the

So, you know, but that -- I don't

1

1	cleanup, and Dave cautioned the workers at
2	that time I have the quote that, "Don't
3	work with that kind of drawing because things
4	change over the years. That's actually out of
5	the window."
6	Now if that that's out of the
7	window and that caution was given then, it
8	seems pretty apparent it would be given now.
9	CHAIRMAN ZIEMER: John, I think
10	it's a good point and that would be always be
11	the caution, and I think it works at both
12	ends. We don't want to say that we shouldn't
13	use any drawings before that period or any
14	after, or information from before or after.
15	The question always is: okay, we have this
16	information, how well does it apply to the
17	period we are looking at? Were there changes?
18	So that's a caution that would
19	take place here as well. You know, the basic
20	principle of doing it conceptually, good
21	principle, the cautions that you all raise are
22	valid cautions.

WASHINGTON, D.C. 20005-3701

1	Is the facility as it was when
2	they did the survey? And that's the main
3	point, not that we shouldn't look at it
4	because we look at other things that we
5	look at stuff that's way earlier. We look at
6	stuff that's later. But we always have to
7	say: Does that even apply?
8	We don't always know, and that's -
9	- your point's well taken.
10	MR. RAMSPOTT: A follow-up to that
11	if I could. I mean, for the record, that
12	survey that you're referring to was not done
13	by a licensed health physicist, physicist. `
14	identifying information redacted's always
15	referenced later or actually early in the
16	program. That survey was actually conducted
17	by two General Steel employee management
18	individuals
19	MR. DELL: That's right.
20	MR. RAMSPOTT: with no
21	credentials to really do that testing and I
22	think that should be noted too. If you're

1	going to have data, have valid data, you know,
2	from experts.
3	MR. DELL: I can validate that.
4	DR. ANIGSTEIN: I'd like to
5	disagree with a couple of points, or I have a
6	comment, shouldn't say "disagree." First of
7	all, the earliest drawings were from I'm
8	going to show it in my talk January `68.
9	Yes, it's outside the window but
LO	it's a year and a half. Just a second. Your
L1	earlier charge there is no reason, there is
L2	no basis for saying that the building was
L3	rebuilt during this period of time.
L4	I'm not talking about the lead
L5	door now. I'm just talking about the
L6	structure of the building. The building we
L7	have the drawings from January 1968 and then a
L8	couple of later ones during that couple of
L9	years. They are entirely consistent.
20	It did change to `91. By this
21	time, the building had been out of use for its
2.2	original nurpose for almost 20 years and there

1	may very well have been some walls torn down
2	because the sketch the drawings from 1989,
3	`91 are different.
4	There's a wall missing. So they
5	may have and from what I understand from
6	you, John, was that later on, by the time they
7	were using it like for office space.
8	So there may very well have been a
9	difference and we recognize that. That's why
10	there's a change. That's why we did this, or
11	NIOSH did that.
12	There was a change and this was
13	acknowledged, but to say we can't use any
14	information just because it came a few months
15	later, then this whole program can't do its
16	work because everything is based on
17	information gathered usually in a later period
18	or an earlier period, and my experience with
19	this whole program, which SC&A developed about
20	eight years, and I have been involved more in
21	GSI than any other site, we probably have more

GSI, wouldn't you say that

22

information on

1	Paul,	than	on	any	other	site,	or	at	least	one
---	-------	------	----	-----	-------	-------	----	----	-------	-----

- of the best. It's one of the best documented
- 3 --
- 4 CHAIRMAN ZIEMER: Well, we have a
- 5 lot of information. Like any other site the
- issue, though, is: how good is the information
- 7 and do we apply it properly?
- 8 But let's not have that debate
- 9 today.
- DR. ANIGSTEIN: Okay, and the
- 11 other comment about the person making the
- 12 survey, the person making the survey -- I
- 13 guess I'm not supposed to say his name even
- 14 though it's in the open record, it's in the --
- 15 CHAIRMAN ZIEMER: It doesn't
- 16 matter what his name is.
- DR. ANIGSTEIN: Pardon?
- MS. LIN: Well, I mean, the point
- 19 is made --
- 20 CHAIRMAN ZIEMER: It doesn't
- 21 matter what his name is.
- DR. ANIGSTEIN: But anyway, the

NEAL R. GROSS

1	gentleman who did the survey, was the
2	radiation supervisor there for a period of,
3	call it 10 years, and his resume is very well-
4	documented.
5	No, he was not a certified health
6	physicist. There were very few of them in
7	those days. But he was well trained. He had
8	courses in radiation safety. He had courses
9	in radiography. He had courses in handling of
10	radioisotopes, and his resume is very well
11	documented in the AEC application.
12	In several places his training is
13	he's probably, from what I could see, the
14	best-trained person there, with the exception
15	of Dr. 'identifying information redacted',
16	who is a Ph.D. physicist and a CHP. Again,
17	there were very few of those, of people of
18	that qualification, and he was the one who
19	made the original radiation surveys of the
20	facility in building the 6 Building.
21	But at that time, he was no longer
22	employed I guess GSI figured they can

1	handle it themselves and they were using the -
2	- stopped using his survey that's why they
3	went to the historical I'm going a little
4	ahead historical reasons.
5	They terminated the contract with
6	him for whatever reason and they refused to
7	supply he did three things for them. He
8	did a radiation survey for them, he supplied
9	the film badges under his own name he
10	probably bought that from someone else but he
11	distributed them under the name of his own
12	company and he calibrated their
13	instruments.
14	So after that, they turned to St.
15	Louis Testing to calibrate their instruments,
16	they got their own film badge contract with
17	Landauer directly, and they used this
18	gentleman for the radiation supervisor, and
19	their film badges were at the beginning the
20	film badge reports were addressed to him and
21	then later they were addressed to the new
22	supervisor of the betatron facility.

1	CHAIRMAN ZIEMER: Okay, let's move
2	on then. You made the point. Let's go ahead
3	with the shot scenarios, and I guess, as a
4	starting point, I want to make sure that I'm
5	understanding these scenarios, and I think
6	there's maybe some debate about whether they
7	could or did actually occur.
8	But you have all of these you
9	have like the straight-on, you have the 45
10	each way, you have some up and downs and you
11	have the railroad location, you have pointed
12	at the wall, you have pointed at building
13	yes.
14	But were you trying to get a
15	spectrum of what the
16	MR. ALLEN: That was the intent,
17	was to get a whole variety of possible angles
18	that the betatron could be pointed at, keeping
19	in mind that it's always going to be pointed
20	at some kind of casting.
21	CHAIRMAN ZIEMER: Right. Right.
22	But once you generate the numbers in Tables 3

1	and	4,	for	example,	then	what?
---	-----	----	-----	----------	------	-------

2 MR. ALLEN: The whole first part

of the White Paper was essentially the pieces.

4 This was -- this piece was essentially to

5 point the betatron at a casting in a wide

6 variety of locations for -- several locations

7 for the casting in a variety of orientations

8 of the betatron pointed at the casting, and to

9 determine the dose rate in various areas from

10 all those orientations.

11

12

13

14

15

16

17

18

19

20

21

22

all That then later put was together primarily for the -- essentially the non-betatron -- well, I wouldn't even say the non-betatron workers, but the people not in the control room, people who were layout men and anybody else outside of there, such as on the roof or outside of the betatron building, in an attempt to -- I mean, when you put the whole model together you can come up with a dose rate outside of the building, but to try reconcile this with all the other to information you've got, you need to know the

1	various orientations and what kind of an
2	effect that has on these values.
3	So like I said, it was essentially
4	a spectrum of orientations, a whole variety of
5	them that are explored to see what the effect
6	would be.
7	CHAIRMAN ZIEMER: So if you take
8	the railroad position, and my understanding,
9	and I'm coupling what you said with, I think,
10	with what John said, that in reality, they
11	probably would move the sample along the
12	railroad and keep the thing perpendicular, did
13	I understand that right, that they probably
14	wouldn't actually do angle shots, sidewise?
15	MR. RAMSPOTT: They would try to
16	keep the betatron heading directly at it,
17	rather than at an angle.
18	CHAIRMAN ZIEMER: Right, because
19	it wouldn't make sense to
20	(Simultaneous speaking.)
21	MR. ALLEN: It would throw off
22	CHAIRMAN ZIEMER: in terms of an

1	image it would
2	MR. RAMSPOTT: It doesn't make any
3	sense, no.
4	CHAIRMAN ZIEMER: But you're only
5	doing that to get the effect of what happens
6	if you're off center or up or down a little
7	bit, what does that do?
8	MR. ALLEN: Well, keep in mind
9	it's not this was this big axle model that
10	we are shooting at, but that's not the only
11	thing that got shot. There were various
12	different sizes and shapes
13	CHAIRMAN ZIEMER: Right, so the
14	orientation might have changed somewhat.
15	MR. ALLEN: Sure, I mean you can
16	easily angle it to shoot straight at one piece
17	of a casting that has a different shape, where
18	you are kind of glancing off of a different
19	side of it. Not everything was a flat,

So essentially this was primarily

WASHINGTON, D.C. 20005-3701

straight piece of steel that they were

shooting at.

20

21

22

1	just	to	get t	he	var	ious	angles	where	you	
2	that	you	could	an	gle	the	betatron	at.		

- 3 MEMBER MUNN: At certain angles
- 4 you could not because of the limit switches.
- 5 Right.
- 6 CHAIRMAN ZIEMER: And as you
- 7 modeled this, you're modeling with the beam in
- 8 an orientation, but without a specified sample
- 9 in place. It's unshielded? Not unshielded,
- 10 but -- no sample barrier, in other words, the
- 11 value you are reading in the model, outside
- the wall, say in the 10 Building from railroad
- 13 straight on --
- 14 MEMBER MUNN: That's without the
- 15 target.
- 16 CHAIRMAN ZIEMER: Is that without
- 17 a sample target in place?
- 18 MR. ALLEN: No. There is a steel
- 19 casting in front of that.
- 20 CHAIRMAN ZIEMER: Okay.
- MR. ALLEN: In front of the beam.
- 22 CHAIRMAN ZIEMER: Of a specified

NEAL R. GROSS

1	size?
2	MR. ALLEN: Yes.
3	CHAIRMAN ZIEMER: Okay, and these
4	all have the same specified
5	MR. ALLEN: Yes, the same target,
6	coordinated, different places. Actually, they
7	are targeted in, I think, three different
8	places, and then, like I said, it moved ahead
9	to where yes, it was a for that particular
10	type of thing, it wouldn't make a lot of sense
11	if it was at a glancing angle.
12	But essentially, if you had a
13	piece of steel there that you were trying to
14	shoot like that, oriented to head that
15	direction, then you've got the numbers there,
16	like I said, basically trying to get a whole
17	variety of possibilities.
18	CHAIRMAN ZIEMER: Right, okay.
19	This, so my simple mind can get around this,
20	suppose that the only possibility is railroad,
21	straight, up and down. Three numbers. Forget
22	the others at the moment.

1	MR. ALLEN: Okay.
2	CHAIRMAN ZIEMER: What do you do
3	with those three numbers? Let's say at the
4	number 10 Building. What are you going to do
5	with those three numbers?
6	MR. ALLEN: Well, that's towards
7	the end of the paper. What I ended up doing
8	with those
9	CHAIRMAN ZIEMER: Yes, but just
10	conceptually, you've got these three numbers,
11	what are you doing to do with them?
12	MR. ALLEN: What I did was and
13	I know there's some debate on this in the
14	White Paper it'll say that I was maximizing it
15	as 10 millirem in the control room and didn't
16	do one particular shot forever, there was
17	various orientations in the it wasn't just
18	
19	CHAIRMAN ZIEMER: Yes, I know what
20	you you parsed that out
21	MR. ALLEN: I put of the 15
22	scenarios here, I used Excel Solver to say

1	what's the conditions that we come up with,
2	which were the 41 percent utilization, the 10
3	millirem in a control room, and trying to
4	maximize the dose in different locations such
5	as the number 10 Building, what would be the
6	number of hours used and these various
7	orientations to combine to meet all these
8	criteria.
9	CHAIRMAN ZIEMER: Okay. And I
10	know you're going to address that in a general
11	or more specific way, and I sort of knew the
12	answer to the question, but I want to make
13	sure that we're understanding that you're not
14	using these individual numbers per se, you're
15	gaining the spectrum of readings and then
16	you're parsing things out in a way to maximize
17	the way you do it conceptually, to maximize
18	what would be the exposure to a person, and
19	you have them in there a certain percent of
20	the time of their work day at that location?
21	MR. ALLEN: I think so. I did use
22	these numbers in combination. I didn't use

_	all chese numbers, it was a maximizing
2	analysis.
3	CHAIRMAN ZIEMER: Right.
4	Questions?
5	MEMBER BEACH: I guess the only
6	question I would have is why would you use 15
7	models instead of limiting it to maybe 7
8	models of more so it's more applicable?
9	It seems confusing that you have
10	put so many in there when, in reality, you're
11	not going to use that many.
12	MR. ALLEN: Well, when I did them,
13	I didn't know which ones I would use. That
14	was the whole idea, was to any time I've
15	tried to do any kind of a model before, it
16	was: "But what about?" Okay?
17	So I tried to
18	MEMBER BEACH: So you were
19	covering all bases.
20	MR. ALLEN: cover the whole
21	spectrum because honestly, I didn't know, if
22	somebody said, what if they angled it up, what

1	if they angled it down, you get a lot of
2	scatter off the concrete floor, and in all
3	honesty, unless I did it, I wouldn't know for
4	sure. So I tried to get all the spectrum. I
5	didn't know which one was going to end up
6	being the maximizing, because once you put
7	that criteria of not exceeding what the film
8	badges read, it can change. It's not
9	necessarily the highest dose rate. It might
LO	be a little more than the highest ratio of the
11	number 10 Building to the control room, and
L2	it's not intuitive which one will give you the
L3	higher ratio.
L4	MR. RAMSPOTT: John Ramspott
L5	again. One of the other concerns we have is
L6	the charters are constantly changing. And it
L7	could be HY80 steel which you referenced,
L8	could be a uranium ingot.
L9	I mean, there's a variety of
20	different items going through there, shapes,
21	sizes, there are no shot records. They don't
2.2	exist. No one knows what was on there. What

1	2:2	7.7011	1100	in	7701170	model?
T	$a_{\perp}a$	you	use	TII	your	moder:

- MR. ALLEN: What we used is -- I
- 3 think it was HY80 steel.
- 4 MR. RAMSPOTT: I mean, what size,
- 5 how big, how --
- 6 MR. ALLEN: It was the same thing
- 7 in the SC&A report from a few years ago, was a
- 8 large axle as I recall. Bob, you can correct
- 9 me if I'm wrong.
- DR. ANIGSTEIN: Yes. No, it was a
- 11 hollow axle for the power shuttle which I
- 12 believe --
- 13 MR. RAMSPOTT: So that you used
- 14 one item --
- 15 (Simultaneous speaking.)
- 16 MR. ALLEN: But I did do some
- 17 scoping on a few different -- not 15 different
- 18 shots; each of them takes some time to do.
- 19 But I did a little bit of scoping that's not
- written in there, just to satisfy myself.
- 21 But the truth of the matter is
- 22 with photon radiation, which is what X-rays

1	are, it's honestly the electron density that
2	makes much of the difference. It's not so
3	much the type of material as far as scatter
4	radiation that comes off of that. As far as
5	any kind of build-up or activation of the
6	material, yes, that makes a difference. But
7	as far as the scatter it's kind of the
8	density that makes the most difference and I
9	shot some uranium, I shot some steel,
10	different thicknesses, and as long as you're
11	not into a thin steel, it doesn't make as much
12	difference on the scatter, and there would
13	definitely be no reason to shoot a quarter
14	inch steel with a betatron or an eighth of an
15	inch steel so basically, a thick, massive
16	piece of steel or almost any other kind of
17	metal could give you a similar answer.
18	MR. RAMSPOTT: So you did shoot at
19	the uranium?
20	MR. ALLEN: I did. It's not in
21	there. I didn't put didn't make it part of
22	the analysis.

1	MR. RAMSPOTT: Because that would
2	be interesting to see. Did you take into
3	account that 15 percent of the I think it's
4	called the photon beam coming out of the
5	betatron?
6	MR. ALLEN: I believe it's
7	neutrons. I think it's a smaller number. I
8	think it was like 0.15 on that chart, percent.
9	But I could be wrong. But in any case what
10	we did was
11	MR. RAMSPOTT: Aren't there
12	documents that say it's 15 percent
13	DR. McKEEL: There are documents
14	that say that 15 percent of the axial beam
15	MR. RAMSPOTT: the axial beam
16	DR. McKEEL: of old and new
17	betatron donut tubes is neutrons.
18	CHAIRMAN ZIEMER: It may be that
19	when you do the quality factor, to change it
20	to dose, as opposed to the flux value. We can
21	double check that.
22	DR. ANIGSTEIN: Dose being 15

1	percent sounds within reason.
2	MR. ALLEN: Yes, that might be the
3	I might have been thinking the flux.
4	CHAIRMAN ZIEMER: You can check or
5	that.
6	(Simultaneous speaking.)
7	MR. ALLEN: But in any case, the
8	model itself, its first principle, does
9	essentially shot the 25 MeV electrons at the
10	platinum target and the model will produce
11	essentially whatever is going to be produced,
12	including the neutrons and you can't you
13	can tally them together. I did do these and
1 /	tally the neutrone in generate rung just

It was considerably easier to tally the neutrons separately in other runs, so I didn't run out of computer time.

and you can only do so much in one run.

because there are limitations to the program

DR. McKEEL: Paul, I have a question for Dave Allen. One of the pieces of information we will present is that the new

NEAL R. GROSS

15

1	betatron tunnel exit door was not enclosed by
2	a lead-lined double door in the covered
3	period.
4	So my question is: when you were
5	modeling those 15 scenarios, one route for the
6	betatron new betatron being to get into
7	Building 10 is through the tunnel down the
8	railroad track, directly into Building 10, was
9	the double-leaf, lead-lined door in your
LO	model?
11	MR. ALLEN: The lead-lined is the
L2	bottom seven feet and yes, that was in my
L3	model and I have seen the question raised
L4	about that. The White Paper
L5	DR. McKEEL: I am going to stick
L6	to exactly what Paul asked and not get into
L7	that right now. But
L8	CHAIRMAN ZIEMER: Yes, I understand
L9	that is a question.
20	DR. McKEEL: it's important for
21	the record that that was not accurate. That
22	didn't exist in 1966

1	CHAIRMAN ZIEMER: And I would also
2	
3	DR. McKEEL: That's a fallacy.
4	CHAIRMAN ZIEMER: When I talked to
5	Bob last week to see where he was on the
6	report, I asked him if he had seen your
7	comments on that and whether, when he was
8	checking out Dave's stuff, whether he was
9	doing it with or without the shielding, and
10	you can speak to that later. But in any
11	event, we are aware that that could be an
12	issue in terms of how it puts at certain
13	location
14	DR. McKEEL: I think that's
15	important to get on the record. That would
16	actually affect all 15 scenarios. Whatever
17	you are measuring, the final count
18	CHAIRMAN ZIEMER: Right. Right.
19	Right.
20	(Simultaneous speaking.)
21	DR. McKEEL: into Building 10.
22	CHAIRMAN ZIEMER: Right now, the

1	NIOSH model assumes the lead is in there. So
2	if at some point it was either confirmed or
3	NIOSH said, well, we're not sure but we'll
4	accept maybe that it wasn't there for
5	claimant-favorability, from a conceptual point
6	of view, it would you would rerun some
7	numbers as far as
8	MR. ALLEN: Yes, it would take
9	about two minutes to change the input
10	CHAIRMAN ZIEMER: But right now,
11	it's assuming the shielding is there and
12	affects the final numbers, yes. You're quite
13	right.
14	DR. ANIGSTEIN: I had a question.
15	This Excel Solver, now my perhaps I
16	misunderstood. You had another condition that
17	it maximizes the dose rate in the 10 Building,
18	you had a condition in there?
19	MR. ALLEN: Yes. Yes.
20	DR. ANIGSTEIN: I somehow didn't
21	catch that or I didn't realize that you didn't
22	because I thought it was

1	MR. ALLEN: When I saw your report
2	I went back and looked and I realized I had
3	two things bulletized and that wasn't one of
4	them, but essentially it was in the text above
5	that I said I used Solver to maximize the dose
6	rate using these conditions and then
7	bulletized
8	DR. ANIGSTEIN: I see, okay.
9	Because otherwise it didn't make very much
10	sense. Now I withdraw my would have been,
11	you know so in other words, it sampled all
12	possible combinations
13	MR. ALLEN: And gave you the max.
14	DR. ANIGSTEIN: and then gave
15	you the okay. That makes sense, because
16	there's about 100 combinations that you could
17	have. Okay.
18	CHAIRMAN ZIEMER: Just for my own
19	understanding of the term "flipping," Dave,
20	you referred to certain positions as flipped
21	positions and, John, I think you said that's
22	not how they used the term. Could one of you

1	explain	to	me	what	the	operators	understood

flipping to be? And you may be using it in a

- 3 different way.
- 4 MR. ALLEN: We could be wrong on
- 5 this, because I kept getting different
- 6 impressions and stories on exactly what is
- 7 called that. So --
- 8 MR. RAMSPOTT: John Ramspott again
- 9 --

2

- 10 CHAIRMAN ZIEMER: I mean, it
- 11 doesn't affect your model. You called it
- 12 something but --
- MR. ALLEN: Yes.
- 14 CHAIRMAN ZIEMER: But in any event
- 15 what's --
- MR. RAMSPOTT: Actually, the term
- 17 is wrong in your report. You actually
- 18 referred to swinging the head 45 degrees as
- 19 "flipping" in your paper, and that's
- 20 definitely not flipping.
- 21 What they did, and a gentleman
- 22 deceased, 'identifying information

1	redacted'from Allis-Chalmers, Los Alamos as
2	well, taught the workers when he came to the
3	site how to flip the head of the betatron. The
4	betatron, as built by Allis-Chalmers, was
5	designed to shoot straight out away from a
6	control room, using that wall as the example,
7	to shoot straight out but have the ability to
8	rotate and turn 45 degrees without any
9	flipping, that was standard. That was safe
10	and then that whole
11	CHAIRMAN ZIEMER: Rotate 45 degrees
12	in any direction. Top down
13	MR. RAMSPOTT: Absolutely. They
14	could have well, actually no, they could go
15	180 degrees down. They could shoot straight at
16	the floor or straight at the ceiling if they
17	wanted.
18	CHAIRMAN ZIEMER: Okay.
19	MR. RAMSPOTT: They didn't do that
20	very often, but I actually have photographs of
21	a site with a betatron actually doing it.
2.2	CHAIRMAN ZIEMER: So 90 degrees

1	from
2	MR. RAMSPOTT: So, flipping
3	MR. DELL: I've seen it done.
4	CHAIRMAN ZIEMER: Who is this?
5	Who is speaking?
6	MR. DELL: My name is Leroy Dell,
7	and I was the supervisor for the betatron in
8	the late end of `60s and up to `70s. Yes,
9	they could turn the head around and shoot
10	right, I mean directly, at the control room.
11	CHAIRMAN ZIEMER: Okay, good.
12	Thank you.
13	MR. RAMSPOTT: And the gentleman
14	taught the guys how to do that, and that
15	essentially lets that machine shoot about
16	anywhere in that building, because the
17	betatron is on a tripod actually a crane,
18	telescoping crane, comes down, can go down to
19	the railroad tracks. When you flip it you
20	lose all barriers. Now it can go as far as it
21	wants down the tracks, as far as the head
22	sticks out, and we actually have some good

1	photographs	of	the	normal	betatron	riaht	at

- the tracks, from Allis-Chalmers, shooting into
- 3 that L area that everybody says is the dead
- 4 area.
- 5 So flipping the head is not
- 6 turning it 45 degrees. It's actually turning
- 7 it upside down and in reverse. That's what
- 8 Mr. Dell says.
- 9 MR. ALLEN: I mean, the scenarios
- I have, have it going, what would that be, you
- 11 270 degrees --
- MR. RAMSPOTT: You actually turned
- it back at the control room, I think, in your
- 14 paper?
- MR. ALLEN: Well, what you were
- 16 just saying about shooting down that L area,
- 17 shooting -- the one that I called flipping the
- 18 head was shooting the 45 degree angle down
- 19 that --
- 20 MR. RAMSPOTT: And that didn't
- 21 have to be flipped to do that.
- MR. ALLEN: Okay. I thought that

1	was
2	MR. RAMSPOTT: No.
3	MR. ALLEN: outside the limits
4	of what was supposed to be done
5	MR. RAMSPOTT: No, that that
6	betatron will go down to the edge. We've got
7	photographs of it. It'll actually go down to
8	the tracks and you still are allowed your 45
9	degrees, so your angle you are not totally
10	down it, but
11	CHAIRMAN ZIEMER: Now they had to
12	defeat some limit switches or some interlocks
13	to do the flipping?
14	MR. RAMSPOTT: They were actually
15	taught no, all they had to do was move the
16	hoses out, move the wires out of the way
17	CHAIRMAN ZIEMER: Okay.
18	MR. RAMSPOTT: so they wouldn't
19	get hung up in the flip.
20	CHAIRMAN ZIEMER: Okay.
21	MR. RAMSPOTT: And you see that
22	from the photographs. And then the other

1	method that one of the workers shared with me,
2	if you took the betatron down there's two -
3	- there's actually two cranes in the building,
4	one to pick up castings to put it on a car,
5	whatever, or take it off a car, the other one
6	is for the betatron.
7	If you ran a betatron crane into
8	the lifting crane while it was stationary,
9	that jolt would actually allow the head to
10	turn more than 45 degrees.
11	So they figured out how yes,
12	those guys figured out how to do it when you
13	are in a hurry and it's the end of the month,
14	they said, okay, this is how we're going to do
15	it, they just changed the rules. They did
16	what they had to do and told to do, that
17	supervisor in particular brought that bit of
18	knowledge.
19	CHAIRMAN ZIEMER: Okay, that's
20	helpful.
21	MR. RAMSPOTT: And 45 degrees is
22	important because that sounds like they didn't

1	flip it as much as they did the other
2	DR. ANIGSTEIN: Perhaps I can
3	clarify this. This is a diagram that was drawn
4	by one of the workers during the meeting. Let
5	me just reproduce it here.
6	CHAIRMAN ZIEMER: Okay, for those
7	on the phone, Bob is going to is drawing on
8	the magic white board which is actually a
9	piece of paper. Or are you? Are you drawing
10	on the paper?
11	MR. RAMSPOTT: We have some
12	workers on the line that could describe this
13	too.
14	CHAIRMAN ZIEMER: Yes. He's got a
15	diagram that was provided to him, I guess, by
16	someone there, but in any event
17	MEMBER BEACH: Bob, what report
18	are you getting that diagram out of?
19	CHAIRMAN ZIEMER: Yes, is this a
20	report that we have, Bob, or
21	DR. ANIGSTEIN: This is something
22	that was hand-drawn at the meeting. So I

_			
1	don't	have	

- 2 CHAIRMAN ZIEMER: It was hand-
- drawn at the workers' meeting?
- 4 DR. ANIGSTEIN: Yes.
- 5 CHAIRMAN ZIEMER: Okay, but your
- 6 marker is not working there.
- 7 DR. ANIGSTEIN: I see that. Not my
- 8 marker. I think it's meant for the Board.
- 9 CHAIRMAN ZIEMER: So, but does it
- 10 differ from what -- I mean, does it differ
- 11 from what John Ramspott has described or what
- 12 Mr. Dell has described? I think I understand
- what they're saying. I just, I don't -- do we
- 14 need a diagram?
- DR. ANIGSTEIN: Pardon?
- 16 CHAIRMAN ZIEMER: Do we need a
- 17 diagram?
- DR. ANIGSTEIN: Well, I don't
- 19 think they would -- I don't think it was --
- 20 what they were saying does not agree with what
- I was told by the workers at that meeting. So
- 22 I want to show --

1	CHAIRMAN ZIEMER: Oh, okay, well,
2	I'm not sure how critical it is other than you
3	have the ability to get the beam down that
4	corridor that you're talking about
5	MR. ALLEN: Whether legally or
6	illegally.
7	CHAIRMAN ZIEMER: Yes, either way.
8	DR. ANIGSTEIN: This is what I was
9	told. Here is the building. Here are the
10	railroad tracks.
11	CHAIRMAN ZIEMER: Okay.
12	DR. ANIGSTEIN: This is the
13	betatron is here. And the normal limit
14	switches were 110 degrees I spoke to
15	someone just recently. So this is the
16	straight-ahead position. They could go 110
17	degrees in either direction. So this was the
18	normal arc that was limited to.
19	However if they, from my
20	understanding, if they take the head and flip
21	it this way, then you can get the other part

of that arc.

1	CHAIRMAN ZIEMER: Yes, the rest of
2	the way round. Right.
3	DR. ANIGSTEIN: So the 45 degrees
4	was just an example. It wasn't that it was 45
5	degrees, that normally it couldn't shoot over
6	the control room. It could shoot at the
7	railroad track but it couldn't shoot down.
8	CHAIRMAN ZIEMER: Unless you moved
9	it way on down.
10	DR. ANIGSTEIN: However, we were
11	also told by one of the radiographers at the
12	meeting no, they never actually aimed it
13	at, you know, they never actually aimed it at
14	the door. That was completely unlikely. But
15	it did go this is getting a bit technical.
16	CHAIRMAN ZIEMER: Well, they are
17	obviously going to be aiming at a sample.
18	You're not going to sit there and say, let's
19	aim at the door. You're aiming at a sample
20	and depending on where the sample is, and the
21	orientation
22	DR. ANIGSTEIN: Right. In this

Τ	instance, in Dave's model, and actually our
2	model, the SC&A model, the thing where the
3	axle was mounted here, and Dave's model has it
4	pointing straight, just like in our model, and
5	he also has it pointing 45 degrees this way,
6	45 degrees this way and 45 degrees, if you
7	look at it now in a vertical cross-section
8	near the axle, you always had it centered but
9	you also had it pointing this way and this
10	way, and these are realistic because they
11	would have to do they will have the film
12	inside, so they would have to have different
13	angles to get different parts of it.
14	So the up and down is realistic.
15	The left and the right probably does not
16	represent actual practices.
17	CHAIRMAN ZIEMER: Well, I guess
18	the bottom line is: do the scenarios are
19	the scenarios such that they would take into
20	account whatever could scatter down that
21	corridor, and that's the issue I guess that
22	you are addressing.

WASHINGTON, D.C. 20005-3701

1	Okay. Anything else on the shot
2	scenarios that we need to clarify for us
3	today? The flipping, the terminology doesn't
4	affect your numbers per se, as to whether you
5	call it flipping or not, it's where you had
6	that point and whether that's flipping or not
7	flipping, you get the point there. John, you
8	have
9	MR. RAMSPOTT: There is one last
10	comment.
11	CHAIRMAN ZIEMER: Yes.
12	MR. RAMSPOTT: Regarding that
13	model that the management at GSI did, we have
14	worker testimony again, probably at Dr.
15	Anigstein's meeting, if not it's definitely on
16	the record from a Mr. George Luber, and they
17	did use cobalt on the railroad car on the
18	tracks. So it wasn't just the betatron that
19	was aimed at the tracks in the L.
20	CHAIRMAN ZIEMER: Thank you.
21	MR. DUTKO: Dr. Ziemer? John Dutko,
22	sir.

1	CHAIRMAN ZIEMER: Yes. Oh, hi, John
2	Dutko.
3	MR. DUTKO: I was one of the
4	fellows that was ordered to flip the head.
5	Leroy Dell was telling you the truth, the
6	exact truth. Anywhere in the chute itself,
7	anywhere in the chute itself, if that head was
8	flipped, limits, normal limits, would be
9	violated. The machine would be pointed toward
10	the control room, or the hallway, as you would
11	call it, would violate all normal limits.
12	And there were times when we were
13	ordered to do so and shoot toward the control
14	room, sir, at a casting that had routed in,
15	but we couldn't reach with normal limits.
16	The same if the casting moved,
17	they would order that casting or the
18	flipping of the head to pick up the needed
19	shots to save a moved casting.
20	MR. DELL: That's exactly right.
21	MR. DUTKO: Thank you, sir.
22	MR. KATZ: Who's the other person

1	who	iust	said,	"that's	exactly	right?"	Is
_			~ ,	00-0	00-0		

- 2 that Leroy Dell?
- 3 MR. DELL: Yes, it is.
- 4 MR. KATZ: Okay, thank you. I
- 5 think everyone in the room acknowledges,
- 6 realizes that this is -- and doesn't dispute
- 7 this information. But thank you.
- 8 CHAIRMAN ZIEMER: Okay, thank you.
- 9 Anything else on the shots right at the
- 10 moment? Yes, Dan?
- DR. McKEEL: I hate to make a
- 12 point too many times but I think we can't.
- 13 What Mr. Dell and what Mr. Dutko said is in
- 14 fact they did point the betatron directly at
- 15 the control room.
- 16 MEMBER BEACH: Can I just ask what
- 17 -- can you give us a percentage of time that
- 18 happened? Was it 5 percent, 10 percent? Just
- 19 an estimate.
- 20 MR. RAMSPOTT: Maybe the workers
- 21 could answer that better. Mr. Dell or Mr.
- 22 Dutko?

1	CHAIRMAN ZIEMER: I mean, it was -
2	_
3	MR. DELL: Probably wasn't over
4	five percent.
5	CHAIRMAN ZIEMER: But it was done,
6	it's not like
7	MR. DELL: The major reason was to
8	save time. You didn't have to take if
9	you're going to turn the casting around, you
10	had to take it out to 10 Building and have
11	them turn it around and bring it back in.
12	That way you could go ahead and
13	shoot it and you didn't have to move the
14	casting.
15	CHAIRMAN ZIEMER: Thank you.
16	MEMBER BEACH: Thank you.
17	MR. KATZ: Thank you, Mr. Dell.
18	CHAIRMAN ZIEMER: Anything else on
19	shots? Everybody think they have a feel for
20	the issues on that?
21	MEMBER BEACH: The only other
22	question I would ask: is there any contention

1	between NIOSH and the wall, how thick the
2	walls were, between where you shot and the
3	control room? Was that a contention I read
4	some differences on two block walls, one block
5	wall, filled, not filled, is there a
6	contention on that or not?
7	MR. RAMSPOTT: I think the workers
8	could answer that, but yes, there are
9	definitely disagreements on that.
10	DR. McKEEL: I can answer that. I
11	think the issue is that different drawings
12	from different time periods show different
13	thicknesses and even quantitative
14	qualitative differences, which is there is
15	a drawing which we'll show you a little bit
16	later on that says that the concrete blocks
17	and the walls had mortar in them and mortar
18	has a different density, et cetera.
19	I think the point that's not
20	emphasized enough is that one wall of that
21	tunnel with the railroad tracks, where the
22	control room was, and the thin metal control

1	room door, was just a very thin wall. It
2	wasn't a 10-foot thick wall.
3	So I think there are certainly
4	those kinds of differences.
5	CHAIRMAN ZIEMER: For clarity, on
6	your model, Dave, on the new betatron, your
7	walls were you assumed the concrete blocks
8	were filled with was it with sand or with
9	mortar?
10	MR. ALLEN: The 10-foot thick or
11	the
12	CHAIRMAN ZIEMER: The big walls
13	MR. ALLEN: was two, I think,
14	one-foot concrete walls with sand
15	CHAIRMAN ZIEMER: Sand-filled
16	MR. ALLEN: between them.
17	CHAIRMAN ZIEMER: Yes. And what
18	about the other
19	MR. ALLEN: The dimensions are in
20	the paperwork, but I think it's 16-inch, if I
21	remember right, that wall that Dr. McKeel's
22	talking about.

1	CHAIRMAN ZIEMER: Okay, thanks.
2	DR. ANIGSTEIN: Actually David's
3	model was based on the early SC&A model and we
4	had we made a minimum thickness to the
5	control room. We had the hollow walls, hollow
6	concrete block, and I looked up commercial
7	concrete block and I picked the one that would
8	give you the lowest overall average density,
9	which was like less than one, that's the
LO	density of water.
L1	But I ran the first of all when
L2	I saw that it was mortar-filled so that
L3	immediately mean, no, it wasn't hollow, it
L4	wasn't empty.
L5	And second of all, I ran the model
L6	to get the dose on the outside. I ran the
L7	cobalt-60 and to get the dose on the outside,
L8	and I have extremely high doses, assuming that
L9	those outside walls, not the 10-foot thick
20	wall but the thinner ones, were also of this
21	light weight. I said no, this is not
22	consistent with their survey information.

1	So what is consistent with the
2	survey information is all the walls, all those
3	smaller walls would be solid the equivalent
4	of solid concrete. Mortar is about the same
5	as concrete, they're about the same density,
6	comparable materials.
7	So that's much more consistent
8	with the survey the cobalt survey and as a
9	matter of fact our number my numbers
10	actually came out higher than the ones that
11	were actually measured, but not by that much,
12	so I consider that to be consistent.
13	So there's no evidence and there's
14	no logic why they would be I mean the
15	building would not be built.
16	CHAIRMAN ZIEMER: Thanks. Okay.
17	Does that answer your question? Let's go to
18	residual radiation from uranium, and, Dave, do
19	you want to just give us a quick overview of
20	the concepts here that you followed and
21	MR. ALLEN: Yes, in that
22	particular one, I'm trying to remember the

1	exact page, hold on a second
2	CHAIRMAN ZIEMER: Well, you had a
3	certain amount of exposure time per shot.
4	These are
5	MR. ALLEN: Yes, the
6	CHAIRMAN ZIEMER: Uranium
7	MR. ALLEN: was 60 minutes per
8	shot.
9	CHAIRMAN ZIEMER: Uranium ingots
LO	and so on
11	MR. ALLEN: The report was 60
L2	minutes per shot. We had earlier done one of
L3	trying to shoot through an entire ingot and
L4	found out that there was no way you were going
L5	to get an X-ray exposure, it's all scattered
L6	so you couldn't really do that and that went
L7	along with what the operators had said at one
L8	point about shooting it obliquely, basically
L9	through the corners, and if they had to shoot
20	it four times obliquely to the top of there
21	was some debate on what they were calling an

ingot and what they were calling a beta slice

and some had seen one and not the other, so

there were various types of uranium that were

3 X-rayed.

But essentially, the model had one

5 that's thick enough to essentially absorb all

6 the useful X-ray and betatron and shot it four

7 times to get a full coverage on -- I don't

8 recall the dimensions, but a circular piece of

9 uranium metal.

10

11

12

13

14

15

16

17

18

19

20

21

22

And what we did here was to shoot for 60 minutes, give it 15 minutes to take the film down, reorient the betatron and put some new film on and then shoot it again at a different angle, and we accounted for the activation that would occur within the uranium as well as the decay from that first shot until you are done with all four shots, that you are actually exposing different pieces of this uranium for different timeframes, plus some of the shorter-lived activation products would build up almost to an equilibrium pretty quickly and then they wouldn't go any higher

Τ.	during the shot.
2	So trying to account for all that,
3	taking four shots, 15 minutes in between, so
4	they ended up being 4 times 75, 300 minutes
5	for this process, and accounting for the dose
6	rate you would be getting from these shots to
7	the operators that were taking down the film,
8	they were in the betatron et cetera, and we
9	put all that together into an average dose
LO	rate while you were X-raying uranium, and then
11	that later on in the White Paper is used as
L2	part of the dose estimate based on how much
L3	uranium they were doing for various times.
L4	CHAIRMAN ZIEMER: And you included
L5	neutron in this one, I think, right?
L6	MEMBER MUNN: Approximately 90
L7	percent of the neutron dose is received first
L8	
L9	MR. ALLEN: Okay.
20	MEMBER MUNN: following
21	irradiation.
22	MR. ALLEN: There's a lot of

1	numbers going through my head right now
2	CHAIRMAN ZIEMER: Well, what I'm
3	trying to get a feel for, so there's no
4	prompt neutrons that you worry about because
5	those are only occurring when the thing's
6	being irradiated. It's only the activation
7	products
8	MR. ALLEN: Right, prompt neutrons
9	are dealt with, with the shot scenarios.
10	CHAIRMAN ZIEMER: Right,
11	separately.
12	MR. ALLEN: Yes.
13	CHAIRMAN ZIEMER: So this is
14	residual so
15	MR. ALLEN: It's essentially
16	delayed neutrons.
17	CHAIRMAN ZIEMER: Well, that's why
18	I was having a little trouble with these
19	neutron ones. Jim, can you help me out on
20	this too? Why are we seeing this much neutron
21	after the shot?

I

NETON:

DR.

22

can't help you;

1	Dave's been doing all the work.
2	(Simultaneous speaking.)
3	DR. ANIGSTEIN: I can speak to
4	that. Neutrons from the uranium?
5	MEMBER MUNN: Yes.
6	DR. ANIGSTEIN: And you have the
7	delayed, you have some very short-lived
8	radionuclides that are neutron emitters. I
9	mean there are neutron emitters, they are just
LO	very short-lived.
11	So this is the facility of MCNPx
L2	to do it's still at a even though now
L3	it's at a mature state, it's still they
L4	still call it developmental.
L5	But what they do is they have a
L6	data file which they sample, which gives you -
L7	- after the photoactivation, you get rather
L8	than trying to trace each radionuclide and
L9	that is now, it's just so the answer is to
20	have a separate database that they simply
21	sample and they said these will be the delayed
22	gammas and the delayed neutrons. Delayed

	1	neutrons	qo	to	zero	very	quickly,	delayed
--	---	----------	----	----	------	------	----------	---------

- 2 gammas persist.
- 3 CHAIRMAN ZIEMER: Right.
- DR. ANIGSTEIN: So your question
- 5 was why are the delayed --
- 6 CHAIRMAN ZIEMER: Well, okay.
- 7 Your delays are short enough, I guess, that
- 8 you're still seeing some of the neutrons.
- 9 Just intuitively, those neutron values look
- 10 high to me. That's why I raised the question.
- 11 I'm not necessarily disputing it, it was more
- 12 intuitive.
- 13 MR. ALLEN: I can't say as I have
- 14 a feel for what their intuitive value would
- 15 be. I'm not -- as Bob said, I mean, you know
- in a nuclear reactor, some of the fission
- 17 products are called delayed neutron
- 18 precursors.
- 19 CHAIRMAN ZIEMER: Right.
- 20 MR. ALLEN: And they have
- 21 difference -- some of them are a little bit
- longer half life, they decay to something that

1	then emits those neutrons and you get this
2	delay.
3	CHAIRMAN ZIEMER: Yes.
4	MR. ALLEN: And you know that
5	helps control a nuclear reactor.
6	CHAIRMAN ZIEMER: But they're
7	really pretty short and
8	MR. ALLEN: Yes, and you're going
9	to get
LO	CHAIRMAN ZIEMER: We're out here
11	at I guess most of this see, you're
L2	assuming that, okay, they have a brief delay
L3	and then they are going in and handling it, so
L4	they are getting that early in that scenario.
L5	MR. ALLEN: Yes, this starts five
L6	seconds
L7	CHAIRMAN ZIEMER: Five seconds in,
L8	so yes, okay. That all right. I'll just -
L9	-
20	MR. ALLEN: It's my intuitive

if I had to guess at what the number would be

before I ran these, it wouldn't have been that

21

1	high.								
2	CHAIRMAN ZIEMER: No.								
3	MR. ALLEN: But								
4	CHAIRMAN ZIEMER: And it's taking								
5	into consideration all those photoactivation								
6	products that are neutron emitters.								
7	DR. ANIGSTEIN: Essentially								
8	photofission that you would get.								
9	CHAIRMAN ZIEMER: Photofission.								
10	DR. ANIGSTEIN: I mean you get								
11	both.								
12	CHAIRMAN ZIEMER: Yes.								
13	DR. ANIGSTEIN: You get both. But								
14	the neutron emitters are from the fission.								
15	CHAIRMAN ZIEMER: But I guess it's								
16	because we only had the five second delay that								
17	we are still getting some of that and okay.								
18	MEMBER BEACH: Might be break time								
19	if we wanted to catch that.								
20	CHAIRMAN ZIEMER: Okay. Just a								
21	couple more seconds here and then okay. So								

that answered my question. Let me see if,

1	Dan, you have a question
2	DR. McKEEL: I had a short
3	comment. We brought this up many times about
4	this goes back to the fundamental purpose
5	of why General Steel Industries had a contract
6	with the Atomic Energy Commission and with
7	Mallinckrodt Chemical Works to X-ray their
8	uranium.
9	And what we have put on the record
10	is, in many different ways as we know, is it
11	is quite clear from the purchase orders and
12	from Technical Bulletins that Mallinckrodt
13	Chemical Works uranium division offered, that
14	they sent to GSI the betatron slices which
15	were modeled. They also sent both two-step
16	uranium ingots, you know, made from derbies,
17	remelted and then cast in the bomb, and
18	dingots, which were a patented form of one-
19	step uranium from Mallinckrodt.
20	The dingots, I think most of them,
21	actually came in the later years probably from
22	the Weldon Spring plant. But the point of the

1	X-raying certainly may have been to find
2	cracks and flaws and voids, but the main
3	point, which is continually overlooked, and if
4	you understand this, you understand why they
5	shot four corners, they weren't trying to go
6	through the entire ingot or dingot. They
7	couldn't. It was 3,000 pounds. It was 18
8	inches in diameter and it was two feet tall.
9	You couldn't do that with a betatron.
10	But what they could do is when
11	those uranium, that metal came out of the
12	bomb, it carried along with it crust or slag
13	from the magnesium fluoride, and that crust
14	and slag covered the entire ingot and dingot,
15	and then, when they had the X-ray pictures and
16	they could take it back to Mallinckrodt, then
17	that would guide the way the vertical lathes
18	would shave off the slag and the crust, and
19	what they were after, of course, is that
20	highly valuable, pure uranium, shiny metal
21	lying underneath that crust and slag.
22	They couldn't really they can't

1	roll an ingot or a dingot until that's done.
2	And what the valuable information they got
3	from GSI was where is that interface, all over
4	that ingot.
5	And so a betatron slice wouldn't
6	do that for them. And if you think about it,
7	or at least the way I think about it, you have
8	a two-foot tall ingot or dingot, and you take
9	off a slice, and you see that there's a void
10	in the bottom, well that's not representative
11	of what's all up and down there. There were
12	gradients in that ingot and dingot, and they
13	talk about that.
14	And so you really had to look at

And so you really had to look at
the whole thing. So they needed to give those
X-rays to the machinist and cut off the crust
and the slag, revealing the ingot -- the pure
uranium underneath, is what they were looking
for. Then they could take that and roll it
and send it out to Hanford or what have you.

- 21 CHAIRMAN ZIEMER: Yes.
- DR. McKEEL: That's fundamental.

NEAL R. GROSS

2	John Ramspott again. This is an actual
3	document that we did share with people and
4	we'll do it again today, and it states in
5	here, "The amount of metal to be removed by
6	cropping in order to produce sound material
7	for rolling is determined by the use of high
8	energy X-rays."
9	They had to see through the crust,
LO	take off the crust without cutting into the
l1	uranium, which was like pure gold, and the
L2	cropping was done after GSI did their X-ray,
L3	according to this, too.
L4	So that's a pretty important
L5	thing. It's pretty nasty stuff in that crust.
L6	I thought I'd share this.
L7	CHAIRMAN ZIEMER: I don't think
L8	we've disputed that that's what they were
L9	doing.
20	MR. RAMSPOTT: Well, there could
21	be very few slices. A slice on an ingot is
22	probably only four inches thick, at most.

MR. RAMSPOTT: Dr. Ziemer, this is

2	what your problem was through the whole ingot
3	or even take care of how much crust is
4	everywhere in the ingot for that process.
5	So and the other thing the
6	workers point out, they are going through
7	magnesium. Now they're not going through
8	uranium. So the shot time is nothing. We've
9	got workers on the line that can tell you it's
10	not a two hour shot. It's zing zing. You run
11	a whole lot more uranium through there, and
12	they bill by the hour not by the piece, and
13	that's pretty important.
14	So the quantity has changed
15	totally as to what could be going there.
16	CHAIRMAN ZIEMER: Now, does any of
17	that affect you have to mull that over a
18	bit.
19	MR. ALLEN: I was going to say no
20	right up until that last part. I don't think
21	on the crust I mean, the crust that I've
22	ever seen at Fernald and stuff, you're not

That's right. You couldn't tell from that

1	going to get enough to where you are actually
2	shooting much of a crust.
3	I mean you are going to shoot,
4	it's mostly uranium, you're going to find the
5	interface as Dr. McKeel said, but from what
6	the workers were saying in Collinsville, it
7	was about one hour shots, shot obliquely,
8	which make like Dr. McKeel said, makes
9	sense to find that interface.
10	And they actually drew a picture
11	out for Stu Hinnefeld of what the shots were
12	laid out at, and it took four shots. So I mean
13	it sounds like we're talking about the same
14	thing. There were four, one hour shots or
15	these of, whether it was two-foot thick or a
16	few inches thick, it's going to make little
17	difference in the model because, you know, the
18	bulk of that is going to be absorbed in the
19	first few inches of uranium because it's so
20	dense.
21	So the White Paper, I probably
22	shouldn't have said defects in there, I could

1	have just said they X-rayed uranium and left								
2	it at that, and I don't think anything would								
3	change what								
4	DR. McKEEL: I don't mean to								
5	you know, they would see surface defects on								
6	the surface of the uranium. It will penetrate								
7	some in that period of time, and the men did								
8	say they had four and so David's estimate								
9	of 300 minutes for the whole process, that is								
10	what that's what the worker that I trust								
11	the most, that seemed the most credible to me,								
12	that's basically what he said. So I								
13	CHAIRMAN ZIEMER: Final comment,								
14	then we're going to take a break.								
15	DR. ANIGSTEIN: Yes, I'd like to								
16	set the record straight on this. We have I								
17	conferred with this at length with Bill								
18	Thurber, who is a retired who was a								
19	metallurgist who worked with uranium for many								
20	years with Union Carbide, at Oak Ridge, so we								
21	discussed this process.								
22	I think there's a little confusion								

1	here. The your betatron slices, which we
2	have, are documented in the Mallinckrodt TBD,
3	and the workers that I interviewed at that
4	meeting agreed that that was the most common,
5	that was the common thing that they did.
6	So since those were those
7	required four shots but that they were 18
8	18 inches in diameter, the biggest X-ray film
9	was 14 by 17 inches I think they were more
LO	than 18 inches diameter you needed four,
L1	four shots to cover that disc, that were done
L2	head on.
L3	Those were done to see if there
L4	were there was a quality control to see if
L5	they were coming out with defects in the
L6	middle of the uranium.
L7	Now obviously, those were I
L8	mean that was, that was destructive testing
L9	because they would cut up that uranium ingot
20	to get this betatron slice as a QA measure,
21	and then of course they would send it back and
22	remelt them because you can't send those

1	slices to be rolled into rods from Hanford.
2	The second thing, which all
3	from the worker testimony that I've seen, is
4	one worker said he came in in the morning or
5	the regular shift, and the weekend men were
6	telling him what they had done. So it was
7	already second-hand. And what they had done
8	was they took corner shots, so they would have
9	an ingot, and they would take four corners.
LO	They did not go all the way
L1	around, and the purpose of those shots were
L2	when you do a vacuum casting, you get a lot of
L3	poor quality metal at the top or maybe even at
L4	the bottom, and they would have to crop that,
L5	cut it off with a band saw.
L6	So that was the cropping and they
L7	would cut the ends off and then of course they
L8	would remelt them and reuse them, but they
L9	wanted to know how much and as far as
20	skinning it on a vertical lathe, you don't do
21	an X-ray for that. You would have to X-ray
22	every square inch of it. That's nonsense.

WASHINGTON, D.C. 20005-3701

1	The machinist does that by eye.
2	He puts it on, keeps turning it, as soon as he
3	gets done, that is that is what my
4	metallurgist colleague told me.
5	They turn it on the lathe until
6	they can see it, because the coating is not
7	regular, it's irregular, it's thicker in some
8	place than others, and you don't do that with
9	an X-ray, you do it by turning it and doing it
LO	by eye.
11	The ends and that's why they
L2	said they shot the corner the ends, they do
L3	for the X-ray, with the X-ray, you see how
L4	much to crop off there were two different
L5	things.
L6	They were cropping off the ends
L7	and they were also turning it on a lathe. The
L8	end-cropping was what you did the X-rays for,
L9	not to get the surface in the middle because
20	you would have to it's just not the way
21	it's done.
22	CHAIRMAN ZIEMER: Well, I think

1	we've	been	talking	about	the	cropping	
---	-------	------	---------	-------	-----	----------	--

- DR. McKEEL: Paul, I need to say
- 3 this. This is one of those situations where
- 4 two people who have excellent intentions, and
- 5 believing they have excellent data, strongly
- 6 disagree with each other.
- 7 So I accept what Dr. Anigstein
- 8 just said his expert said, but I'd also like
- 9 to just mention for the record that John
- 10 Ramspott in particular and I as well, have
- 11 talked to those workers repeatedly, many
- 12 times, and the papers that we've said -- that
- 13 paper right there is from ' identifying
- 14 information redacted' who is the head of
- 15 Mallinckrodt uranium -- who was -- very
- knowledgeable and that's what he said they did
- 17 at Mallinckrodt, so I suggest that whoever
- 18 your expert was and whatever his experience
- 19 were, and when you say that's, you know,
- 20 potentially you're saying that our scenario
- 21 was ridiculous, and I'm saying no, it wasn't
- 22 ridiculous.

1	DR. ANIGSTEIN: I didn't say that
2	your they did the perhaps it's a
3	technicality and it wasn't even important. I
4	agree that they would, that they would shoot
5	the edges, the corner that's what they
6	said, that's what they would
7	(Simultaneous speaking.)
8	DR. ANIGSTEIN: They shot the
9	corners but not to get the not to see how
10	much to take off with the lathe, to see how
11	much to cut off on the ends.
12	CHAIRMAN ZIEMER: Well, they were
13	talking about cropping also. You're talking
14	about
15	(Simultaneous speaking.)
16	DR. McKEEL: In you all's you
17	just said that
18	MR. RAMSPOTT: Cropping was with a
19	saw.
20	DR. McKEEL: Yes, you all said
21	that cropping was with a saw, and in addition
22	to the cropping of the ends, or the bottom,

1 they cut off the sides.
DR. ANIGSTEIN: I agree with that
3 also, but not but the X-ray was not used
4 for that purpose, but that probably doesn't
5 matter.
6 CHAIRMAN ZIEMER: But where was
7 that done? At Mallinckrodt.
DR. McKEEL: At Mallinckrodt.
9 CHAIRMAN ZIEMER: Yes, so the X-
10 raying we're all agreed the X-raying is the
11 same thing either way. Okay. Let's take a
12 15-minute break, okay? Comfort break.
13 (Whereupon, the above-entitled matter went off
the record at 10:02 a.m. and
15 resumed at 10:19 a.m.)
16 MR. KATZ: The Work Group is back
and we are getting started again. Let me just
remind folks on the phone, please mute your
19 phones except when you are addressing the
group. If you don't have a mute button, press
21 * then 6, that will mute your phone, and ther

press * and 6 to take your phone off of mute.

21

1	Thanks.
2	CHAIRMAN ZIEMER: Okay, I'm going
3	to have us take a look at the skin dose. The
4	NIOSH model has a skin dose component that's
5	based primarily on some short-lived decay
6	products of thorium and is it protactinium
7	
8	MR. ALLEN: Protactinium-234.
9	CHAIRMAN ZIEMER: 234, yes,
10	there it is. And those materials at the
11	surfaces of the ingots, drive that dose rather
12	than the uranium itself I guess, as I
13	understand the model, those get the biggest
14	contribution.
15	There's some uranium contribution,
16	but your model includes all of those, right?
17	The
18	MR. ALLEN: Yes, and that's
19	already typical with uranium is those two

short-lived products --

part's -- that part of it is sort of standard

CHAIRMAN ZIEMER:

20

21

22

So that

Right.

1	but then you have issues of a percent of
2	the time you're at, say, a foot versus a
3	meter, and I just wanted to ask for my
4	understanding, what's your basis for that
5	distribution? I mean is it sort of arbitrary
6	or is there a work basis that we know of for
7	saying, you know, part of the time they are
8	away, part of the time they are working close,
9	and then you have the hours per week, is it
LO	based on the 90 percent long shots and the 10
L1	percent?
L2	So can you sort of, sort of defend
L3	the basis for those distributions and then
L4	I'll open it up here for questions?
L5	MR. ALLEN: The half the time one
L6	foot, half the time one meter is a standard
L7	we've been using in TBD-6000 and it is, it is
L8	based on I wouldn't say based or somewhat
L9	validated by looking at dosimetry records from
20	various places that work with uranium metal,
21	and that assumption seems to be fairly typical
22	for somebody working with uranium metal, I

1	mean it gives addition to the numbers that
2	correspond to badges and TLDs that have both
3	gamma and beta in them, and it does seem to be
4	standard throughout time, throughout different
5	facilities when you are working with normal
6	low-enriched uranium. In high-enriched
7	uranium it might be a little different because
8	you get less of those less beta dose.
9	CHAIRMAN ZIEMER: Right. Right.
10	And then just sort of for the record I want to
11	make sure that we were aware of what NIOSH's
12	basis was for that. Obviously one of the
13	issues that could arise on this sort of thing
14	is well, does that apply here and I understand
15	that, but that's your starting point, and then
16	the 90-10 had to do with what you learned from
17	this site in terms of the long shots versus
18	the
19	DR. ANIGSTEIN: That's one of the
20	workers' testimony.
21	CHAIRMAN ZIEMER: Yes, the short
22	shots. That part I was more comfortable with.

1	Okay. Let me open this up for questions on
2	the skin dose model. Dr. McKeel or anyone,
3	did you have any questions on it right now?
4	DR. ANIGSTEIN: On the skin dose
5	model, no. No.
6	CHAIRMAN ZIEMER: Okay. That was
7	the basis. Okay. That included both well
8	that's primarily beta stuff that we are
9	talking about there. Let's go on to film
10	badges.
11	There I know there's some
12	issues on control badges, and maybe we'll
13	discuss a little bit of that in a moment. I
14	wanted to ask about basically you're trying
15	to use the film badge data in terms of where
16	it overlaps in terms of normalizing that with
17	some assumptions about control room values,
18	and I understand that part of it.
19	And then the on page 15, you
20	have the statement that 400 previous shots
21	accomplished in the same location while the
22	short shots, assuming there were 500 previous

1	shots	and	you	referenced	SC&A,	and	I	was	

- 2 just needed a little clarity on that. It's
- 3 the middle of page 15.
- 4 MR. ALLEN: Okay, that's section
- 5 -- that's dealing with the residual
- 6 radioactivity in the steel --
- 7 CHAIRMAN ZIEMER: No, no, I'm in
- 8 the wrong place on that one everybody. That
- 9 was -- wait a minute -- that was still -- that
- 10 one's still part of the skin dose stuff.
- 11 Okay, I'm sorry, I'm looking at the wrong
- 12 page. Let me get the right place. Here it
- is. Here it is. On the film badges --
- 14 MEMBER BEACH: It started on page
- 15 20 and that's --
- 16 CHAIRMAN ZIEMER: Yes, well, the
- film badge stuff is on pages 16 and 17. Okay.
- 18 The question that arose for me on the film
- 19 badges, and I think arose maybe for the
- 20 petitioners, was do we have any confirmation
- 21 that the control badge was in the control
- 22 room?

1	Was there there was a film
2	badge rack there where they were supposed to
3	leave their badges. Are we assuming that the
4	control badge was there at the rack, or what's
5	the basis for using that
6	MR. ALLEN: To clarify, there is a
7	control badge that was always associated with
8	each group and there's also, separately, a
9	betatron control room badge.
10	CHAIRMAN ZIEMER: Control room
11	badge that's labeled as a control room badge.
12	MR. ALLEN: Yes.
13	MR. DUTKO: Dr. Ziemer.
14	CHAIRMAN ZIEMER: Hang on.
15	MR. ALLEN: And I realize there's
16	some now there's some people saying that
17	that didn't exist or whatever, but he
18	dosimetry reports had that in there, and I'd
19	assume that control room badge meant that it
20	was in the control room and that's how the
21	White Paper was put together.
22	So are you asking about the

1	control badge or the control room?
2	CHAIRMAN ZIEMER: Well, there's
3	two parts of it then. The control room badge,
4	do we know that there was a badge in the
5	control room? There was a badge labeled
6	control room, right?
7	MR. ALLEN: That in reality is all
8	we know, there was a badge labeled control
9	room badge up through
10	DR. ANIGSTEIN: Excuse me, can I -
11	_
12	CHAIRMAN ZIEMER: Hang on Bob,
13	hang on.
14	MR. ALLEN: Not the full time but
15	up through `65, maybe. I can't recall the
16	date.
17	CHAIRMAN ZIEMER: And that's as
18	opposed to what you're calling control badges
19	which
20	MR. ALLEN: Yes, they had both
21	listed on the Landauer
22	CHAIRMAN ZIEMER: On the Landauer

1	Torm, which presumably are badges that they
2	used to subtract out a background value from
3	everything else. Is that
4	MR. ALLEN: That's normally what a
5	control badge
6	CHAIRMAN ZIEMER: Yes, that's
7	normally how it's done. And do we have any
8	knowledge of where those were located?
9	MR. ALLEN: No. There's been some
10	information come to light since then, but when
11	the White Paper was written, no.
12	CHAIRMAN ZIEMER: Okay. Bob?
13	DR. ANIGSTEIN: I just have to
14	correct the badge on the film badge record,
15	those five years' worth of film badge records
16	that I looked at, it's not does not say
17	control room. It says betatron CTL, which I
18	guess is an abbreviation for control. It does
19	not say control room.
20	MR. ALLEN: Okay. I believe Bob's
21	right on that.

ZIEMER:

CHAIRMAN

22

It's labeled

1	betatron
2	DR. ANIGSTEIN: CTL.
3	CHAIRMAN ZIEMER: CTL. Control.
4	DR. ANIGSTEIN: Right. Right.
5	CHAIRMAN ZIEMER: So we don't know
6	that it is or isn't a control room badge
7	that's as far as your record there's no
8	let me ask Dan or John, what's your take or
9	that one? Or do you have any can you shed
LO	any light on that?
L1	DR. McKEEL: Yes, I'm going to
L2	show you all several slides about that, but
L3	the basic understanding that we have reached
L4	about that is the they are unlike in Dr.
L5	Anigstein's report, there is actually alive,
L6	and we have talked to him and gotten his
L7	affidavit, from the first clerk who actually
L8	handled the GSI film badges, this is very
L9	recent.
20	And what this gentleman says is
21	that he he went when he was the clerk,
22	he came in right as the new hetatron machine

1	was installed and they were starting up the
2	new badge program, and that he got the badges
3	from Landauer, he collected the badges, and he
4	sent the badges off to Landauer himself.
5	They didn't go through any
6	intermediaries or anything like that. He
7	said, you'll see, in his affidavit, that there
8	were no control badges that were not worn by a
9	person.
10	So the workers, no worker that
11	we've ever talked to, has any knowledge about
12	the CTL badges, what they were, where they
13	were, or that they ever existed, that appeared
14	in the Landauer film badge apparently.
15	And as you remember, what happened
16	was I contacted Landauer, I got film badge
17	data on quarterly report from about 30 workers
18	so I've never been able to I've never seen
19	the badges that Dr. Anigstein is talking
20	about, but I'm sure he's right if that's what
21	he says, that so, but the workers are not
22	aware of any control badges, control room

1	badges,	and	then	I	will	share	vou	that
_	204045	0.110.	011011	_	**	O11011 C	700	011010

- 2 definitely the racks were not ever in the
- 3 control room. There were no badges kept in
- 4 the control room, the console room where you
- 5 operated the betatron.
- They were in two locations.
- 7 MEMBER MUNN: According to your
- 8 report.
- 9 DR. McKEEL: Yes, so --
- 10 CHAIRMAN ZIEMER: Okay, and John
- 11 did you have any additional comment on that,
- 12 or did --
- MR. RAMSPOTT: Well, just very
- briefly, but the badges you have are strictly,
- 15 I mean I think they're from '64 on
- 16 essentially. The new betatron was built in
- 17 `63. So from `53 to `64, there are no badges,
- 18 no control room badges --
- 19 CHAIRMAN ZIEMER: We're aware of
- 20 that.
- 21 MR. RAMSPOTT: No nothing, no
- 22 racks --

1	CHAIRMAN ZIEMER: No. No. No.
2	We're just asking about these, and did you
3	have any other comment on that?
4	DR. ANIGSTEIN: No I was just
5	saying, the betatron the new betatron
6	started operation just about the time the film
7	badge records start.
8	It was either end of `63,
9	beginning of `64. We even have a photograph
10	of it in late `63 so so that's, you know,
11	consistent with that.
12	My comment about nobody being
13	around, I was simply going by the names to
14	whom the reports were addressed. There were
15	two different names on the report over the
16	years and the first one, John Ramspott told me
17	the gentleman is alive but incapacitated, and
18	the other one we know has deceased.
19	So that may be they may have
20	had someone else who actually did the handling
21	but the name on the report it was addressed
22	to a certain person at GSI and those names

1	that'	S	what	Т	was	reporting	
	CIICC	\sim	WIIGC		was		

- DR. McKEEL: This is Dan McKeel.
- 3 When I first called Landauer, which was about
- 4 13 months before NIOSH ever got their film
- 5 badge data and gave it to SC&A, they told me
- that actually the film badge program managers,
- 7 there were two of them, and one of them was
- 8 Mr. Norris, who is deceased, and then there
- 9 was a later one who took over after Mr. Norris
- 10 left. I don't know --
- DR. ANIGSTEIN: That was actually
- 12 a covered period.
- 13 DR. McKEEL: Right. But the
- 14 person I'm talking about right now was
- 15 actually the clerk who handled the film badge
- 16 --
- DR. ANIGSTEIN: Okay.
- DR. McKEEL: And worked under Mr.
- 19 Norris. We had heard various things. One
- thing we had heard was that there was a chain
- of people with badges, passwords, and this
- 22 particular person says not when he was there.

1	And he then went on to name the
2	other people in succession who took over his
3	job as clerk as they kept on there was a
4	lot of promotion and changing.
5	But anyway, the clerk basically
6	handled that. And that was new for me, and
7	that makes it much simpler to track, actually.
8	CHAIRMAN ZIEMER: I think one of
9	the GSI people on the phone had a comment they
10	wanted to make also. They at least did one
11	of you on the phone have a comment on those
12	film badges?
13	MR. DUTKO: I relinquish my time
14	to Dr. McKeel.
15	CHAIRMAN ZIEMER: Oh, okay. Thank
16	you.
17	DR. ANIGSTEIN: I will address the
18	film badge location.
19	CHAIRMAN ZIEMER: Right, you know,
20	that's fine, I just wanted to see if we had
21	any other questions on at least the
22	methodology that was used for by NIOSH on

1	this.
2	Okay, the next one is the residual
3	radiation from the betatron. And this is
4	basically activation issues. Dave, do you
5	have any comments on that that you want to
6	highlight at this point?
7	MR. ALLEN: No, not really. All I
8	tried to do in that particular section was to
9	put down in one place everything we had looked
10	at or other people had looked at to try to
11	explain this what the Allis-Chalmers
12	individual told about the 15 millirem right
13	after the shot that dropped off to zero within
14	15 minutes.
15	CHAIRMAN ZIEMER: Yes.
16	MR. ALLEN: And so far as I can
17	tell, nobody has come up with anything that
18	will give you that kind of a dose rate. There
19	is some activations
20	CHAIRMAN ZIEMER: Well, you looked
21	at it, SC&A had looked at it without all these

But bottom line is -- and I think

debates.

1	this is a question what are you doing with
2	the number?
3	What are your plans in dose
4	reconstruction to do with the number, wherever
5	in other words will it be used or will it
6	not be used? That's the
7	MR. ALLEN: From the White Paper,
8	it is the White Paper assumes there is no
9	residual, no measurable residual from that.
10	And the reason that it did that was, besides
11	can't come up with a real basis for it, the
12	reason I did that was we were going to
13	normalize everything and make it consistent
14	with the film badge readings, and this
15	particular source of radiation would be purely
16	gamma. Other sources of radiation that could
17	add to the film badge would also include other
18	radiation, such as beta or neutron, whether
19	it's whether it's from the betatron shot
20	itself or from the activated materials.
21	And as long as we're normalizing
22	to the badges to make our estimate consistent

1	with the badge readings, it ends up changing
2	very little on the photon, if any dose on the
3	photon dose, but it will, by ignoring this, it
4	will increase the beta and the neutron dose
5	because the other sources also have those
6	components.
7	So the decision was made on this
8	one that we can't find any realistic reason
9	for that kind of a rating
10	CHAIRMAN ZIEMER: But in essence
11	you are saying that if it's there as a gamma
12	or photon component, it would have been picked
13	up by the film badge of the workers and
14	therefore gets included in their readings in a
15	sense.
16	MR. ALLEN: Right.
17	CHAIRMAN ZIEMER: So it's not an
18	additional thing. It's a that's the
19	position that it's you're not
20	necessarily saying we're removing 15 millirem
21	per hour that occurs for a brief time. You're
22	saying that if it's actually there, we don't

1	know how it could be there, but if it is, the
2	film badge would have picked it up. Am I
3	understanding you correctly?
4	MR. ALLEN: Yes.
5	MEMBER MUNN: If it's there and
6	the worker was there, then it would definitely
7	be on the film badge.
8	CHAIRMAN ZIEMER: Right, and let
9	me ask for questions now. Dan.
LO	DR. McKEEL: Well, I have a
L1	comment and this I guess this is a terrific
L2	philosophical and scientific issue in my
L3	mind, a giant one. What I was always taught
L4	and believed is that if, you know, if you're
L5	dealing with real physical phenomena, you have
L6	to deal with it.
L7	The way I read OCAS-IG-003, it
L8	says that for dose reconstruction and I'm
L9	going to point out this afternoon, these White
20	Papers are supposedly primarily aimed at

So if you're really aimed at dose

revising Appendix BB from June 2007.

21

2	sources of radiation. And so, 'identifying
3	information redacted', contracted by NIOSH,
4	their expert, said he made these measurements.
5	The Work Group considered it,
6	NIOSH has considered it, SC&A has considered
7	it, and it can't be explained, everybody says.
8	Personally I think it's easy to explain from
9	the beginning. I think the target gets
10	activated, and I gave Dr. Ziemer several
11	papers which he knows much better than I
12	you all know the literature much better than I
13	do. But there are dozens of papers about
14	particle accelerators, many components inside
15	them become activated.
16	But anyway, so it seemed to me
17	that there were a number of sources within the
18	betatron that could emit radiation after it
19	was turned off.
20	There's also evidence from the
21	Allis-Chalmers manual that advises people not
22	to go in and use the betatron. I think they

reconstruction, you have to account for all

1	mention something like five minutes in time
2	could maybe fill that in.
3	But also, and let me just
4	summarize what I think it is so you know,
5	John Ramspott and I met ' identifying
6	information redacted' long before anybody here
7	knew him.
8	We talked to him across the table
9	at length for three hours up at West Allis
10	where the Allis-Chalmers factory betatron is.
11	We saw the Allis-Chalmers original betatron,
12	that building, and in operation at that time.
13	So anyway we knew ' identifying
14	information redacted' real well. And John
15	knows him better than I do. So anyway John
16	called him up again the other day, and so he
17	said that he was concerned about this issue
18	about the residual radiation, and they were
19	curious where it was coming from so they did a
20	second analysis where he and his buddies
21	actually removed a donut tube right away after
22	it had been turned off as fast as they could,

1	and I don't remember how long a period it was
2	but they got it out
3	MR. RAMSPOTT: He said a couple of
4	minutes.
5	DR. McKEEL: A couple of minutes
6	and they
7	MR. RAMSPOTT: They had four guys
8	helping or three guys helping.
9	DR. McKEEL: He did their
10	measurement and they found I don't think he
11	gave a number to it this time, but that there
12	was residual radiation, and then I'll show you
13	this afternoon we have yet another affidavit
14	from another source completely, somebody at
15	GSI, who said he was well aware. He had

So my feeling is I think we are 18 all good solid scientists sitting around the 19 probably was 20 thing. There residual radiation think it dose. Ι 21 has 22 considered. I think it has to be considered

measured residual radiation after the beam was

off.

16

1	definitely for dose reconstruction and should
2	be considered for the SEC analysis because of
3	another factor that you'll see in the slides,
4	and that is a point that Mr. Dutko has made
5	for a long time and that is, I think in the
6	calculations of how much radiation a worker
7	might receive, if there were residual betatron
8	beam or betatron residual activity after the
9	beam was off, the assumption is made that, you
10	know, they were taking shots at like six feet.
11	But the workers were interposed between the
12	target and the betatron and so this affidavit,
13	which I'll show you, that worker writes it out
14	in detail and reasons that his back was
15	probably one to two feet away from the
16	betatron.
17	Now then we have a scientific
18	dilemma. We have film badges that say they
19	didn't get a very high dose. We have workers
20	that say they were in front of this machine.
21	I think for both situations, dose
22	reconstruction, SEC, you have to be

1 claimant-favorable, so number one, I think	yoı
--	-----

- 2 have to admit there was residual radiation.
- 3 So I think to discount that in a model like I
- 4 understood David Allen just said was done, I
- 5 think that's wrong, scientifically. I think
- 6 that's a mistake, an error that shouldn't be
- 7 done.
- Now if you want to say it's a
- 9 small dose, then you can put a number on it.
- 10 That's what you guys do that I really can't
- 11 do. I don't know how to do that, except if I
- 12 have a real measurement.
- But, so I think you need to deal
- 14 with it, and then I think, you know, I would
- just say that one reason that I, John, and a
- 16 lot of the workers are highly doubtful about
- 17 the film badge data is, yes, it does reason
- 18 that if were all these exposures, you know,
- 19 that it ought to show up on film badges, and
- 20 we have this limited data set which says it
- doesn't.
- 22 Now I'll also show you this

1	afternoon a fact that Dr. Anigstein I think
2	had in his report a long time ago, that the
3	film badges belong to betatron employees, the
4	people who worked in the betatron building,
5	not all of whom were betatron operators or
6	isotope operators, you know, the people who
7	were photographers, the people who were clerks
8	that's mentioned in the affidavit, I'll
9	show you that this afternoon.
10	So anyway I just think it's a
11	small but needs to be accounted for dose, and
12	to that extent, I would say the model should
13	account for it.
14	CHAIRMAN ZIEMER: Okay, thanks.
15	Yes, John.
16	MR. RAMSPOTT: One quick, if I
17	could. I did talk to ' identifying
18	information redacted' two days ago. He said,
19	yes, I know that, I've talked to people and
20	I've told them what I did, and I don't think
21	they believed me. I think they, you know,

don't know what I'm talking about, but it is

1	in the it's actually in the Allis-Chalmers
2	operation manual that that tube is hot.
3	He also said there's something
4	else you might be missing. Now that 15
5	milliroentgen that's at six feet. It's
6	actually 60 millirem at three feet, and I
7	think everybody's reports pretty much
8	acknowledge workers are within two feet of the
9	tube, or of the cone, and his testing was
10	uncollimated, so there is no aluminum or
11	or is that the filter they had on there, the
12	compensator he had one on his machine. So
13	that's definitely not what's getting
14	activated.
15	It's the tube. When they took it
16	out, they set the tube on a table, they let it
17	sit, it dissipated over 15 minutes, and it was
18	gone. He'll be glad to talk to anybody,
19	verify that, and then he goes, you know, it's
20	not a whole lot. Well, I understand. That's
21	what we're talking about.
22	And I said well, yes, and then we

1	talked about one more thing, just because I'm
2	talking about him, about the door. He goes
3	well, you know it was pretty safe, John, in
4	those days, we thought it would be okay.
5	And you know, that's standard,
6	standard practice was a steel ribbon door,
7	from this man. No ifs, ands or buts. And
8	then I said well we had a little problem over
9	there though, I think. They used cobalt.
10	He was dead silent, and he goes oh
11	my God. Totally different ball game. Cobalt
12	and betatron you don't use cobalt in a
13	betatron building. Roofs aren't shielded.
14	Walls go up 20 feet in the old betatron, 25
15	feet in the new betatron, and the rest is tin.
16	Built up wooden tar roofs. You
17	don't use cobalt in a betatron building. He -
18	- he was flabbergasted to hear there was
19	cobalt in that building. As far as any
20	modeling, big cobalt, little bit of cobalt,
21	any isotopes, betatron building is not a non-
22	destructive cobalt building according to this

1	guy. So that's all. Thank you.
2	CHAIRMAN ZIEMER: On the residual
3	activity, I don't think any of us is disputing
4	that there's residual activity after the
5	operation. There's activated stuff.
6	This 15 value, the problem on it
7	was that the person reported that it dropped
8	to zero, and that's what that's what we
9	were having trouble with.
10	We felt that it should if it's
11	normal decay it would not drop to zero. I
12	mean, it would exponentially come down. So we
13	were trying to find why would you have a 15
14	reading go to zero in whatever that time
15	DR. ANIGSTEIN: Fifteen minutes.
16	CHAIRMAN ZIEMER: Fifteen minutes.
17	That was what the puzzling thing was about
18	that. I think what NIOSH is saying, all
19	right, so that doesn't make sense from a sort
20	of physics point of view, but if it was there,
21	we'll assume that you're saying we're going
22	to assume it's there, that if there is some

Τ	ionizing radiation, it's got to be residual
2	photon radiation. So the film badges should
3	be picking that up. That's what they're
4	saying, that they're not ignoring it.
5	Now, and there's other activation
6	stuff which you have done a construction for
7	because a lot of these workers are working
8	with stuff that's activated in the layouts and
9	so on, I mean, that's a part of your separate
10	
11	DR. McKEEL: I have one more
12	comment to make. This is another big
13	philosophical thing. David Allen said
14	something in his analysis that really bothers
15	me as a scientist.
16	I mean, not only does it bother
17	me, but it goes against everything that I was
18	ever taught or believe. And that is he really
19	was saying that you fit the model because you
20	want to, quote, "normalize it", to the film
21	badge readings.
22	So that means that you have

2	you have already established the result that
3	you want to occur.
4	And to me, that's not the purpose
5	of modeling at all. The purpose of modeling -
6	- and I'll show you this in my last slide
7	today to me the modeling results don't
8	match the film badges at all. They're really
9	way apart.
LO	So but the idea that from the
L1	beginning you try to make the model fit the
L2	film badges, is just a really bad approach.
L3	So I think you should do the modeling and
L4	let's see where it goes. So I must say the
L5	logic of what you're telling me escapes me.
L6	CHAIRMAN ZIEMER: Well, let me say
L7	something about models and then you can come
L8	in, Dave, because models are attempts to make
L9	sense of our world. We model a lot of things.
20	DR. McKEEL: I understand.
21	CHAIRMAN ZIEMER: And we use real
22	numbers whenever possible to validate models.

already a priori, before you do your modeling,

1	I liked the quote of your colleague at
2	Hanford who said all models are poor, but some
3	are useful, because they are in a sense
4	they are substitutes for the real world. I
5	mean, we are trying to describe things and
6	simplify things and so on.
7	But where we do have data, we do
8	try to say okay, how the data is real, real
9	stuff. We can debate is it good data and so
10	on, but that's the reason we do that is in a
11	sense to try to validate a model and say does
12	it make sense with whatever real world data
13	that we have.
14	I mean, if and there's errors
15	and so on. But that's the so models, you
16	know, and we do, we do modeling all the time
17	in this program and it's, you know, that's the
18	nature of how we have to do these things.
19	Dose reconstruction, a lot of it
20	is modeling, but you know, it's always this
21	thing, if we had the real data we'd all be
22	more comfortable. We're trying to put them

1	together, and that's really what's happening -
2	_
3	DR. McKEEL: I understand that but
4	I this is Dan McKeel again but I want to
5	just take that on one step further and say
6	that, you know, if you looked in my CV there,
7	there are three papers that have to do with
8	modeling the size and shape of the plaques
9	that accumulate in the Alzheimer brain.
10	My colleague wrote a Fortran
11	program to do that. But the validation for
12	that was me sitting down in front of a
13	microscope and counting 94,000 plaques to
14	validate that, you know, the correlation
15	coefficient was like 0.86.
16	But I would say and I've read a
17	lot of papers by now in the field of radiation
18	modeling, so I understand everything you said.
19	It seems to me however if you want to present
20	your new model to a highly-respected, refereed
21	physics journal, that you're going to be in
22	big trouble if you send them a model without

1	any real data as the validation for that
2	model.
3	In fact, you probably won't get it
4	published. Now, I think you would say, yes,
5	that's academics and scholarly research and so
6	forth, but that's not the real world.
7	So I understand why some model,
8	it's better to make sense out of things than
9	no model at all. That's fine. But if you
10	recall as well as I do and I'm sure you
11	recall it better and I'm sure Wanda can even
12	better is what happened about Blockson and
13	the radon model.
14	There was a model first developed
15	by SC&A, then adopted by NIOSH, and it didn't
16	fly with the Board. It didn't fly with the
17	Work Group. It didn't fly with the Board.
18	There was a deadlock on opinions on that.
19	And so basically the model didn't
20	fly, and the model didn't fly at Texas City,
21	which was awarded an SEC. So all I'm saying
22	is I think there's standards that you have to

1	hold	models	to,	and	I'm	just	saying	I	think	we
---	------	--------	-----	-----	-----	------	--------	---	-------	----

- 2 should be rigorous in this program.
- I don't think we should be overly
- 4 rigid, but I guess that's -- that's where I'm
- 5 coming from.
- 6 CHAIRMAN ZIEMER: Well, and I
- 7 understand that, and you know, in -- the
- 8 reality is we don't have a standard by which
- 9 to measure models. To some extent we vote on
- 10 those models and it's -- some subjectivity --
- I happened to like the one model that was
- 12 turned down, but that's, you know, that's
- 13 fine.
- DR. McKEEL: I understand.
- 15 CHAIRMAN ZIEMER: That's fine.
- 16 That's how this process works. And this
- 17 process is not wholly scientific. It's public
- 18 policy and science.
- 19 DR. McKEEL: Right, I understand.
- 20 CHAIRMAN ZIEMER: And so, there's
- 21 -- well, I'm preaching to the choir -- you
- 22 guys all know this stuff. So I'm just --

1	DR. McKEEL: Can I say
2	CHAIRMAN ZIEMER: I'm just wanting
3	to make sure that we understand how NIOSH did
4	this and they used the film badges to
5	normalize their model as a sort of reality
6	check, whether or not we agree to that, but
7	that's I think what was done.
8	And my understanding is, from
9	NIOSH's point of view, the 15 mR per hour part
LO	of that, you're not saying we're therefore
L1	we're ignoring that, that the model captures
L2	that through this normalization process where
L3	you use the film badge. That's where, I think
L4	is, am I describing that? Dave, you I
L5	don't want to be defending NIOSH. You guys
L6	defend yourself, and you may be wrong.
L7	MR. ALLEN: Because we are
L8	making sure the model is consistent with the
L9	measured data, which is the film badge data,
20	it was favorable to not account for the
21	residual
22	CHAIRMAN ZIEMER: And that was

1	favorable because?
2	MR. ALLEN: Because that means the
3	sources we are accounting for, some of the
4	sources we are accounting for also include a
5	neutron component or a beta component and an
6	increase in those, whereas the photon
7	component is set with the film badges so this
8	doesn't actually increase that.
9	DR. McKEEL: Well, I've just got
LO	to comment. That's exactly what I said. I
L1	think that's dead wrong.
L2	MR. ALLEN: That is a bounding
L3	approach which is more policy than hard core
L4	accurate
L5	CHAIRMAN ZIEMER: He's saying
L6	that's more claimant-favorable. That's all
L7	you're saying. Okay.
L8	DR. ANIGSTEIN: I think we're
L9	losing the point of one thing here. You know,
20	and that is, the measurement is only as good
21	as the instrument that's used to measure, and

the ionization chambers that were used are

1	notorious for being susceptible to stray
2	electromagnetic fields, and there was
3	certainly a lot of that around the betatron
4	when it was turned off.
5	We did this study, we hired this
6	accelerator physicist to do the study of the
7	betatron circuitry, and he said yes, there was
8	a possibility that there would be some
9	remaining some remaining fields there that
10	were not enough to accelerate the beam and
11	produce any significant dose.
12	So he did the electrical
13	engineering analysis. I did the radiological
14	health analysis. I came up with, you know, if
15	you take the worst possible case, you might
16	get a few micro-R per hour, not milli-R. It's
17	a thousand fold difference.
18	However, those same electrical
19	fields, radiofrequency fields, are notorious -
20	- I talked to a Mr. Zlotnicki, who is a health
21	physicist, CHP, a lot of experience in this
22	field, and he said we're always having trouble

2	in the presence of electrical fields.
3	And Dave Allen, in his report, did
4	point out that if there was a change in he
5	had a static a, what do you call it, a DC
6	field or a static field, but changing
7	gradually, that will cause a meter reading.
8	You have a magnetic field that is declining,
9	that will cause a meter reading, also if you
10	have a radiofrequency field, it's simply means
11	the magnetic field is very rapidly
12	oscillating, thousands of times per second, it
13	will also cause a faulty meter reading.
14	So the you believe that
15	reading, this instrument read that number, but
16	the question is, what did that number mean?
17	And in the absence of any
18	CHAIRMAN ZIEMER: We've sort of
19	passed through all this before, so I think it
20	is what it is, and they have told us how they
21	are going to handle it, so maybe we should
22	move on here.

making measurements, radiation measurements,

WASHINGTON, D.C. 20005-3701

1	MR. RAMSPOTT: One fast comment.
2	John Ramspott, if I may. There's photographs
3	in just about everybody's report. That's just
4	one of them over there. And those guys aren't
5	wearing those badges on their backs.
6	Two out of the three have them on
7	their chests, the machine's to their back.
8	You guys are the experts. Will that amount
9	the radiation that's coming out of there go
LO	through a human body and hit that badge?
L1	Did the badge pick it up?
L2	CHAIRMAN ZIEMER: Well, you have
L3	the method of treating that
L4	DR. ANIGSTEIN: I will get to
L5	that.
L6	CHAIRMAN ZIEMER: Okay. Okay.
L7	Are we ready to talk about beta operator dose
L8	estimates? I guess the bottom line is your
L9	Table 9, right, Dave?
20	MR. ALLEN: Yes.
21	CHAIRMAN ZIEMER: And there's some
22	assumptions which sort of normalize this all

1	to a 19 millirem per week control room upper
2	value. That's the basis for the NIOSH
3	estimate.
4	MR. ALLEN: Yes.
5	CHAIRMAN ZIEMER: And then there's
6	some information on hours per week that an
7	operator would work with uranium in the steel
8	and so on. Any questions on those assumptions
9	and how they're used? If I may ask, and Dan,
10	again, you'll have your points, but do you
11	have questions right now on what their
12	assumptions were?
13	DR. McKEEL: I don't think I have.
14	CHAIRMAN ZIEMER: SC&A. Okay. So
15	basically what you would do for a given year
16	for the operator, would be to assign them this
17	many hours working with the uranium, that many
18	hours with the steel, and then use the
19	MR. ALLEN: The Table 9, we
20	misspoke, that's the hours, that's the uranium
21	work
22	CHAIRMAN ZIEMER: Those are the

1 hours of uranium work and t	tnen tne	iractions
-------------------------------	----------	-----------

- okay.
- MR. ALLEN: Yes, the bottom line
- 4 comes down at the, I believe it's the end of
- 5 the paper.
- 6 CHAIRMAN ZIEMER: Yes, at the end
- 7 of Table 11. Okay, right, that's your time
- 8 distribution.
- 9 MR. ALLEN: But it simply just
- 10 takes the shot scenarios for the steel, and
- 11 the shot scenarios for the uranium, as far as
- 12 how often the betatron will actually be
- operating and what kind of dose they would get
- in the control room, and it was being combined
- 15 with how often they would be out changing
- 16 film, reorienting the betatron et cetera, how
- 17 close they would be to the metal and what kind
- of dose they would get, and essentially you
- 19 come up with an average dose that they're
- 20 getting while they're shooting uranium and the
- 21 dose they get while they're shooting steel,
- and then basically the hours in Table 9 as far

1 $$ as the uranium, or combine the two to come up
--

- with an overall annual dose. That's in Table
- 3 11. And it varies from year to year based on
- 4 Table 9 uranium work.
- 5 CHAIRMAN ZIEMER: On the betatron
- 6 operators, speak a little bit to the
- 7 contribution from the front to back, back to
- 8 front issue. John has raised that a bit and
- 9 clarify how that is being addressed.
- 10 MR. ALLEN: With the -- well, with
- 11 the assumption that there was no residual on
- the machine then it's not much of an issue.
- 13 We're assuming that you're facing the work
- 14 with the casting and the uranium.
- 15 I think that really comes up a
- 16 little later. Bob kind of raised that
- 17 question too. But from what we looked at, the
- issue with that is essentially the energy of
- 19 the photon. If the machine were activated
- 20 what would be the energies, how much of that
- 21 would make it through the body to the film
- 22 badge, also the orientation of a person, would

1	he always have his back to it or would he be
2	turning around and moving some?
3	As far as there are very few
4	isotopes that are that you could get from
5	the materials in a betatron that would give
6	you a half life that will decay away in 15
7	minutes.
8	Most of them are hours, some
9	millions of years, you know. Most of those
LO	that you could get end up giving you either a
L1	a number of them would give you a 511 keV
L2	photon, the bulk of which will get through the
L3	body and will be measured on the film badge,
L4	even if it's always at the PA geometry and
L5	it's always behind him and shielded.
L6	But again, you know the person is
L7	going to be moving around some. They are
L8	going to be oriented at the betatron some, and
L9	not have their back directly to it the entire
20	time they are reorienting.
21	MEMBER BEACH: My guess is their
22	back would be to it most of the time, though,

4	their back would be to it while they were
5	handling the film and from what we from the
6	information we get, it's a lot of shots on the
7	casting that they are laying that out ahead of
8	time in the number 10 Building, making marks
9	on the casting et cetera, so they don't have
10	to do that while they are in the betatron.
11	So a lot of the time is, in theory
12	at least, is moving the film, putting a new
13	piece of film on there. But they also have to
14	reorient the betatron itself, which would be
15	very difficult to do with your back to it.
16	MEMBER BEACH: Right.
17	MR. ALLEN: So it's going to be a
18	mixture.
19	MEMBER BEACH: Still thinking the
20	90-10
21	MR. ALLEN: Yes. The 90-10 I
22	mean, it's going to a lot of it is going to
	NEAL R. GROSS

and they would be facing their shot. That's

MR. ALLEN: It would be back --

what I would think.

1

2

1	511 keV, a lot of it is going to make it
2	through the body and show up on the film
3	badge. Some of it is going to be directly to
4	the film badge or you know, at an angle to the
5	film badge.
6	There may be some reduction if
7	there was a lot of dose coming from that, but
8	there's still, the bulk of that would show up.
9	CHAIRMAN ZIEMER: John.
LO	MR. RAMSPOTT: Actually, in the
11	photograph too. It's a three-man crew
L2	normally, if I understand the workers
L3	correctly. Two of these guys had their backs
L 4	to it. The guy up on the top is the film guy.
L5	The guy in the middle here was the marking
L6	guy. And it's already marked up but he
L7	actually, in this case here, he's putting like
L8	lead corners, markers, so when they focus this
L9	thing, they're aiming right at it.
20	Two out of these three guys,

pretty typical, their back -- you're right,

Josie, their backs are to the betatron a whole

21

1	lot o	f th	e ti	me.	But	they	are	working	on	the
2	targe	t. '	They	are	work	ing o	n the	e casting].	

- MEMBER MUNN: But they're also
- 4 quite a ways away from it. It's the two-foot
- 5 limitation that you --
- 6 MR. RAMSPOTT: Well, this is an
- 7 exception here too, Wanda.
- 8 MEMBER MUNN: Yes.
- 9 MR. RAMSPOTT: This guy -- that
- 10 six foot and nine foot shooting, it -- that's
- 11 really a misnomer. It's six foot, but if the
- 12 casting is two foot thick, that means the
- machine's got to be four foot.
- 14 MEMBER MUNN: Yes.
- MR. RAMSPOTT: And that's -- that
- 16 gets the -- you know, a human body, if it's a
- 17 foot thick, I mean, they're getting pretty
- 18 close to that, and this happens to be a
- 19 massive casting here.
- 20 That camera's up kind of high.
- 21 MEMBER MUNN: Yes.
- MR. RAMSPOTT: Normally, it would

1	be down a little bit lower to get on there
2	they set them on three, four foot shooting
3	platforms or a rail car. They told me that.
4	A transfer car, about three feet high.
5	MEMBER MUNN: Yes.
6	MR. RAMSPOTT: This one's
7	exceptionally high because it's sitting on a
8	truck, framed to be shot, so that's a little
9	bit out of proportion there, for the height of
LO	the machine.
L1	This is a lot closer than the
L2	we have other pictures of these I mean,
L3	it's almost hitting him in the head.
L4	MEMBER MUNN: Oh well, it has to
L5	be when you are working in that kind of an
L6	environment. But by the same token, there's -
L7	- it's one of the things that you can't you
L8	can't make a statement that all of these
L9	people were in close proximity to the betatron
20	head that we are concerned about here.
21	MR. RAMSPOTT: Correct.
22	MEMBER MUNN: Au contraire; they

1	are moving around a lot. They have to be
2	moving around a lot. If the assumption that
3	we are making here is the reason they had
4	their backs to it is because they are working
5	so hard and so fast, then, ergo, they are
6	moving around a lot, so they are not going to
7	be that close. That's the only point I was
8	trying to make.
9	MR. DUTKO: Dr. Ziemer.
10	CHAIRMAN ZIEMER: Yes. Go ahead.
11	MR. DUTKO: The operator for the
12	betatron it must be remembered that if they
13	were five inches and shot at six foot,
14	anything over five inches.
15	And simply, the operator is
16	standing, sitting, placing Xs on the casting,
17	penetrometers, numbers, arrows, he was very
18	close to the casting, he has not touched it.
19	You're shooting at six feet. The machine
20	directly impacts him.
21	I cannot figure out how, if we've
22	got a leaky machine at three feet that's

1	putting out 60 millirem excuse me, yes
2	three feet, 60 millirem, and it's six feet, 15
3	millirem, how in the world would casting
4	activation, a leaking machine and a hot
5	control room which Los Alamos says it is, how
6	in the world we can wind up with 1.35
7	roentgens? Thank you, sir.
8	COURT REPORTER: Is that John
9	Dutko?
10	MR. KATZ: Yes.
11	CHAIRMAN ZIEMER: Thank you.
12	Okay. Any other questions on the operators?
13	I'm going to go to the layout workers here.
14	Okay. Layout workers let me
15	start with a question here, again on the basis
16	for the one foot 50 percent of the time and
17	the one meter 50 percent of the time, I guess
18	the answer there is the same as we had before
19	then, it's sort of based on experience at
20	other sites where they're handling similar
21	kinds of things. Is that correct?
22	MR. ALLEN: Yes.

1	CHAIRMAN ZIEMER: Okay. And the
2	use of the 10 Building, is that pretty much,
3	everybody agree on that, that's where that was
4	always done, and the 10 Building was layouts?
5	Is there any
6	MR. ALLEN: I think that was the
7	closest place
8	CHAIRMAN ZIEMER: It's just the
9	closest one. There might have been others
10	that this will maximize any bounding?
11	MR. ALLEN: I mean, some of it
12	could have been done in the betatron, but the
13	betatron wouldn't be on.
14	CHAIRMAN ZIEMER: Wouldn't be on.
15	MR. ALLEN: So the maximizing
16	would assume that they were near that door in
17	the in the number 10 Building while the
18	betatron was operating.
19	CHAIRMAN ZIEMER: And the betatron
20	might have been operating, so they have the
21	exposure that they get from handling plus
22	scatter

1	MR. ALLEN: Right.
2	CHAIRMAN ZIEMER: coming in.
3	That's the basis of your
4	MR. ALLEN: Yes. It was intended to
5	be a maximizing but it was also pretty
6	credible, it seemed to be often that it was
7	somewhere in that vicinity.
8	MR. RAMSPOTT: Question.
9	CHAIRMAN ZIEMER: Yes, John.
10	MR. RAMSPOTT: John Ramspott. Is
11	that assuming the lead door?
12	MR. ALLEN: Yes, this White Paper
13	is assuming the lead door.
14	CHAIRMAN ZIEMER: Okay, thanks.
15	Wanda or Josie, questions on those
16	assumptions?
17	MEMBER MUNN: I don't believe so.
18	Seemed reasonable.
19	CHAIRMAN ZIEMER: And as I
20	understand it, Dave, that you would take your
21	layout workers' values, whatever your final

numbers, which are the Table 10 values, and

1	you are proposing to apply those to all
2	workers at the site who were not betatron
3	operators, is that correct?
4	MR. ALLEN: Actually, right below
5	Table 11 there's a short paragraph and the
6	last sentence says: "the dose reconstruction
7	will choose the most favorable of the sets."
8	CHAIRMAN ZIEMER: So even if they
9	were not known to be a betatron operator, if
LO	somehow their dose reconstruction got using
L1	both of these sets of things ended up, you
L2	mean that or how are you deciding?
L3	MR. ALLEN: Well, basically
L4	whichever one's favorable for that particular
L5	person
L6	CHAIRMAN ZIEMER: For that person.
L7	MR. ALLEN: which could depend
L8	on whether they have a skin cancer or
L9	CHAIRMAN ZIEMER: which cancer
20	they have.
21	MR. ALLEN: Right. So it could
22	depend on the years too, but I don't think it

1	would make a difference.
2	CHAIRMAN ZIEMER: So if they had a
3	skin cancer and the skin dose was higher from
4	if you call them a betatron operator you
5	would give them that value?
6	MR. ALLEN: Yes.
7	CHAIRMAN ZIEMER: If the skin dose
8	was higher if they were a layout worker, you
9	would give them that value?
LO	MR. ALLEN: Right.
11	CHAIRMAN ZIEMER: Gotcha.
L2	MR. ALLEN: And it seems credible
L3	because as I understand it, the betatron
L4	operators and some of them would be doing the
L5	layout
L6	CHAIRMAN ZIEMER: Right, I
L7	understand that.
L8	MR. ALLEN: And you also have
L9	people
20	CHAIRMAN ZIEMER: But there's
21	people doing layout who were not badged and
22	MR. ALLEN: Yes, as I understand

1	it,	they	were	not	badged	while	they	were	doing
2	layo	out.							

- 3 DR. ANIGSTEIN: Even the betatron
- 4 operators would be not badged.
- 5 CHAIRMAN ZIEMER: Right. But
- 6 there could be other people who were not --
- 7 didn't have a badge in the system even,
- 8 wouldn't be considered a betatron operator.
- 9 MR. ALLEN: Right, because I mean,
- 10 I called it layout, but the truth is that
- 11 could be, you know, a quick repair job too --
- 12 CHAIRMAN ZIEMER: Yes.
- MR. ALLEN: -- which could be, you
- 14 know, any type of job. It could be also,
- 15 you've got the chainmen et cetera that are
- 16 moving the castings in and out of the
- 17 betatron.
- 18 MEMBER BEACH: I just have a quick
- 19 question, Paul.
- 20 CHAIRMAN ZIEMER: Yes.
- 21 MEMBER BEACH: On your tables
- you've got `53 through 1960 and then `53

1	through `65. Is that the total for those
2	seven years or five years or
3	MR. ALLEN: No, those are annual.
4	MEMBER BEACH: It is annual. I
5	just wanted to make sure that that was clear.
6	MR. ALLEN: Yes, the reason I
7	separated `66 for the Table 10 for layout guy,
8	was because of the half a year
9	MEMBER BEACH: That six month
10	yes, I got that. I just wasn't sure on the
11	others.
12	DR. McKEEL: Paul, I have a
13	comment.
14	CHAIRMAN ZIEMER: Yes, Dan.
15	DR. McKEEL: My comment is a
16	general one about layout workers being
17	representative of the rest of the workers in
18	the plant. So you'll see that what I tried to
19	do at the end of this, my presentation, is to
20	summarize the agreement in 2007 and `08
21	between the models that SC&A and NIOSH

generated and compare those to what they came

Т	up with with new models, or reworking the old
2	models in 2012.
3	And so in doing that, what kept me
4	up too many hours late at night was it was
5	very hard to trace the direction of how doses
6	were assigned to the non-badged non-betatron
7	operators.
8	And in Appendix B and the SC&A
9	review, you know, there are places where the
10	betatron doses, which were very much higher
11	due to the earlier models, were said to bound
12	everybody's doses, so there weren't any
13	calculations done for those other people, so
14	you can't get a direct comparison.
15	But what is clear is this time
16	around, you know, the SC&A models for the
17	layout workers are very high compared to the
18	betatron operators and so it flip-flops.
19	We have always said in the past
20	that the betatron operators got the highest
21	dose, and 94 percent of the dose
22	reconstructions at GSI have been done based on

1	that premise, that the other people got less
2	than a rem per year, whereas the betatron
3	operators got a higher amount.
4	Well, if you go with what's now
5	been done, you are going to have a vastly
6	different result with that. So I guess, I
7	guess what I would like to hear from David
8	that I don't understand is: why have we
9	finalized on layout workers representing the
10	rest of the people?
11	My own opinion is there are other
12	people that, you know, haven't had a dose
13	calculated for them because you can't do it,
14	you don't know who they were, where they were,
15	what doses they received, and in particular
16	the chainmen who had to handle the uranium and
17	the grinders and the chippers, the people that
18	actually got exposed to those hot particles
19	from those activated castings.
20	So I'd just like to hear David
21	talk about other non-badged workers and why
22	layout workers were suddenly fixed on now.

1	MR. ALLEN: Well, the layout
2	workers are because the doses that they are
3	getting the two primary doses they are
4	getting are from scatter while the betatron is
5	operating down that tunnel, or down the
6	equipment hallway or whatever you want to call
7	that, into the number 10 Building, but also
8	from working in close proximity to recently
9	irradiated steel castings.
10	CHAIRMAN ZIEMER: And you didn't
11	have that before in your, in your early
12	DR. McKEEL: Well, layout men are
13	I'm sorry, excuse me.
14	MR. ALLEN: We had people outside
15	Appendix BB, that one? We had
16	CHAIRMAN ZIEMER: Well, you were
17	asking why the thing suddenly went so much
18	higher, I guess.
19	DR. McKEEL: No, no, no, I was
20	saying in Appendix BB, NIOSH mentions layout
21	workers among other workers.
22	MR. ALLEN: Well, in any case the

1	reason that we are saying it's representative
2	of other workers is that these are the sources
3	of radiation.
4	You have the isotopic sources.
5	You have the irradiated steel. And you have
6	shine from the betatrons. The layout worker
7	scenario here maximizes those last two.
8	I can't come up with any scenario
9	where somebody is going to be closer, longer,
10	to the freshly irradiated steel and get the
11	scatter from the betatron itself.
12	And as far as the sources, as I
13	mentioned before, that's in the other White
14	Paper, and the intent this particular White
15	Paper deals only with the betatron components,
16	but a revised appendix would include both of
17	those components, and just like the last
18	sentence in this thing says, pick the highest
19	of one for that particular, it's going to be
20	pick the highest of sources versus layout men
21	versus betatron operator et cetera and any of
22	them that are obviously if one is always

1	higher than the other, then it will be not
2	even included in that particular one, but the
3	basis would be there and say it'd default to
4	layout man or default to near radium
5	radiography, or whatever ends up being the
6	highest, and I didn't actually
7	DR. McKEEL: My point there
8	yes, I understand that real well, and I
9	understand why that would be an operational
10	way to treat the non-badged, other workers.
11	I guess my point was though, if I
12	thought about jobs and what people did,
13	actually the people I would think that would
14	be the most highly exposed would not be the
15	layout men, who after all are fixing laying
16	out on that activated casting, but it would be
17	the grinders and the chippers and those people
18	who actually take a tool and cut into those
19	activated castings, and everybody who's worked
20	around a, you know, a steel plant or a
21	commercial power plant, or anything, and has
22	seen that stuff, those hot particles can have

1	intense radioactivity.
2	I would think that I mean, much
3	more concentrated just in bare castings, so a
4	priori I wouldn't pick the layout men at all
5	as being the most, the highest of doses.
6	I would say that it would be a
7	grinder or chipper or somebody like that in
8	Building 10 that just got one of those X-ray
9	castings.
10	And as I understood it from the
11	workers, you know, they would if they found
12	a structural defect that was significant, they
13	might have to haul that casting back out, fill
14	it in, send it put it back on the truck,
15	send it back on the railroad car, send it back
16	into the betatron and have it re-X-rayed.
17	I guess I'm saying that this
18	highlights the Dr. Anigstein said it well
19	about the scenarios. The 15 scenarios with
20	exposures are, I understand them on a
21	theoretical basis, but only about five of them
22	relate to the real world.

WASHINGTON, D.C. 20005-3701

1	And I would say that, you know,
2	what this really recognizes is there is no
3	badge data for at any time, for 97 percent
4	of the people that worked at GSI. No film
5	badge data at all.
6	So you are picking, you are
7	modeling now, and trying to apply that to
8	these non-badged workers, and I just don't
9	think you can reliably do that. That, that's
10	my point.
11	So I kind of understand you've got
12	to pick somebody, but you know, it has not
13	been a consistent approach and I do agree with
14	David that those two basic routes of exposure,
15	of people working the 10 Building for
16	instance, you know, sky shining right down the
17	tunnel, that does apply.
18	I have to comment, though, again
19	this is a model predicated coming down the
20	tunnel through a lead-lined steel door that
21	I'm going to try to convince you all, persuade
22	you, was not there.

1	So there's a problem with the
2	model just from that point of view. Okay?
3	MR. ALLEN: I've got to say one
4	thing there, and I don't disagree with you
5	that somebody grinding on that is going to get
6	more exposure, but you have to realize that
7	we're trying to at least I have been trying
8	to eat the elephant one bite at a time,
9	essentially.
10	This White Paper you're right.
11	We've been saying this is for betatron
12	exposure et cetera. The truth is this is for
13	external exposures from the betatron.
14	DR. McKEEL: I understand that.
15	MR. ALLEN: And what you're
16	talking about is inhalation of radioactive
17	dust from grinding on those. That was already
18	in Appendix BB and that will be included in
19	the overall index.
20	DR. McKEEL: Well, as I have
21	understood it from painters and grinders who
22	worked in reactor vessels, when they are

1	cleaning and painting them in a commercial
2	nuclear power plant, the tremendous doses that
3	they worry about is, people who actually have
4	to grind off the "crud," is the technical term
5	for it, and they get those hot particles and
6	the real enormous doses are the hot particles
7	landing on your skin.
8	So it's really beta dose. I'm not
9	talking about exclusively inhalation dose at
10	all.
11	MR. ALLEN: You won't get those
12	outside of a reactor. You won't get those
13	from betatron irradiation of a metal casting.
14	The hot particles are pieces of corroded
15	metal that actually flow through and get
16	caught in a reactor, get highly radioactive,
17	and then end up breaking loose and flowing
18	DR. McKEEL: I understand. They
19	are radioactive pieces of metal that have
20	broken off. But I'm saying when they bring
21	out a recently irradiated casting into
22	Building 10 and start grinding and chipping it

2	radioactive hot particles.
3	MR. ALLEN: Yes, but they're not -
4	- they're not going to give you much of an
5	external dose above what that casting is. In
6	fact, it's negligible compared to the casting
7	that they are coming off of.
8	DR. McKEEL: You mean the beta
9	skin dose?
10	MR. ALLEN: Yes.
11	DR. McKEEL: Why?
12	MR. ALLEN: Because they are not
13	hot particles like what you're talking about
14	from a power plant. You don't get that highly
15	intense radioactive particle from a casting.
16	You will get the, you know, a large piece of
17	the casting will be evenly irradiated.
18	Those hot particles come from
19	small corrosion products going into a reactor
20	and getting a neutron flux out of a power
21	reactor type of
22	CHAIRMAN ZIEMER: Probably ten to

and those things are flying off it, they are

1	the tenth or ten to the twelfth, probably
2	eight orders of magnitude
3	MR. ALLEN: Hundreds of R.
4	CHAIRMAN ZIEMER: These would not
5	be defined in the field as hot particles.
6	DR. McKEEL: I know. I
7	understand. I understand what you're saying.
8	CHAIRMAN ZIEMER: They're
9	radioactive particles and I mean, you could go
LO	through the exercise but you will not be able
L1	to deliver much
L2	DR. McKEEL: Would you then agree
L3	with David that there's no increase in dose
L4	from those activated metal particles
L5	CHAIRMAN ZIEMER: There would be a
L6	theoretical increase but it would and you
L7	could do the calculation it's going to be
L8	in the micro-R region. It's, I mean it's
L9	it will nowhere compare with what you get in a
20	nuclear reactor where you have the crud going
21	in
22	DR. McKEEL: Paul, I'm not talking

1	about Rs and magnitude. I understand that.
2	CHAIRMAN ZIEMER: Yes.
3	DR. McKEEL: The beginning point
4	is so much higher in a nuclear
5	CHAIRMAN ZIEMER: Right, right,
6	right.
7	DR. McKEEL: reactor. I do
8	understand that. I do.
9	CHAIRMAN ZIEMER: Yes.
10	DR. McKEEL: I'm not a novice in
11	that area at all. I understand that.
12	CHAIRMAN ZIEMER: Okay. Yes.
13	DR. McKEEL: I'm just trying to
14	make a point that, a priori, I would think
15	that that could add to the dose. But you all
16	say it's negligible. So
17	CHAIRMAN ZIEMER: Well, and maybe
18	someone would need to demonstrate that
19	DR. McKEEL: I think that's the
20	key point. You do need to demonstrate it.
21	CHAIRMAN ZIEMER: Because you are
22	talking about a neutron flux in terms of the

1	neutrons produced in this process, that's got
2	to be at least 8 to 10 orders of magnitude
3	lower so that but you know, I'm just
4	talking sort of broad terms here. I
5	DR. McKEEL: Okay. Understand
6	what I'm saying. I'm not trying to compare
7	the I'm not trying to compare a particle
8	from this
9	CHAIRMAN ZIEMER: You're basically
LO	saying had you already taken that into
L1	account
L2	DR. McKEEL: I'm trying to say
L3	there's an increase that those particles
L4	increase the beta skin dose above what you
L5	would calculate
L6	CHAIRMAN ZIEMER: Yes, I mean if
L7	it's
L8	DR. McKEEL: a layout man, just
L9	from his hands
20	CHAIRMAN ZIEMER: But if it's six
21	decimal points further from the number
22	they're using, it's a

1	MR. ALLEN: I was going to say
2	it's not going to show up on the significant
3	figures, for sure.
4	CHAIRMAN ZIEMER: No, okay. The
5	point's been made.
6	DR. ANIGSTEIN: Can I comment on
7	this?
8	CHAIRMAN ZIEMER: Yes.
9	DR. ANIGSTEIN: First of all, if
10	you are talking about a particle of metal
11	going on the skin, we have, NIOSH and we have
12	both now, have both modeled the entire hand
13	being on the steel, so how can a particle give
14	you a greater dose than the entire surface of
15	the steel?
16	We are having the maximum dose,
17	the maximum reactivity is on the surface and
18	it goes down as you go deeper into the metal.
19	So we already get it. We've done that in
20	great detail and we and there is a skin
21	dose, and it's accounted for.
22	And the reason the layout man has

1	a higher dose than the grinders and chippers,
2	he has he gets it first. Then by the time
3	the grinders and chippers get it, there's
4	already been some additional decay time.
5	These are short-lived isotopes. We saw them.
6	And so the first person that gets
7	the steel coming out of there is a layout man.
8	We look this SC&A has looked at all of
9	these things. We have looked at the chippers
10	and grinders. We have looked at the layout
11	men. We looked at the chainmen.
12	The chainmen don't make the grade
13	because they get to it sooner, but they're not
14	in contact with the metal, in contact with the
15	metal as long.
16	The layout man is the one that
17	gets the highest dose of these categories and
18	all of them we can examine. As far as the
19	inhalation and ingestion, that was looked at
20	also, and even with a minor decay, there is
21	negligible dose to the inside.
22	Giving the maximum amount that

2	their eight-hour work day, starting with the,
3	oh, after the irradiation steel, over the
4	course of a year, they get less than a
5	millirem, and that's a completely negligible
6	dose.
7	DR. McKEEL: I'd just like to make
8	one final comment. I accept what Dr.
9	Anigstein just said
10	DR. ANIGSTEIN: I mean, you said
11	"a priori," well, we did it a posteriori. We
12	did it after the modeling and we looked at
13	each one. We did not jump to any conclusion.
14	We looked at each one, and each, each of
15	these exposure pathways has been fully
16	accounted for.
17	DR. McKEEL: Okay. Then I've got
18	to make a comment about that, and this is
19	another huge issue with me and this Work Group
20	and the way it's operating.
21	Dr. Anigstein just said, and we've
22	heard many instances this morning, where David

anyone is going to inhale over the period of

1	Allen and NIOSH took SC&A models and revised
2	them and reworked them.
3	Bob Anigstein is now sitting and
4	claiming that he and SC&A have done all the
5	original fundamental work to do what, in my
6	opinion, this program pays NIOSH to do, and I
7	have said it many times and I'll keep on
8	saying it until the very end of the program,
9	that I think the roles are improper and they
10	have been reversed.
11	It is not SC&A's job to construct
12	the dose reconstruction data for these folks.
13	So that's over and above whether the modeling
14	you have done is accurate.
15	So I think that this Work Group
16	should be considering what NIOSH has done,
17	what NIOSH is able to do on its own. The SEC
18	basis is: can NIOSH accurately bound, you
19	know, with sufficient accuracy, bound the
20	doses? Can NIOSH with sufficient accuracy
21	calculate the doses for these workers?
22	And I think that I just think

1	that's wrong. The other thing that I think is
2	wrong is: from the petitioner's point of view,
3	I think that SC&A's proper role is to evaluate
4	what NIOSH has done, and, you know, in many
5	instances I think that the two roles have been
6	switched.
7	So all I can say is, you know, I
8	don't consider the Board's contractor's
9	modeling work on all the other workers in the
10	plant to be definitive.
11	And where's the comparable data
12	from NIOSH that was done independently? How
13	did those numbers agree? So I just think a
14	big part of the necessary picture is missing.
15	CHAIRMAN ZIEMER: One comment.
16	MEMBER MUNN: I'd like to address
17	Dr. McKeel's concerns in a slightly different
18	perspective.
19	DR. McKEEL: Okay.
20	MEMBER MUNN: From at least this
21	Board Member's perspective, we hired SC&A. I,
22	as a Board Member, hired SC&A. SC&A was

1	instructed to obtain a wide variety of
2	expertise because we had many different kinds
3	of structures to look at, and there were very
4	few Members of the Board who had the personal
5	background and expertise to be able to
6	evaluate these things well ourselves.
7	So we wanted our contractor to
8	have and I am one of those people who is
9	not always happy with the people who were
10	chosen for that contract role. But it was our
11	desire, I believe I can speak for the Board in
12	this single instance, it was our desire to
13	have the broadest possible expertise.
14	Now, when we do this, we again,
15	as an individual Board Member I'm very, very
16	sensitive to the issue that you just raised,
17	which is first, the chicken or the egg, who's
18	doing our work?
19	When we have NIOSH bringing us the
20	work that they have done and we have
21	outstanding experts in our contract field who
22	is working with the Board and with NIOSH to

1	resolve some of these really, really deep
2	technical issues, then, if we have expertise
3	in the Board's technical contractor, which is
4	helpful to both the Board and NIOSH in moving
5	some of these things forward, then, from my
6	point of view, SC&A is not providing this
7	information. They are working with the agency
8	to achieve what we want done, which is the
9	best possible product that gives us the best
10	technical solution to the issue that's up in
11	front of us, at that given time.
12	Now, the sensitivity varies, I
13	suspect, from member to member around the
14	Board. But certainly some of us are extremely
15	sensitive to whether the issue is one that
16	needs to be NIOSH work or whether it is one
17	which SC&A can bring additional expertise to
18	help resolve single technical points.
19	So whether your concern in this
20	particular instance is seen in exactly the
21	same way by others, of course no one can judge
22	except the individual.

1	But we, I think most of the
2	Members of the Board are very concerned to see
3	that we we understand we want NIOSH to do
4	the work, and for in almost all instances,
5	from my perspective, I see NIOSH doing the
6	work.
7	I see another perspective
8	occasionally brought by our contractor, but
9	the Board is aware of that when this is going
10	on, and isn't we are concerned also that
11	the right, the right agency, the right group
12	of people is doing the right what we are
13	expected to do both by law and by the process
14	that we've developed here.
15	MR. KATZ: Wanda?
16	MEMBER MUNN: Yes.
17	MR. KATZ: Let me interject now,
18	because I don't think we should spend a lot of
19	time, precious time on this process question.
20	MEMBER MUNN: No, we shouldn't.
21	MR. KATZ: But the Board tasks
22	SC&A to do evaluative work. That's what we

1	do. And they do it. And sometimes when they
2	do evaluative work, they produce products that
3	end up being sort of leading the path in
4	another direction and those get taken up and
5	made use of. Why would you ignore it when
6	good technical work has been done?
7	But the charge to SC&A is always
8	to do evaluative work and that's what they do.
9	They don't do they're not, they're not
10	intending to break ground in the first place
11	or intending to evaluate how well NIOSH did
12	its job. Often, in trying to validate a model
13	or contest it, whatever, they do their own
14	modeling and so on, that gets brought into
15	play. That's fine. It's evaluative work.
16	And then if, at that point, NIOSH
17	finds that that information is useful, is a
18	better path, I think it's perfectly fine for
19	NIOSH to take up that information and improve
20	their dose reconstruction process, because the
21	one thing that is certainly true, is that the
22	Board is concerned that at the end of the day,

1	however it comes about, the best methods are
2	used for dose reconstruction and the right
3	answers are reached finally about SEC
4	petitioners, in other words that feasibility -
5	- whether feasibility is there or is not.
6	So, I mean I think I don't want to
7	continue this discussion.
8	CHAIRMAN ZIEMER: No, and I just
9	want to point out, and Dan, conceptually, you
10	are quite right, and you've heard me say it
11	many times, that I don't want NIOSH to do
12	or SC&A to do NIOSH's work.
13	But what Ted has described is
14	exactly true, I mean, we have many instances,
15	I think of high-fired plutonium which is
16	originally raised as a question by SC&A, have
17	you considered high-fired plutonium?
18	And now that has permeated all of
19	our sites because it was raised as part of the
20	evaluation process. But I think we understand
21	your point and we are always trying to find
22	the right balance to make sure that, you know,

1 NIOSH has the legal responsibility to de
2 certain things and we're evaluating, we are
3 trying to reach a point of best science.
DR. McKEEL: I respect everybody's
5 opinion and I hear what you're saying. Bu
6 I'd like to summarize what my point is, and
7 certainly respect particularly what Wanda jus
8 said, the point I was trying to make is
9 slightly different.
10 And it is that as far as I can
see, from the law and the spirit and the whole
12 thing of this process and I respect you
13 Ted, too I just want to make a summary -
it's NIOSH's job to come up with the dose
reconstruction methods that SC&A evaluates.
16 It's their job to come up with
information. If there is a gap, in other
words if NIOSH does not do something, like for
instance model all the different worker jobs
their exposure rates from the betatron, which
I think they did not do in the first place
then I don't think evaluation means fill is

2	The way I see it, as a citizen, I
3	see the Board as overseeing NIOSH's
4	activities evaluating that for the
5	Secretary of Health and Human Services, that
6	is fine and valid. But I do not see this law
7	saying that the Board is charged, or its
8	contractor is charged with filling in the
9	blanks for dose reconstruction methods and
LO	new information that would change an SEC
11	evaluation from deny to approve or something
L2	like that.
13	So that's just
L4	MR. KATZ: I didn't say that, I
L5	didn't say it's the Board's job I said it
L6	rises out of their evaluation work that they
L7	do this kind of that they, for example,
L8	looking at all the different occupations and
L9	what the you know, DCAS didn't do that, but
20	they did that. That's fine. They were doing
21	that for an evaluative purpose.
22	That was the hat they were

the blanks, and I actually disagree with Ted.

2	well does this model function? So they looked
3	at more than perhaps DCAS did in that. That's
4	fine. It's still fine.
5	CHAIRMAN ZIEMER: Okay, the
6	point's on the table. What I want to do now,
7	let's take our lunch break. I'd like to see
8	if we can get it done in 45 minutes, the
9	lunch, let's streamline it a little bit.
10	Dan, I'm going to give you the
11	table right after lunch, so we are going to
12	try to come back here at 12:30, okay?
13	MR. DUTKO: Dr. Ziemer?
14	CHAIRMAN ZIEMER: Yes.
15	MR. DUTKO: Quick comment, please.
16	CHAIRMAN ZIEMER: Yes.
17	MR. DUTKO: What Dr. McKeel was
18	talking about was absolutely true. The
19	casting is not limited to the layout person,
20	as you know. You've got bag crews, you've got
21	grinders and chippers. Once that casting is
22	marked up, a magnaflux crew, grinders and

1 wearing. They were evaluating, saying: how

1	chippers	go	to	work.	They	work	with	each
2	other.							

- Also, who might be called in is
- 4 burners and welders. There's a lot more
- 5 people involved with the repair of a casting,
- 6 and it might be -- the layout might be done a
- 7 lot guicker, in a half hour, depending on what
- 8 stage or amount of defects the casting gets.
- 9 Thank you, sir.
- 10 CHAIRMAN ZIEMER: Okay, thanks,
- 11 yes, we understand that.
- 12 MEMBER BEACH: Paul, one quick
- 13 question.
- 14 CHAIRMAN ZIEMER: Yes.
- MR. CHUROVICH: And I have a thing
- 16 to say here. My name is Dan Churovich.
- 17 CHAIRMAN ZIEMER: Dan, you're
- 18 going to have to hold off. We're taking a
- 19 break now. You are welcome to join us at
- 20 12:30 when we will reconvene. Thank you.
- 21 MEMBER BEACH: Are we skipping
- 22 over SC&A's review or --

NEAL R. GROSS

2	just I committed to Dan we'd let him go
3	after lunch.
4	MEMBER BEACH: Okay.
5	CHAIRMAN ZIEMER: We'll still hear
6	from Bob, Dan Dan, you're not going to go
7	till 3:00.
8	(Laughter.)
9	MEMBER BEACH: Okay.
10	CHAIRMAN ZIEMER: But I made that
11	commitment that we would
12	DR. McKEEL: I appreciate that.
13	CHAIRMAN ZIEMER: Now, we've got
14	to be careful on that because that's sleep
15	time, you know, right after lunch.
16	You're going to have to keep us
17	awake. So see if we can get done by 12:30 and
18	that'll give us a little more time this
19	afternoon, okay?
20	MEMBER BEACH: Okay.
21	MR. KATZ: Okay, so I'm ending the
22	call and we'll be back on at 12:30.

CHAIRMAN ZIEMER: We're going to

L	(Whereupon, the above-entitled matter went of	f
2	the record at 11:43 a.m. and	d
3	resumed at 12:32 p.m.)	
1		

1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(12:32 p.m.)
3	MR. KATZ: Good afternoon. Folks
4	on the phone, this is the Advisory Board on
5	Radiation and Worker Health, TBD-6000 Work
6	Group, and we are just reconvening, having
7	finished the lunch break.
8	CHAIRMAN ZIEMER: Okay, thank you.
9	As we begin the afternoon session, we are
10	going to begin with the presentation by the
11	GSI petitioner, who is Dr. Dan McKeel.
12	And, Dan, do you want folks to ask
13	questions as you proceed or do you want to go
14	through everything and then wait until the
15	end? Do you have a preference on that?
16	DR. McKEEL: Dr. Ziemer, I think
17	it might be better to just let me go on
18	through the slides.
19	CHAIRMAN ZIEMER: Okay.
20	DR. McKEEL: I will try to pause
21	maybe in between the big sections
22	CHAIRMAN ZIEMER: Okay.

NEAL R. GROSS

2	burning question.
3	CHAIRMAN ZIEMER: All right.
4	Appreciate it.
5	DR. McKEEL: But we can go back to
6	a slide if we need to bring it up.
7	CHAIRMAN ZIEMER: Sure.
8	DR. McKEEL: But I think the flow
9	
10	CHAIRMAN ZIEMER: That'll be fine.
11	DR. McKEEL: will be better just
12	to finish with it.
13	CHAIRMAN ZIEMER: Thank you.
14	DR. McKEEL: Well, anyway, the
15	first thing I'd like to say is to thank Dr.
16	Ziemer and to thank the Work Group for
17	accommodating John and I even being here, but
18	in particular for participating fully in this
19	meeting.
20	And I hope to make this
21	presentation in the spirit in which Dr. Ziemer
22	started the meeting by saying it's really to
	MEAL D. CDOSS

DR. McKEEL: -- if somebody has a

1	convey information, new information, go over a
2	few points from the past that needed to be
3	clarified, but particularly to concentrate on
4	a few big picture issues that we really have
5	not been over this morning about what was the
6	intended purpose of the path forward for GSI
7	and have those goals been realized.
8	And then finally, to kind of sum
9	up where we are, I believe, is to give you an
10	overview of the doses that have been
11	calculated from several years ago and updated
12	here more recently by both NIOSH and SC&A, and
13	that sort of indicates what the work of this
14	Work Group might be, particularly at the next
15	meeting in bringing things to a closure, at
16	least on the SEC portion of things.
17	So, the first thing I wanted to
18	concentrate on is this basic information about
19	the path forward for GSI, and to remind us
20	that on October 20 th of 2010, David Allen came
21	forth with his White Paper entitled "A Path
22	Forward for GSI."

1	And in that paper he mentioned the
2	large 80-curie Co-60 non-destructive testing
3	source and said that the law itself, EEOICPA,
4	disallowed the use of that source.
5	In that path forward he proposed
6	new exposure models based on GSI information
7	from outside sources including workers and
8	advocates, site experts and myself, and the
9	intended purpose of the path forward, one of
10	the main ones, was to revise Appendix BB Rev
11	0, which was first put out in June of 2007.
12	But also, at that point in time,
13	there were outstanding findings from SC&A's
14	review of Appendix BB and SC&A's findings on
15	the SEC 105 for GSI that needed to be
16	addressed, and Dave Allen outlined that they
17	would be addressed in the path forward.
18	So as the path forward began to be
19	analyzed, Dr. Ziemer sent out an email which I
20	received in May of 2011, May $16^{\rm th}$, 2011, and
21	in that email Dr. Ziemer outlined the 10 new
22	exposure models that NIOSH was going to

1	produce.
2	The first four models were going
3	to be supplied by David Allen, and he did
4	produce that document as a White Paper in
5	August of 2011 and that dealt with GSI
6	portable sources.
7	And then this last paper, the one
8	we are focusing on today, was by David Allen
9	and NIOSH and that was dated January of 2012,
10	and that was a White Paper on betatron
11	operations.
12	Now the big picture on the path
13	forward as far as I can see is those
14	outstanding five SEC issues that were outlined
15	in the original path forward document of
16	October 2010, they've really not been
17	addressed and they certainly they were not
18	addressed in this latest White Paper.
19	So as we come here today, the
20	petitioners do have a large number of concerns
21	and I've tried to hit the highlights here, and
22	now I'm focusing on this latest White Paper

1	dated bandary 2012.
2	First was that among the six
3	methods that were supposed to be covered, was
4	a new exposure model for the old betatron, and
5	basically that was really left out of this
6	paper.
7	There is, I think, one sentence
8	that mentions that the doses for the new
9	betatron, which has been recalculated, would
10	be bounding for the old betatron, but there
11	really isn't any new model for the old
12	betatron.
13	And my comment is that you can't
14	equate them as identical facilities because
15	they really are quite different, and we don't
16	have the time to go into all the differences,
17	but they are not the same.
18	Second point here is that the new
19	betatron model uses 1971 data for an 80 curies
20	cobalt source where we said that that same
21	source is really not allowed under EEOICPA,
22	and the purpose of that was to validate film

understand the discussion

3	this morning, but I still would like that
4	comment to be entered in the record. The
5	other comment I'd like to make is that
6	OCAS-IG-003 guidance says that all radiation
7	sources during the covered period must be
8	dose must be determined with sufficient
9	accuracy, and with the second path forward
10	document that's now been delivered, I would
11	say that what is not covered is the old
12	betatron doses, the fact that GSI did own a
13	10- to 20-curie iridium-192 source that's
14	different from the St. Louis Testing source,
15	and I'm going to show you some new information
16	about that.
17	And although the 250 kVp portable
18	industrial X-ray units were discussed in the
19	previous White Paper, the doses for both those
20	units were not really defined.
21	The other thing I'd like to just
22	point out is that this site is one of the ones
	NEAL D. CDOSS

badge hearings from 1964 to `66.

I

So

1

1	that really had an extensive array of
2	underground tunnels that we've not talked
3	about very much, and they were really designed
4	to be a housing for the conveyor belts, which
5	ran all throughout the GSI building complex.
6	And we also have tunnels for the
7	railroad tracks that go into the betatron
8	buildings. So it seems to me that one of the
9	things that's really not been addressed at all
10	at this site is radon exposure.
11	I want to turn to our to recap
12	for you the information we have about GSI
13	owning and using an iridium-192 source, and
14	this first affidavit was really presented in
15	2006 and I want to read it again, the relevant
16	parts.
17	It says, "The large castings were
18	processed only in the old betatron except for
19	the pipes, which were X-rayed using iridium
20	anywhere necessary, but not routine, except
21	primarily in the end of 10 Building and
22	sometimes in Building number 9."

WASHINGTON, D.C. 20005-3701

1	He also notes that the only
2	cobalt-60 source that he knew about was the
3	small pill in 6 Building west end up against
4	the foundry and the core truck aisle on the
5	west.
6	The second affidavit is more
7	recent, and that has to do with the same GSI
8	iridium-192 source, and this gentleman says as
9	follows, and this is a report from John Terry
10	Dutko, who had just spoken with this person.
11	"Dr. Dan, just a reminder that the
12	iridium info about the GSI 10- to 20-curie
13	iridium source and one quarter curie cobalt-60
14	sources came from and I'll omit his name.
15	"This gentleman started in the
16	fall of 1963 at GSI, worked in magnaflux then
17	moved up to isotopes. He periodically worked
18	in 6 Building with iridium and cobalt,
19	shooting corner shots on rail truck frames."
20	And that's an interesting comment
21	because the majority of the work that had been
22	ongoing in Building 6, and this inner

1	radiography structure, was to look at railroad
2	truck frames.
3	He also worked steady midnights,
4	et cetera, in the old betatron while he and
5	his friend were going to school. This
6	gentleman stated that comparing iridium and
7	the cobalt source that he worked with in
8	Building 6, iridium was the weaker source,
9	penetration-wise, and it would take two to
10	four hours using cobalt to penetrate two
11	inches of steel, and so forth.
12	The third affidavit about there
13	being a GSI iridium-192 source comes from the
14	attorney son of a GSI radiographer who is now
15	deceased, and the son filed this formal
16	affidavit on November 25 th , 2006, really in
17	the terminal stages of life of his dad, but he
18	wanted to get this information on the record.
19	And this is a quote from that
20	affidavit, number 8, "My job duty was to X-ray
21	castings with the betatron. I used 250 kVp
22	industrial radiography equipment and also X-

1	rayed castings using cobalt-60 and iridium-
2	192." He said, "The latter unit was in the
3	betatron room, was mobile and sat on the
4	floor."
5	We have, I didn't put it here
6	today for time reasons, but we have a fourth
7	affidavit from a gentleman that you all know
8	well, we've talked to before, JP, who worked
9	at GSI during 1957 and the late `50s, and he
10	also attested to the fact that GSI owned and
11	used an iridium-192 source during that time
12	period.
13	This is from that same dying man's
14	declaration, but a different point that I
15	thought was relevant to what we discussed this
16	morning about the residual radiation from the
17	betatron when it was off.
18	He said
19	MR. RAMSPOTT: Oh, Dan?
20	DR. McKEEL: Yes.
21	MR. RAMSPOTT: Excuse me. You
22	added that slide. That's not in their handout

1	right	now.

- DR. McKEEL: I understand that,
- John.
- 4 MR. RAMSPOTT: They didn't know
- 5 that.
- DR. McKEEL: Oh, I'm sorry. There
- 7 are three slides, I think, that are not in
- 8 your handout.
- 9 CHAIRMAN ZIEMER: Okay, mine was -
- 10 I can just --
- DR. McKEEL: I apologize. They
- 12 will be -- I'm leaving this PowerPoint --
- 13 CHAIRMAN ZIEMER: You can just
- 14 email it to Ted.
- DR. McKEEL: And a copy for Ted.
- 16 CHAIRMAN ZIEMER: Okay, great.
- 17 Thanks.
- DR. McKEEL: Okay, so you'll have
- 19 the full, what I have on here. So yes, I
- 20 apologize for not explaining.
- So, in -- so RW says as follows --
- 22 I'm quoting, "Before I'd ever heard of the

1	concept of activation, I explained to my son
2	that after the betatron was turned off after a
3	shot, I could still get a radioactive meter
4	reading at the site of the shot.
5	"The reading was most apparent
6	from the cone of the betatron itself. This
7	was a concern because in setting up the shot,
8	my back was between the cone and the casting,
9	one to two feet from the cone."
10	And I'd just like to point out
11	that this was an independent affidavit about
12	that effect of their residual activity, made
13	in 2006, long before anybody had contacted '
14	identifying information redacted' or any of
15	that information was known. And this
16	gentleman has since expired.
17	Okay. I next want to turn to the
18	subject that we talked about extensively this
19	morning, and this is just our factual basis
20	for believing that in 1966, the new betatron
21	building and the old betatron building were
22	not the tunnel with the railroad tracks was

2	door that was used in all of David Allen's
3	modeling that he discussed this morning.
4	But instead, in 1964-66, we have
5	very strong evidence that there was a roll-up
6	steel ribbon door and I'm going to show you a
7	picture of that door in a few minutes.
8	I'd also comment that in the
9	Department of Energy Oak Ridge National
10	Laboratory 1991/2 cleanup report, and in
11	pictures that John Ramspott and I took in
12	2006, when we're looking at the new betatron
13	area and the old betatron area, there was a
14	double-leaf door there, but there was no lead
15	shield, and what we did find was a door which
16	was a ribbon roll-up door at the entry of the
17	tunnel break area into Building 6.
18	So I'll show you why we believe
19	that that door was probably moved from the end
20	of the tunnel in either the old or the new
21	betatron buildings.
22	This is the drawing that Dr.

not closed off by a lead-shielded double-leaf

Τ	Anigstein has in his report and I can't
2	remember, I think Dave Allen may have his
3	but what I want to focus on is, I'm going to
4	get away from the microphone for a second.
5	I'm going to take this with me.
6	Here on the left you can see there's an
7	annotation, there's an opening in the new
8	betatron tunnel wall, and there's a bracket
9	across it.
10	There's no door actually drawn in
11	there but it says, double-leaf door, bottom
12	leaf seven feet, zero inches high, lead
13	shield. And it has an arrow drawn into that
14	opening.
15	And then, apropos the discussion
16	we had this morning about the walls of the
17	tunnel and the control room and so forth, you
18	can see on this drawing that the big, thick
19	sand-filled walls bound, you know, three and a
20	half sides of the betatron shooting area, but
21	the tunnel walls are thinner and an annotation
22	at the bottom with two arrows, says, concrete

2	which is that part is correct.
3	So this is the drawing showing the
4	cobalt-60 source and target being used in the
5	new betatron building, and it says, Rev
6	11-4-68, so that's the date of this drawing.
7	Now, this is the picture that I
8	took of the old betatron building looking down
9	the tunnel from the shooting room out the
10	front door, towards the new betatron building.
11	And you can see at the top up
12	here, there are vertical ribs, metal ribs in
13	this door. It was a double-leaf door and this
14	bottom leaf, which was supposed to have the
15	lead shield, at least in 2006, there was no
16	lead shield there.
17	And to sum up a lot of data, none
18	of the workers who worked at this facility
19	ever saw a lead shield and all of them
20	unanimously say that in 1966, this door was
21	not present. What was present, was a red steel
22	roll-up, ribbon door.

block walls, mortar-filled, 25 inches high,

1	Now, when John and I went to the
2	GSI site in 2006, I took this photo, which I
3	took from the inside of 10 Building and it was
4	quite clear to me that I was standing in 10
5	Building, looking back towards the new
6	betatron building, at the entrance to the
7	tunnel or what would be now called the break
8	area, so where the railroad tracks ran into
9	the new betatron building to carry the big
10	castings and uranium as a matter of fact.
11	And what you see here is a door
12	that's exactly what the workers described for
13	all these years: it's red, it's ribbon steel
14	and you can see the roll clearly at the top of
15	the frame and there's a little sign attached,
16	E 22, which identifies the location within
17	that building, and then you can see above
18	you can see part of the metal wall, you can
19	see that on either side of the door, and you
20	can see a window in the 10 Building and the
21	construction of the wall above that.
22	And it's this door, or this type

1	of door, this exact type of door, that we
2	believe closed off the tunnel to both the old
3	and new betatron buildings in the covered
4	period, 1964-66.
5	To further the idea that a rolled-
6	up steel door was the norm for betatron
7	buildings, this is taken from the Allis-
8	Chalmers manual and remember that Allis-
9	Chalmers built both of the GSI betatrons.
10	And this is this relates to
11	their facility, and you can see this is the
12	laboratory that they built at Allis-Chalmers
13	in West Allis, Wisconsin. John and I visited
14	there, he twice, me once.
15	We saw this facility. They had
16	the same old original betatron working and so
17	forth, but the point was that in the Allis-
18	Chalmers manual, they say that a steel roll-up
19	door closes the rail tunnel, and that's what
20	was their recommendation.
21	' identifying information
22	redacted', again, said that the ribbon steel

1	door was standard fare for Allis-Chalmers
2	betatron installations, and John has further
3	testimony from a worker at the company that
4	took over this facility, called NDT, and this
5	gentleman I met, John has interviewed several
6	times, and that man said that this ribbon door
7	that was in the West Allis facility was just
8	removed a short while ago this year.
9	So you know, they felt it was
10	adequate and it was there and I think that
11	ought to really put to rest the idea that
12	during the period that's being modeled by Dave
13	Allen, the covered period at GSI, those last
14	years, that it was the ribbon steel door which
15	I've shown you that should be included in the
16	model, and not a double-leaf, lead-shielded
17	door.
18	CHAIRMAN ZIEMER: There was a date
19	for this replacement. Did you find an exact
20	date on the adding of the shielding later, on
21	the ribbon steel door, or did anybody find the
22	date for that?

WASHINGTON, D.C. 20005-3701

1	DR. McKEEL: Not really we
2	would
3	CHAIRMAN ZIEMER: Okay, when you
4	said it was recently replaced
5	DR. McKEEL: Oh, I'm sorry. No.
6	CHAIRMAN ZIEMER: That's at their
7	place?
8	DR. McKEEL: That's at the West
9	Allis facility. As far as GSI, we can do a
LO	bounding date.
11	CHAIRMAN ZIEMER: Okay.
L2	DR. McKEEL: You know that
L3	CHAIRMAN ZIEMER: I know what
L4	bounding is, roughly.
L5	DR. McKEEL: Yes, so
L6	CHAIRMAN ZIEMER: Sorry to
L7	interrupt, but
L8	DR. McKEEL: We can bracket the
L9	date as some time after 1966
20	CHAIRMAN ZIEMER: Gotcha.
21	DR. McKEEL: and between that and
22	1991 when DOE came.

1	MR. RAMSPOTT: The drawing of `68
2	would be the first possible
3	DR. McKEEL: And that's and
4	that would be the logical time to have added
5	that, when they now have a license for a large
6	cobalt source, and they're going to use cobalt
7	inside the well, they basically said in
8	both the new and old betatron buildings.
9	CHAIRMAN ZIEMER: Thanks.
10	DR. McKEEL: Yes, sir. Another
11	concern now we're switching subjects, yet
12	one more and this time we are going back to
13	Dave Allen's first White Paper on the
14	radiography portable sources in GSI.
15	And I'm focusing now on SC&A's use
16	of MCNP to simulate the exposures from the
17	226 radium source that was used in the Number
18	6 Building radiography facility.
19	And I just wanted to read you that
20	and this sets the reason for why for the
21	next three or four slides.
22	It says, we simulated the

1	exposures and dose rates from 226 radium in
2	the radiographic facility in Number 6 Building
3	in GSI using the MCNP5 radiation transport
4	code. The model of the radiographic room was
5	based on sketch in the GSI application for an
6	AEC byproduct material license, and it gives
7	the NRC FOIA document date, which is
8	replicated in Figure 4.
9	And so what we wanted to show you
10	was that that drawing and that FOIA was in
11	1962 but it was after we can show you, and
12	what I hope will convince you that changes
13	had been made in the shielding of that inner
14	radiographic room, as well as structural
15	changes they say in the walls of that and
16	to add extra shielding.
17	And just to further set the stage,
18	in 1962, GSI had to give up its old radium-226
19	sources that they used with fishpole
20	technique, and switch over to cobalt-60, to
21	small half-curie sources, and so they were in
22	the business of applying for a byproduct

1	license for those two cobalt-60 sources. And
2	all this material is now from the FOIA
3	material, 2010-0012.
4	John Ramspott, who is a proficient
5	digger after the facts, obtained a new map of
6	the GSI facility dated January the $29^{\rm th}$, 1957 ,
7	and he got that from the current owner of the
8	6 Building and 7 Building area, and in 7
9	Building there is now a commercial operation
LO	going on.
11	And I'll show you that map in a
L2	minute which establishes that what they then
L3	called the radiograph room, the same thing
L4	that everybody else later on called the
L5	radiographic facility of the inner structure
L6	in Building 6, existed in 1957, and I think at
L7	the last meeting, we had had some new
L8	evidence, new testimony from workers, that in
L9	fact, that building did exist before 1962.
20	Now we know it did and it may have been there
21	all throughout the early the 1950s and into
22	the early 1960s, and we know the building was

Τ	there in 57, and 1.11 show you why we know
2	that.
3	Worker testimony established that
4	radium-226 sources were used in this facility
5	for NDT inspection of railroad trucks, and the
6	quote was, even earlier than the AEC were,
7	which really, in context, meant it was it
8	was used before 1953 and after that.
9	So that facility may have been
10	there doing railroad track, non-destructive
11	testing railroad truck, non-destructive
12	testing from the late 1940s all the way up
13	through the covered period.
14	Anyway the covered period at GSI
15	starts in 1953. I think John may have said
16	1955 this morning but it started it starts
17	in 1953.
18	So this is the kind of the
19	signature block from that large map which John
20	brought with him. If anybody needs to see it,
21	it's a very detailed drawing.
22	And at the top, you see, you know,

1	the scale and so forth, General Steel Castings
2	Corporation in Granite City, Illinois. It
3	notes that they have another plant in
4	Eddystone, Pennsylvania.
5	But this is a general drawing of
6	the Granite City plant, and you can see on
7	that there's a date, 1/29/57. That's
8	critical. And up above, as well, Granite
9	City, January 29 th , 1957. And below, I've
LO	taken a section from that great big map to
L1	show you part of the 6 Building.
L2	So, for orientation, this is drawn
L3	on there and it's a rectangle and it's labeled
L4	radiograph room. Down in the lower part of
L5	the figure would be the foundry and I am now
L6	persuaded that this area basically was open,
L7	so there were columns but there was no wall
L8	between the radiograph room and the foundry.
L9	And the next slide shows that this
20	was a heavily trafficked let's see yes.
21	This area right here was heavily trafficked
22	between the radiograph room and there was a

1	pathway here and here, which I'll show you in
2	a minute, a walkway where lots of people
3	walked on their way to the foundry and the
4	current, most accurate estimate is that maybe
5	this walkway was no more than 20 feet and
6	maybe as close as 10 feet to this radiography
7	facility, so that actually some of the
8	comments that had been made and the modeling
9	of this facility, that there were very few
10	workers, ' identifying information redacted'
11	1962 survey noted that there were very few
12	workers in this area. That is absolutely not
13	true, by worker testimony and the fact that
14	this foundry pathway that had heavy traffic
15	all day long, was a few feet away from the
16	wall of that radiography facility.
17	John Ramspott asked me to put in
18	this slide and I think it's something he
19	noticed and I think it's very important. This
20	is a picture, basically, recently taken of the
21	Building 6 facility as it appears today.
22	But the thing that's constant from

1	the old days is this crane, which you can see
2	here, which stretches all across this end of
3	the building.
4	The radiographic facility that we
5	are talking about was over here on the right,
6	you know, it was a roofless structure concrete
7	blocks. It was here. The cab of the crane is
8	here, the gondola where the operator sat, and
9	there's a big hook which picked up the
10	castings you can see here, that's been
11	retracted out of the way.
12	So this hook would have to travel
13	and the crane would have to travel and pick up
14	a casting and bring it back, and then bring it
15	over here and drop it down into the
16	radiographic facility to be X-ray imaged.
17	John's point was that, in David
18	Allen's modeling of the cobalt-60 source with
19	MCNPx in the old betatron building now
20	stick with me, because there is a connection -
21	- he found that in general, the modeling with
22	the 60 and the computer modeling agree very

1	well with the actual data as measured by the
2	1971 survey workers.
3	But there was one big discrepancy
4	and that was that the computer model showed
5	1.8 millirems per hour at one point, whereas
6	the real data at that same point in the new
7	betatron building showed 0.2 millirems per
8	hour.
9	And David postulated that perhaps
10	there was some something like a door motor
11	that was interfering, that the computer model
12	hadn't seen, but that the real data had seen,
13	and that accounted for this very dramatic,
14	nine-fold, significant difference.
15	So John Ramspott was thinking
16	about all of this and he said, well, if you
17	think about the geometry of this 6 Building
18	where 'identifying information redacted' made
19	his radiographic survey, here we have a source
20	here, two cobalt-60 small sources, and we are
21	trying to calculate the dose to this guy.
22	Below this, there was a reading there, but

1	there are also doses calculated up on this
2	catwalk which is above this massive steel
3	structure, and John reasoned, and I think it's
4	quite reasonable, that this source would have
5	to go through and around this big, massive
6	steel structure before it could ever get up to
7	the catwalk to be measured.
8	So to us it means that the '
9	identifying information redacted' data, you
10	know, real data, measured data, cannot be
11	taken literally without taking this kind of
12	thing into consideration, and that brings us
13	to the really key part of this slide, which is
14	a question.
15	And that question is, and I would
16	love for Dave Allen to answer it, actually now
17	would be a good time. Instead of modeling the
18	new betatron building with a cobalt source as
19	a way to validate the fact that MCNPx was
20	giving you good, valid data, we do have even
21	better radiation survey data from '
22	identifying information redacted', you know,

1	Ph.D., Certified Health Physicist who was
2	heavily involved in obtaining and helping GSI
3	obtain their AEC cobalt license. Why did
4	NIOSH not choose to model the Building 6
5	radiography site and to use that data, that
6	real data to compare with the MCNPx model?
7	So I'm just wondering, David, did
8	you all think about doing that?
9	MR. ALLEN: We used the 1971 new
10	betatron survey to validate the MCNP model of
11	the building. We then used that model to
12	estimate dose.
13	For this we used dose rates
14	measured at the site. We didn't have to use
15	the MCNP models. There wasn't anything to
16	validate.
17	DR. McKEEL: Yes, but you know
18	okay. This is information and I don't want to
19	argue about it, but it seems to me that, you
20	know, you had real data for the old for the
21	new betatron building too, from the survey.
22	So if you used the same reasoning

1	for both, why basically you needed you
2	felt like you needed to model the new betatron
3	data, right?
4	MR. ALLEN: We had modeled the new
5	betatron building because we didn't have a
6	radiation survey with the betatron.
7	DR. McKEEL: And you still don't.
8	MR. ALLEN: Right.
9	DR. McKEEL: Okay.
10	MR. ALLEN: But here, we didn't
11	model the Building 6 radiography room because
12	we had dose rates with the cobalt-60 source
13	exposed.
14	DR. McKEEL: Okay. All right.
15	CHAIRMAN ZIEMER: So you did use
16	the 'identifying information redacted' data?
17	MR. ALLEN: Yes.
18	DR. McKEEL: Yes, and now it's a
19	really crucial slide that I want to show you
20	about the 1962 building, was this. Everybody
21	referred to later drawings, but John Ramspott
22	again discovered this drawing in another NRC

1	FOIA, 2010-12 document.
2	And that was and the key thing
3	here is this is a radiography facility, it
4	still shows it shows some added lead I'm
5	sorry steel plates, four by four by four
6	by four feet, by six-inch thick steel plate,
7	one by four by two-inch steel plate, welded on
8	top.
9	And it points to this shield here
10	and then there's another shield here on the
11	opposite side of the radiographic facility,
12	it's four by four-foot by six-inch steel
13	plate.
14	And then it also shows that the
15	walls of this are 24 inch, concrete block wall
16	and the idea is that those are two new
17	findings, added shielding.
18	But here's the thing that's
19	interesting that's not on the drawing shown in
20	the SC&A and the NIOSH reports. This drawing
21	has this annotation, shows additional

shielding added during June/July 1962, not

Т	drawn to scare, and D. Darr, D-A-R-R, and it s
2	signed 8-15-1962.
3	So we looked at the timeline for
4	all of this and this was about the time the '
5	identifying information redacted' survey
6	report, the letter from ' identifying
7	information redacted', Nuclear Consultants
8	Corporation, to GSI, to insert in their
9	license application. That letter is dated
10	August the 1^{st} , 1962. So that was actually
11	after these changes had been done.
12	So what our point is, is that
13	prior to June and July of 1962, this shielding
14	was not there and the walls the men still
15	dispute the fact that the walls were ever
16	enlarged to be 24 inches thick.
17	Most of them say that it was a
18	single concrete block thick. But in any case,
19	before 1962, the lead shields were not in
20	place, the walls were certainly one block and
21	not two blocks thick, and so for all the
22	radium-226 modeling, 1962 back to 1953, you

1	have to use a different set of conditions, and
2	we don't believe that that has yet been done,
3	so that's a very important thing for future
4	work, I would say.
5	Okay. I want to show you quickly
6	the point I was continuing to make about the
7	radiographic room in Building 6. This is a
8	photograph that we got of the area between the
9	new betatron building here, which you can see
10	at the top. The 10 Building is in the
11	background, and there's the walkway between
12	those, that tunnel, was, you know, 30 or 50
13	feet at the most. It was very close to that.
14	There's a lot of stuff in the
15	middle outside of this facility. These are
16	molding casks, there were railroad tracks as I
17	will show you, and there was a road that
18	passed one of them for 30 feet of this new
19	betatron building, that was heavily
20	trafficked.
21	And inside the radiograph room,
22	there were these walkways here's one and

1	here's another one on either side of the
2	radiograph room, and they were actually very
3	close to the radiograph building.
4	So the whole point of this slide
5	is there were a lot of non-badged people on
6	the outside that were exposed to radiation
7	both from the betatrons and on the inside,
8	from the radiograph room, who really haven't
9	been accounted for in the dose reconstruction
10	models so far.
11	This is from John's new giant map
12	that he got, so this is a 1957 January
13	drawing, and we are looking now at the space
14	between the new betatron building, which is
15	yet to be built in `57, but was indicated on
16	this old map as new betatron building, right
17	here, you know, with nothing drawn in, this is
18	my addition.
19	And then the old betatron building
20	is drawn in and you can see the two cranes
21	modeled, and the tunnel and the railroad track
22	running straight into the tunnel.

1	So in between that, there are two
2	features I want to focus on. There are all
3	these railroad tracks, and you saw a lot of
4	paraphernalia, there were cars parked in here
5	right next to 10 Building.
6	But also, there's this main road
7	which goes up here and here and here, comes
8	very close to the new betatron building, and
9	I'm assured by the workers that this was a
10	road that almost everybody in the factory used
11	on a daily basis. So there was a lot of
12	traffic past the new betatron building.
13	The distance between these two
14	facilities, 300 feet. There's a sign that we
15	photographed in 2006 on the old betatron
16	building, and the sign says, do not approach
17	this building within 100 feet.
18	And so at least then, they thought
19	there were radiation fields that extended out
20	that far, and so if you draw in your mind's
21	eye I didn't have the time to do this
22	but if you drew a radius of 100 feet around

1	these facilities here and here, maybe there
2	would be an area of non-overlap of about 100
3	feet, but there are a lot of people included
4	in that field, the people on this road, and
5	the people in between the railroad workers and
6	so forth.
7	So I would just a point of this
8	slide is, I don't believe the non-badged
9	people's dose has been modeled along the
10	outside of the building complex.
11	Now I want to get to the control
12	room badges. I think we just about laid that
13	to rest this morning. NIOSH and SC&A state
14	that Landauer GSI film badge reports include
15	data on 114, variously reported as controller
16	or control room badges. David Allen uses the
17	room badges terminology.
18	But the key point is that David
19	Allen uses those control badges to limit doses
20	to the GSI betatron workers. Two GSI badge
21	handlers refute the fact that those control
22	badges ever listed, and I'll show you an

5	This is the testimony from one of
6	those two clerks. I said, this affidavit was
7	recently obtained from the first clerk who
8	handled GSI film badges on startup of the new
9	betatron operation in 1964. It is clear that
10	not only the betatron operators and isotope
11	workers were badged. And here's what this man
12	said. Quote, all betatron employees wore
13	badges, operators, supervisors, film readers,
14	photographers, darkroom employees, clerks, et
15	cetera. I recall there were a few extra blank
16	badges for visitors. This was rare that they
17	were used. The film badges were exchanged
18	every Monday morning. There was never a
19	control room badge that was not worn by a
20	person.
21	And this is a drawing supplied by
22	John Terry Dutko of the new betatron facility
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

affidavit from one of those to that effect,

and also we have new information about where

those film badges were stored in the new

1

2

3

4

betatron building.

1	and he has annotated this in red now to show
2	the two locations where, during 1964-66, when
3	he worked there, the film badges were racked.
4	Here for here again, here's the
5	railroad track, here's the shooting room, the
6	big thick walls, there's the tunnel going down
7	that way to the break area, which adjoins
8	Building 10.
9	This drawing has a wall on the
10	break area. On this thing, Terry said that
11	when he was there, there was no wall there.
12	But the badge locations were first in this
13	area, which was actually the control room,
14	where the console was. The console control
15	room is here.
16	Everybody agrees there were never
17	any control badges left in this room. So the
18	first site was over here where the badges
19	were, then they were moved at some time where,
20	when he was there, this was called an office
21	and they were moved from the office over here
22	on this wall, which is, you know, just below

1	the second floor wall. There was a darkroom
2	over here.
3	So the badges got moved even
4	farther away from the control room, so
5	whatever they picked up in the way of
6	radiation, it certainly was at this point
7	was not as great as you would expect them to
8	pick up, maybe, in the control room. In any
9	case, they weren't in the control room.
LO	MR. DELL: They were not in the
11	control room.
L2	DR. McKEEL: And I think Mr. Dell
L3	just echoed they were not in the control room
L4	and now we know that.
L5	CHAIRMAN ZIEMER: Just for
L6	clarification, on the second position, that
L7	rack position
L8	DR. McKEEL: Yes, sir.
L9	CHAIRMAN ZIEMER: Is that a
20	different office or is it a corridor?
21	MR. RAMSPOTT: It's a hallway.
22	CHAIRMAN ZIEMER: It's a hallway.

DR.	McKEEL:	It's a	a hallway	I
-----	---------	--------	-----------	---

- think it's a hallway on the wall, hallway of
- 3 the wall --
- 4 MR. DELL: Where my office was,
- down at the end of that hallway, and I didn't
- 6 have an office, I only had a desk, there was
- 7 no wall.
- 8 CHAIRMAN ZIEMER: Gotcha.
- 9 DR. McKEEL: Okay. All right.
- 10 And then, moving on, so for the badges, here's
- 11 our concern. A new affidavit attests that GSI
- 12 badge handlers sometimes destroyed film badges
- they believed to be spurious and the person
- 14 who provided this affidavit believes this fact
- 15 casts doubt on the validity of the entire GSI
- 16 film badge program, and we have further doubts
- 17 about its validity because radiographers wore
- 18 badges only part-time, and we think, we are
- 19 not sure, but GSI may have submitted control
- 20 room badges that certainly were -- the
- 21 existence of which was not known by any of the
- 22 workers or the badge handlers.

1	Now that doesn't mean they didn't
2	really exist. It just means that nobody knew
3	about them except the person who supplied them
4	and we don't know how they got to Landauer and
5	we really don't know what they mean.
6	CHAIRMAN ZIEMER: A quick question
7	on that, Dan. The one affidavit you talked
8	about earlier, about the one person that
9	handled it, indicated he was the only sort of
10	middle man. He sent this stuff to Landauer and
11	later there may have been others, we don't
12	really know that exactly.
13	DR. McKEEL: No, he actually
14	that's part of a longer statement he made and
15	he spelled out exactly who they were there.
16	CHAIRMAN ZIEMER: I was trying to,
17	trying to reconcile that with who is it that
18	believes they were spurious and how would they
19	know they were spurious, because the film
20	badges would not have been read out. What
21	would be the basis for saying
22	DR. McKEEL: Oh, well

1	CHAIRMAN ZIEMER: You know what
2	I'm asking?
3	DR. McKEEL: Yes.
4	CHAIRMAN ZIEMER: In other words -
5	_
6	DR. McKEEL: So this, in let me
7	see now.
8	CHAIRMAN ZIEMER: Or you can
9	answer it later but
10	DR. McKEEL: No, I'll answer it
11	right now.
12	CHAIRMAN ZIEMER: But you don't
13	know a priori if a reading is high or low.
14	DR. McKEEL: Well, here's what
15	they said.
16	CHAIRMAN ZIEMER: Yes.
17	DR. McKEEL: So, this particular
18	individual said he collected the badges, he
19	sent the badges out and he saw the reports
20	when they came in.
21	He said when they came in he
22	screened them, and he looked at the reports

Т	Tooking for high values. And he said he had -
2	- he was aware that some of the badges looked
3	black when he sent them in, okay? Or dark.
4	Anyway when he got them back
5	MR. DELL: He could not have
6	known, they did not look black. How could he
7	look through the cover on the
8	CHAIRMAN ZIEMER: He could not
9	have opened them or they wouldn't be usable.
10	MR. DELL: If he opened them, they
11	would be useless. That's a bunch of bull
12	MR. KATZ: Mr. Dell, one at a
13	time, just I'm sorry, go ahead Mr. Dell if
14	you want, but we just had people talking over
15	each other.
16	MR. DELL: I said there is no way
17	that he could look at them and tell they were
18	black. If he did, then he exposed the film and
19	it wasn't any good anyway.
20	MR. KATZ: Thank you Mr. Dell.
21	CHAIRMAN ZIEMER: Right, exactly
22	my point.

1	DR. McKEEL: My point is that I'm
2	not taking sides here. I'm reporting the
3	facts. This is what the man testified, and he
4	was he was a direct badge handler.
5	CHAIRMAN ZIEMER: Right.
6	DR. McKEEL: So I don't know what
7	to I my own personal I'm just I'm
8	reporting, I'm reporting the facts.
9	CHAIRMAN ZIEMER: And they are in
10	packets so they have to
11	DR. McKEEL: Well, he went on to
12	say that he believed that actually he
13	believed that actually he, he actually goes
14	on to say that occasionally he would find a
15	high badge reading and he would report it to
16	one of his supervisors, and he said he felt
17	like those high badge readings were discussed
18	with employees, but he didn't he didn't say
19	he knew they were. He just felt they were.
20	CHAIRMAN ZIEMER: But the
21	destroying of the film badges was the one I
22	was trying to get a feel for. Who would have

1	done that and how would they know what to
2	destroy, because you don't know until it goes
3	to Landauer whether it's a high reading.
4	DR. McKEEL: Well, let's put it
5	this way. This person who made this statement
6	said he had personal knowledge, he knows they
7	were destroyed.
8	MR. DELL: Well, he's wrong.
9	CHAIRMAN ZIEMER: What would be
10	the basis, is what I'm saying. How would they
11	know
12	DR. McKEEL: Well, there's,
13	there's a possibility, Paul.
14	CHAIRMAN ZIEMER: Okay.
15	DR. McKEEL: You know

DR. McKEEL: The people that we're reporting from are alive. Actually anybody

CHAIRMAN ZIEMER: Well --

- 19 can probably try to talk to them. So you all
- 20 may want to do that, and answer it for
- 21 yourself.

16

I don't know the answer to all of

those. I was convinced
MR. DUTKO: Dr. Ziemer? Dr.
Ziemer?
CHAIRMAN ZIEMER: Yes.
MR. DUTKO: May I comment on that,
please?
CHAIRMAN ZIEMER: Sure.
MR. DUTKO: I was the person that
reported that I overheard the individuals that
handled the film badges, one of these
individuals said directly to me, and I was
sitting right next to him, that exposed film
that was questionable was discarded.
Now I assume that he was ordered
by the company to do this. But I heard
statements twice by the same individual that
handled film badges.
Now, that immediately set me to
question the integrity of the film badge
system, and we heard rumors 50 years ago that
this was being done, but we could never prove

it.

1	I did not want to name this
2	individual by any means, but I swear this
3	conversation took place and this is exactly
4	what I heard.
5	CHAIRMAN ZIEMER: Okay, thank you.
6	MR. ALLEN: Just one real quick.
7	At one point in there, Dr. McKeel, and I don't
8	know if it was accidental, what I think you
9	said, badges were processed and then the
10	reports were screened, and destroyed or, you
11	know
12	DR. McKEEL: No, no, no, I'm
13	sorry.
14	MR. ALLEN: Okay.
15	DR. McKEEL: They are kind of two
16	separate statements.
17	MR. ALLEN: Okay.
18	DR. McKEEL: The first statement
19	was, oh, and by the way his complete interview
20	that was reported, all of this was described
21	in much greater detail in my two submissions
22	that I made to the Board.

1	So that's all described in detail,
2	the complete quote.
3	No, what what this gentleman
4	said was he collected the badges, he mailed
5	them off every Monday, he substituted the new
6	badges which he had received from Landauer and
7	distributed those. Then he took, I guess, the
8	badges off the rack, sent them in to Landauer,
9	then Landauer sent him back him back the
10	reports and that he said if he saw a report
11	MR. DELL: Wrong.
12	DR. McKEEL: Okay, Ted
13	MR. KATZ: Mr. Dell, please let
14	Dr. McKeel finish his statement
15	DR. McKEEL: I don't want to be
16	interrupted because I am reporting what I
17	am trying to answer the question. Mr. Dell
18	may think it's wrong, but the person telling
19	the story was not Mr. Dell.
20	So, in any case, so, the reports
21	would come back to this person and he would
22	look at them and said if there was a high

1	reading, he would inform the worker involved
2	about that, but he also said he informed he
3	talked to a supervisor on several occasions to
4	let him know.
5	Now, he didn't go into any detail
6	how often this happened or any of those kind
7	of things, and you know, that's just I
8	didn't talk to him for hours or anything. But
9	he's a knowledgeable person who could give
10	more information, so I'm not sure he will, I'm
11	not committing him to that. I'm just telling
12	you or I'm trying to tell you what happened.
13	Okay. So and I don't know
14	about the you know, I don't know exactly
15	any of the details about the destruction of
16	the badges, exactly who did it, that stuff.
17	But the summary statement I'd like
18	to make is that from one of the reports, I'm
19	not sure whether it's Appendix BB or the SEC
20	Evaluation Report, there is a section that
21	says it refers to the pedigree of General
22	Steel data.

1	And the factors in the pedigree
2	analysis, which I know is done at many sites,
3	are data quality, credibility, reliability,
4	representativeness and sufficiency.
5	In one of my reports, the critique
6	thereof, I wrote back the following. This was
7	my take on whether the pedigree of the General
8	Steel data, based on film badge information,
9	whether that met those criteria.
10	And I would just say this, NIOSH
11	Landauer GSI film badge data 1964-66 are not
12	quality data as the measurements are confined
13	to periods that betatron workers, who are only
14	three percent of the total workforce, spent in
15	the betatron facilities.
16	It's not credible because, despite
17	what this gentleman said, there's very little
18	other testimony from GSI workers that they
19	were ever told or talked to about their
20	supervisors, about high readings on the
21	badges.
22	In fact, almost all of the

1	testimony from the workers is that they never
2	got any feedback, and in a specific case or
3	too, if there was a high reading, one
4	individual, who chose not to have his name
5	used, said that he definitely was not informed
6	of his high badge reading. He had a 7 rem
7	dose.
8	Anyway, the workers in general
9	testified that they didn't trust their
10	supervisors or management about the badge
11	readings.
12	I thought that the badge readings
13	were not reliable and there were really no
14	evaluations of that I mean, nobody has
15	really looked at that. I don't really know
16	how to establish that, to be honest with you.
17	They certainly, the data were not
18	representative. There were 89 of 3,000
19	workers out of a single job class, all men,
20	1964-66, which was only the last three years
21	of a 13-year covered period.
22	So and that was the only class

1	of people that were monitored with the film
2	badges. So I didn't think these film badge
3	data met any of the criteria for a good
4	pedigree for any site.
5	Now, this is the data that I want
6	to close on, and I'd like to apologize for
7	this slide before I begin, because it may not
8	be entirely accurate. It was the best I could
9	do, late at night, trying to skip through
10	reports.
11	And I would say that in my
12	defense, it may not be perfect, but it is a
13	good first try at a slide that I think should
14	have been in both the SC&A and the NIOSH
15	reports, these last two papers that we are
16	considering today.
17	So what I tried to do was to
18	reconstruct this. We had certain data from
19	2007, actually, and 2008, from Appendix B, and
20	from the SEC Evaluation Report and the SC&A
21	reviews. And the so what I'm trying to do
22	is in this upper table. I say, computer-

1 modeled annual photon dose during G	SI covered
2 period, 1953-1966, in rems per year.	
3 So I was trying to con	mpare what
4 the model showed 2008 to seven, v	ersus four
5 years later, for betatron workers	s in this
6 upper panel. And basically what y	ou can see
7 is that 2008, the rates, according	ing in
8 Appendix B that NIOSH found were on	ne, 6.3 and
9 it varied by year as Dave Allen has	explained,
10 because there were different uran	nium loads
through time, the peak year being i	n 1962 and
then it declined in the later years.	
And so that the the	e betatron
operators got a variable dose depend	ling on the
time within the covered period.	
They found the sa	me thing
basically in 2012 but the numbers	were lower
by an order of 5 to 10 times. So	0.2 versus
1.0 earlier, 0.62 versus 6.3 ear	lier, much
lower dose in 2012, part of which ex	kplains, is
by modeling using the double-leaf	lead door,
which I hope you saw was an incorr	ect way to

1	model	

2	But what about SC&A's modeling
3	then and now? Well, Mr. Dutko pointed this
4	fact out to me 2008, SC&A modeled with same
5	code, MCNPx, said the dose to the betatron
6	workers for the early years was 12.4 rems, and
7	rose to 13.6 rems in the later years, and now
8	we're down, in 2012, to 1.35 or about 10
9	percent of that level, and to say that some of
10	the workers are upset by that would be
11	understating the situation.
12	Now this lower panel is basically
13	the same thing for the other workers, and I've
14	got that titled 2007, 2008 because for others
15	and I don't use layout person, which is a
16	term used this year, because they weren't
17	classified as truly it's really the non-
18	badged, non-betatron workers in the early
19	years versus the late.
20	And what you can see here is an
21	even more startling discrepancy in the model
22	result. So here we have NIOSH's estimate

1	based on Appendix BB, of 1.73. That was the
2	dose assigned, rems per year, assigned to the
3	non-betatron, unbadged worker, 1.73.
4	Now we come up in this time
5	period, you know, and the range actually
6	overlaps this. So it's not too bad, pretty
7	close, 1.02 to 2.03.
8	But if you want to be truly
9	confused, then you will read farther in this
LO	second report, the SEC Evaluation Report,
11	where they divide the non-betatron, unbadged
L2	workers into three groups and they give a
L3	number for only one of the three groups and
L4	that number is 0.417 rem.
L5	So really, in those two reports,
L6	NIOSH has a different evaluation for other
L7	workers.
L8	SC&A for other workers in this
L9	early period of time basically said that they
20	agreed that the betatron doses bounded
21	everything else. And the way they put it was
22	that the betatron doses bounded the layout men

1	and the cobalt-60 operators, which in turn
2	bounded the chainmen and the chainmen in turn
3	bounded all the other workers.
4	So they didn't actually come up
5	with any actual values for this large set for
6	the GSI workforce, and that's why there's no
7	number.
8	However, please focus on this
9	number. For the layout numbers now, and I
10	want you to know that the technical
11	difference between this and this, so NIOSH
12	2012 for the layout workers, one to two rems
13	per year, SC&A 9.2 rems per year.
14	So this is a four and a half to
15	nine-fold difference, depending on which of
16	these ranges you use. Was there a difference
17	here? Yes, there was.
18	Here David Allen accepted that the
19	tunnel units from the new betatron were
20	bounded by a double-leaf steel, lead-lined
21	door. That's his model.

Dr. Anigstein looked at it and he

1	said he didn't believe that point was proved
2	and he said, being claimant-favorable, and
3	weighting the evidence the way he saw it, you
4	should discard the idea that the double-leaf,
5	lead-shielded door was there, and he came up
6	with this number.
7	So that brings me to the
8	conclusion and the last slide, but again I
9	want to focus on the two really big changes in
10	this slide, and that's the SC&A estimate of
11	the dose the betatron workers in 2008, 12.4 to
12	13.6, 2012 1.35, a precipitous decline in the
13	dose, and probably they're worse, since they
14	were basically agreeing in 2007 and `08 with
15	NIOSH, which lists the dose to the other
16	workers as 1.73 rem, now that's skyrocketed up
17	to 9.2 rems.
18	So I would like to offer the final
19	closing slide. That's the way this is the
20	way I see it. The way I see it is that NIOSH
21	and SC&A MCNPx was used in both and both of
22	their models disagree with each other and the

1	film badge data, and are both based on, I said
2	many why don't you take out the many and
3	just say erroneous assumptions that need to be
4	corrected and the models need to be corrected.
5	Second point is that compared to
6	2007 and `08 model data, SC&A betatron
7	operator dose show a 90 percent decrease while
8	layout doses sharply increased compared to all
9	NIOSH estimates from the non-betatron workers.
LO	So that's a discrepancy just within the SC&A
L1	modeling data in two time periods.
L2	We can't resolve this today. I
L3	don't think we can resolve it in two weeks. I
L4	don't think that's going to be enough time to
L5	redo those models, reissue those papers and
L6	come out with a better table than I just
L7	showed you. I don't think that's possible.
L8	So what I'm saying is and I
L9	said it all along I think we are at the
20	point I, when I wrote this when I wrote
21	this slide, I knew we were going into a second
22	meeting, but the truth is, whether it was one

1	meeting or not, I think it's time for this
2	Work Group to say that NIOSH and SC&A, taking
3	into full cognizance everything that Paul
4	Ziemer said, everything that Wanda Munn said,
5	everything that Dave Allen said, everything
6	that Dr. Anigstein said, that SC&A and NIOSH
7	cannot come to a model that fixes a dose
8	that's stationary. They go up, they go down,
9	they're wildly discrepant from each other, and
10	it's time to say that this site, that has no
11	bioassay data and no badge data except for
12	three years on only three percent of the
13	workforce, and even the GSI betatron film
14	badge data is diluted by the fact that only a
15	portion of those folks that have badges
16	actually were betatron isotope operators. The
17	rest of them were people that were
18	photographers et cetera. I think it's time
19	for this Board to pass on this SEC to the full
20	Board, which is going to take another weeks or
21	months or longer, and get on with a final SEC
22	position on this site.

1	And I do really thank you. I'll
2	send make sure everybody gets a copy of
3	this.
4	CHAIRMAN ZIEMER: Okay, thanks,
5	Dan. Let's see if we have other questions.
6	We've asked some of them as we went.
7	MEMBER BEACH: I have just a real
8	quick question. Building 9 was mentioned and
9	I know I was looking at that earlier.
10	DR. McKEEL: Yes.
11	MEMBER BEACH: Where is Building
12	9? It was never
13	DR. McKEEL: Let's see.
14	MR. RAMSPOTT: Building 9 is the
15	immediately next to 10.
16	MEMBER BEACH: Is it right close
17	to 10?

- 18 MR. RAMSPOTT: And the train
- 19 tracks went into 9 and 10, so castings from
- the betatron, from -- actually came in down 9
- and the rest of the plant, and across 10.
- 22 MEMBER BEACH: And then what

1	percentage was 10 or 9 used? Do you know,
2	Dan?
3	MR. RAMSPOTT: Oh, the building?
4	MEMBER BEACH: Yes.
5	MR. RAMSPOTT: Oh, totally?
6	MEMBER BEACH: All the time?
7	MR. RAMSPOTT: Oh, absolutely.
8	MEMBER BEACH: Okay.
9	MR. RAMSPOTT: Yes. Actually, 8,
10	9, 10 are connected together. No walls.
11	MEMBER BEACH: Okay.
12	DR. McKEEL: Josie, on this
13	diagram, on the big
14	MR. DELL: It's all one big
15	building.
16	DR. McKEEL: This is the this
17	is the 10 Building right here, running
18	horizontally along here. Here's where the
19	railroad tracks in 1957 were approaching where
20	the new betatron building would be, and then
21	in 1963, when it was actually built, they sent
22	it up here.

1	Here's 9 Building right up so
2	they're a really skinny fit with very long
3	MEMBER BEACH: Thank you.
4	DR. McKEEL: And these buildings
5	were wide open. They're columns. There's no
6	wall. So it's really like
7	MR. DELL: Like a big building.
8	CHAIRMAN ZIEMER: Okay, other
9	questions? Okay. Thank you, Dan.
LO	DR. McKEEL: Thank you.
11	CHAIRMAN ZIEMER: And I think we
L2	have a pretty good grasp of your points, I
L3	told you I am still digesting and I am seeing
L4	some of them for the first time today. The
L5	Chair is not ready to do the
L6	DR. McKEEL: I understand.
L7	CHAIRMAN ZIEMER: the third
L8	point that
L9	DR. McKEEL: I understand.
20	CHAIRMAN ZIEMER: But you know,
21	whether we have agreement or disagreement in
22	two weeks, we are going to have to do

1	something and I understand that. We're at a
2	point where I think we have gathered about all
3	the gathering we can do and we have to
4	DR. McKEEL: I think this was a
5	great time to do that.
6	CHAIRMAN ZIEMER: We have to sift
7	through it.
8	DR. McKEEL: I'm probably not
9	going to be able to come in person to the next
LO	meeting, but I sure will
L1	CHAIRMAN ZIEMER: Unless we meet
L2	in St. Louis or down in southern Missouri.
L3	DR. McKEEL: Come to Van Buren
L4	MR. CHUROVICH: May I make a
L5	comment?
L6	CHAIRMAN ZIEMER: Comment?
L7	MR. CHUROVICH: Yes.
L8	CHAIRMAN ZIEMER: Go ahead.
L9	MR. CHUROVICH: First of all
20	MR. KATZ: Sorry, we couldn't
21	hear. Who is this speaking?
22	MR. CHUROVICH: Dan Churovich. I

1	was a timekeeper and clerk in 10 Building.
2	MR. KATZ: Thank you.
3	MR. CHUROVICH: Back in `52 or `51
4	to `61.
5	MR. KATZ: Thank you.
6	MR. CHUROVICH: And what I have to
7	say is that why so few why is there so
8	few badges and why, the ones that they do
9	have, all of them show everything was
10	hunky-dory and some workers, like foremen and
11	like timekeepers like myself, et cetera, was
12	not given any kind of consideration that they
13	could be harmed by the radiation when the I
14	can attest to the fact that the old betatron
15	had that ribbon door they talked about,
16	because it just rolled up on a spool. I knew
17	you couldn't put lead plating in that.
18	And also, no one knew that this
19	was going on at the time. It was a secret
20	from us. We were literally not told that they
21	had any uranium around that place. They
22	brought it in and secretly, even I

1	understand the operators in the betatron
2	didn't know what they were X-raying. Why was
3	everything so secret and why is it now that
4	everything was tried to confuse this issue so
5	that we a lot of people were turned down
6	because they didn't work at the place, and
7	that's just terrible. That's all.
8	CHAIRMAN ZIEMER: Okay. We hear
9	your comment. I wonder if we should take a
10	ten-minute break and then we'll hear from Bob.
11	A quick, ten-minute break, comfort break, and
12	then we'll have an hour, Bob, to hear from you
13	and then we're going to go home. Okay?
14	(Whereupon, the above-entitled matter went off
15	the record at 1:45 p.m. and
16	resumed at 1:56 p.m.)
17	MR. KATZ: We're back on the line
18	and we're going to have a presentation by Dr.
19	Anigstein now.
20	CHAIRMAN ZIEMER: Okay, so this is
21	the SC&A review of the NIOSH White Paper. So
22	you're that report was distributed over the

1	weekend. I think all the Work Group Members
2	and petitioners have copies.
3	And Bob has got a PowerPoint
4	presentation here for us. And Bob, do you
5	want us to ask things as we go along or do you
6	want to go ahead through it first?
7	DR. ANIGSTEIN: Well
8	(Laughter.)
9	CHAIRMAN ZIEMER: Not that we'll
LO	pay attention to what you'd like but
L1	DR. ANIGSTEIN: I mean it's a
L2	question of if I am going to get to finish.
L3	CHAIRMAN ZIEMER: Well, okay.
L4	DR. ANIGSTEIN: Questions, yes,
L5	comments comments, no. How is that?
L6	CHAIRMAN ZIEMER: Okay. If
L7	something needs to be clarified, we can ask.
L8	DR. ANIGSTEIN: Yes, by all means
L9	ask questions.
20	CHAIRMAN ZIEMER: Okay. Do we
21	have we don't have the PowerPoint?
22	DR. ANIGSTEIN: Pardon?

1	CHAIRMAN ZIEMER: Do we have the
2	PowerPoint?
3	DR. ANIGSTEIN: It's not a
4	PowerPoint. No, I didn't distribute it.
5	CHAIRMAN ZIEMER: I didn't think
6	you did.
7	Go ahead, Bob.
8	DR. ANIGSTEIN: Okay. All right,
9	so I'm going to do a quick the nature of
LO	the presentation has changed considerably
11	throughout the course of the meeting but I'm
L2	just going through the slides quickly.
L3	I'm just going to give a history -
L4	_
L5	CHAIRMAN ZIEMER: Be sure to speak
L6	up there, Bob.
L7	DR. ANIGSTEIN: A quick history of
L8	the document review. I'll give you a quick
L9	history of this. Okay, the first report came
20	out June $25^{\rm th}$, 2007 , which was the Appendix BB
21	that's been talked about frequently.
22	Then we were tasked with reviewing

1	this and we produced our review March $17^{\rm th}$,
2	2008, was the first version that came out.
3	There have been numerous White Papers and
4	memos and responses to White Papers, SC&A
5	White Papers in between.
6	These are the ones that deal with
7	the data transfer. That's why I highlighted
8	these, and then of course, the paper, the
9	report that you just heard Dave Allen talking
10	about came out in January and then our
11	response on March 12.
12	Just for those who are not too
13	familiar, which I guess is almost everybody is
14	familiar with, this is the aerial photo of the
15	Granite City facility while it was in
16	operation, and from there to there is enlarged
17	to give you an idea of the orientation. This
18	is the new betatron and you can see it goes
19	right into the 10 Building, the 10 Building
20	here. The old betatron is considerably

further away and this is just a Google Earth

picture of the new betatron.

21

1	And this is the typical this is
2	a photograph, which was furnished by John
3	Ramspott, passed on by John Ramspott, it was
4	furnished by one of the workers.
5	And we just used this as a model
6	simply because the light was better here. We
7	had information on this, we might as well use
8	it.
9	And we in our model, we just
10	shot we did he one shot at the casting, we
11	had the betatron going directly at this hollow
12	axle. That is the betatron here, there's the
13	magnets and the beam goes the doughnut is
14	there so the beam goes out like this.
15	And all right so the source of the
16	exposure from the betatron, can be stray
17	radiation during the operation of the
18	betatron, either photons or neutrons for the
19	betatron target has sufficiently the
20	electrons kind of hitting it at 25 MeV as well
21	as the photons from bremsstrahlung.
22	Then you may have, question mark,

1	residual activation we talked about in the
2	betatron apparatus, and then there is the
3	delayed radiation from photoactivated metals,
4	so that if you approach the metal, be it
5	uranium or steel, after the beam is off,
6	you're still going to have for a while it's
7	going to have some radiation coming out.
8	Then you have the skin, exposure
9	of the skin, first of all just from handling
10	uranium you get a beta dose, photoactivated
11	uranium isotopes, which turn out to contribute
12	very little actually, and then the activated
13	steel.
14	This is the overview of SC&A
15	activities during these last two months, what
16	we did since seeing the Dave Allen paper in
17	the middle of January.
18	We revised the MCNPx model of the
19	new betatron. We had actually constructed a
20	model of the new building and of the old
21	betatron building back in 2008.
22	We had where we were working

1	I'm going to do a lot of skipping, back and
2	forth. We were working with this initial
3	this was the only information that we had back
4	when we started in 2008, this and other
5	drawings, but they were all basically the
6	same, of the new betatron building from the
7	FUSRAP the Formerly Utilized Sites
8	radiation and so this was done starting
9	from 1989 to about 1991.
10	So the building probably had been
11	modified, I think these walls at least, the
12	walls had been opened, I mean, unless you
13	think that they were completely inaccurate,
14	which is not likely.
15	But this is all we had to work
16	with, so then subsequently, we got a much
17	better picture from the AEC licensing records,
18	and first of all, here they were the
19	whoever was making these things was very
20	interested in the details of this, while
21	people doing the FUSRAP were just giving a
22	drawing so they could show here's where we

1	sampl	Led	for	uranium	•

2 So they didn't have а great 3 interest in getting every detail right. So this is the first -- going back to what we 4 did. So we revised the model, comparing it to 5 earlier 6 the survey report, actually in information like from `68, we revised -- we 7 ran the model and revised the photon and 8 neutron dose rates for the betatron in the 9 10 control room and in the Number 2 Building. These were the only -- this -- they had 11 12 earlier done it in many locations, and these 13 were the two that we focused on because they 14 were significant at this point. 15 revised the neutron doses to 16 the betatron operators. The reason we focused on the neutron doses rather than the photon 17 dose is we had for the film badges. 18 19 really were only interested in using the model 20 for the neutron doses, and then the dose of

the layout man, because he was not badged,

even though he might have -- the layout man

21

1	may have actually been a betatron operator who
2	rotated jobs, while he was working as a layout
3	man, he was not wearing a badge.
4	We then we also revised our
5	initial MCNPx analysis of photoactivation of
6	uranium and steel, not because information
7	changed, but because the MCNPx codes changed
8	considerably over these three years.
9	Back in 2007 was when they first -
10	- there was an MCNPx of 2.5 or 25 as they call
11	it internally. We did not have the ability to
12	do this photoactivation.
13	But they introduced it somewhat
14	around that time, early 2007 I think, and we
15	ended up using version 26E. They are now up
16	to 27E and there's been a lot of refinement in
17	those calculations there.
18	And this one the earlier one
19	was only available to beta testers, now this
20	one is on the RSICC, you can get it directly
21	from RSICC. So anyone qualified can buy it.
22	So we calculated a new beta doses

1	for the skin. The photon doses were
2	unchanged. Actually it went down slightly but
3	they were small enough there was no reason to
4	change them.
5	We then were able to put this
6	information together and to form a bounding
7	estimate of residual radiation oh no, sorry
8	separately we did a bounding estimate on
9	this mysterious residual radiation from the
10	betatron which I'll talk about.
11	And then finally we compared our
12	estimates with NIOSH's estimates. So this is
13	the earliest now all the AEC literature, a
14	thousand pages, a lot of which is redundant
15	and duplicated, but still, there's a lot of
16	material there.
17	This is the first drawing of the
18	betatron building that shows up, and here they
19	indicate this was January this is a little
20	hard to read and so I put it into the legend
21	but this says 1-10-68.
22	And they indicate the double-leaf

Τ	door with the read shield. They also indicate
2	these additional walls that were not in the
3	FUSRAP write-up.
4	One of the walls looked like a
5	line but we had not idea how thick it was, so
6	we just left it out of our version of the
7	model. This wall was there, we could scale
8	it, this wall was not there. This wall was
9	not there.
10	And then the better drawing came
11	later. They simply redrew it and a little
12	neater, neater lettering. Mostly the only
13	improvement is in the lettering, the actual
14	contour of the wall is more detailed, more
15	correct.
16	But it's not to scale and the
17	reason is I superimposed the MCNPx model, I
18	reconstructed the model using the dimensions
19	that are written here, 97 feet, 77 feet, 8
20	inches, 112 feet, 71 feet we put those into
21	the model and this is what MCNP gave me back.
22	I superimposed it too and they

1	were just all they took was a ruler and
2	just drew lines, not very carefully. It's
3	clearly not to scale, because this is 10 feet,
4	this shows it as like three feet.
5	But nevertheless we did the best
6	we could with this information. Wherever
7	there were numbers, we used the numbers, but
8	the source here, they didn't give you any
9	they just put an X here. They didn't tell you
10	where it really was in terms of distance.
11	So by using their outlines and
12	measuring, I ended up putting the source here
13	because what's important is where this shield
14	ends. I put it the same way with respect to
15	the shield, the same with respect to the
16	actual wall, ended up in a slightly different
17	position on the drawing.
18	Okay, so this is the yellow and
19	the green. The yellow is the sand and green is
20	the concrete. Even the door to the control
21	room is a little differently located than it
22	shows on the drawing. That's the best we had.

1	Here are our issues regarding the
2	DCAS model, most of which I have already
3	raised, just going over quickly during the
4	discussion.
5	The betatron control badges, that
6	what it was called, betatron CTL, Dave assumed
7	that it was kept in the control room desk but
8	another drawing showed the desk to be located
9	right about here.
10	And we don't agree with SC&A's
11	position and we cannot make that assumption.
12	It may have been there. It may have been
13	somewhere else. We just don't know where it
14	was.
15	So consequently there's no
16	documentation on it and so far the only
17	testimony we've heard was it didn't exist. I
18	think it did exist because it's on every
19	weekly badge record, it's on badge number 1,
20	but we just don't know where it was kept.
21	The second is, the assumption was
22	made, I can understand, they said it's in the

3	They in fact were kept in this
4	location at the one of the gentlemen on the
5	phone, I can if he wishes to identify
6	himself he can gave me this information a
7	few days ago and he said, you walk in the main
8	entrance, you walk by, this is the bathroom
9	here, you walk past the bathroom, and they
10	were, the film badges were on the wall on the
11	left. So this is from the conversation, the
12	best record, that they were this is where
13	the rack of the badges were. It was not in the
14	control room, and it was presumably a low
15	radiation area.
16	CHAIRMAN ZIEMER: Just a comment,
17	now that agrees with what I think we heard
18	from you, right?
19	DR. McKEEL: Well, except that's
20	location number 2.
21	CHAIRMAN ZIEMER: Yes, location 2.
22	DR. McKEEL: And the other fellow
	NEAL R. GROSS

betatron building, that they were kept in the

1

2

control room.

1	said that they originally
2	CHAIRMAN ZIEMER: Earlier it might
3	have been in that office.
4	DR. McKEEL: In the office location
5	
6	DR. ANIGSTEIN: Yes, that's where
7	the same worker told me, yes, it was in the
8	office earlier, but I just
9	CHAIRMAN ZIEMER: It's not the

- 11 ANIGSTEIN: DR. Yes, it's 12 definitely not the control room. He did say it was earlier but I didn't quite -- he didn't 13 quite clarify where or what period and I just 14 15 settled for what -- the only purpose of this 16 was to show that it's not the control room.
- 17 CHAIRMAN ZIEMER: Right.

control room.

- DR. ANIGSTEIN: That we do know
- 19 where.

10

- 20 CHAIRMAN ZIEMER: And that's a
- 21 little further away, actually.
- DR. ANIGSTEIN: Yes, well, not

1	only is it further away, but the control badge
2	not the betatron control but the
3	unnumbered control badge would have been kept
4	there. In any radiation safety program,. You
5	keep the you store the control badge right
6	where you can store the badges, and, which is
7	more claimant-favorable that's the
8	claimant-favorable assumption because ther
9	they subtract whatever they develop them
10	all at the same time, so whatever variation
11	may be in the processing, in the developer of
12	that day, is reflected equally on the control
13	badge. It's still blank, it's a laboratory
14	blank, and you subtract Landauer subtracts
15	the readings from the other badges.
16	So that 10 millirem is already
17	with the background subtracted. Whatever the
18	badges would have accumulated during the 100
19	hours of the week that the worker is not using
20	the badge is already taken care of.
21	DR. McKEEL: Dr. Anigstein, I just
22	have a brief comment that the unanimous

1	testimony	of	the	people	I've	talked	to	is	that
---	-----------	----	-----	--------	------	--------	----	----	------

- 2 they are unaware of the CTL --
- 3 DR. ANIGSTEIN: And I am not using
- 4 it.
- DR. McKEEL: Okay.
- 6 DR. ANIGSTEIN: I'm just starting
- 7 it so --
- DR. McKEEL: Okay.
- 9 DR. ANIGSTEIN: We're in -- we may
- 10 not be in agreement, but at least the outcome
- 11 is the same.
- DR. McKEEL: Okay.
- DR. ANIGSTEIN: Okay. So instead
- of the 15 positions, we just utilized one
- 15 position. Here is the diagram of -- this is
- the casting, because we are doing a horizontal
- 17 cross-section, it's a hollow pipe, so you see
- it as two lines, cutting across the pipe.
- 19 This is the betatron. Compared to
- 20 the size of the room, it's very small. This
- is the actual donut, this little tiny dot is
- the aluminum cone.

1	So the beam goes straight in this
2	direction, and that's the only shot we
3	consider. However, I do have an aside now I'd
4	like to add, I think I understand better the
5	discussion of how, based on Dr. McKeel's
6	written documentation, the roll-up door was
7	here. This is the beginning of the 10
8	Building. It's not shown here, but this is
9	the 10 Building.
LO	The roll-up door was here. Here
L1	you have the rail tunnel. They call it a
L2	tunnel, but of course it's above ground. And
L3	here is, at least according to the drawing,
L4	where that steel the double-leaf, lead-
L5	lined door was.
L6	So they're two different doors, so
L7	there is in fact excuse me, yes they are
L8	everything Dr. McKeel showed was the steel
L9	roll-up door was between was in the 10
20	Building, looking towards the betatron, that's
21	where you have the steel door. Same thing
22	same thing on the old betatron.

2	DR. ANIGSTEIN: Yes, I understand									
3	that.									
4	MR. RAMSPOTT: And the FOIA says									
5	there was a steel mesh gate at that same									
6	location, in a FOIA document. So you've got a									
7	wire gate									
8	DR. ANIGSTEIN: Okay, in any case,									
9	in any case that does not you can have									
10	both. You can have a door here and you can									
11	have a door here. And if you were to and									
12	from a radiation safety shielding standpoint									
13	you put your shield where your radiation is.									
14	MR. RAMSPOTT: No.									
15	DR. ANIGSTEIN: All right, you're									
16	allowed to disagree. You put your shield									
17	where the radiation is, so you will put your									
18	shield here and here there may be a reason to									
19	have a door just to keep people out,									
20	separating this thing.									
21	All right, let me go on. So									
22	anyway, this is where we assume, this is the									

DR. McKEEL: That was in 2006.

1	shot that we use for our representative case,
2	and I know there were dozens of possibilities,
3	but you have to pick one.
4	So we used this as a
5	representative case and probably a limiting
6	case, because the one of the gentlemen
7	that's on the phone now, or at least was a
8	while ago, said this practice of shooting on
9	the railroad tracks only accounted for about
LO	15 percent of the time. The rest of the time
L1	they were following the normal protocol and
L2	shooting inside, near the middle of the
L3	betatron shooting room.
L4	So instead of most of the time
L5	the betatron would be here shooting castings
L6	more or less in every in different
L7	directions, as Dave Allen indicated, and so
L8	only about 15 percent of the time, they were
L9	on the railroad track.
20	So we use that as a limiting case,
21	trying to come up with a bounding estimate, we
22	used that as a bounding estimate that's

1	very conservative and say it happened all
2	the time. That's extremely conservative,
3	extremely claimant-favorable.
4	Okay. So this is the case that we
5	modeled. And finally this is what we came up
6	with. Now, one of the suppositions, and I've
7	since had reason to rethink it, it's in my
8	report, and that is what about this mysterious
9	radiation from the betatron?
LO	Let's say it happened and let's
L1	say it hit the worker in the back. Well, if
L2	you want to do a ratio, and it's in my report
L3	but let me put it here, if you want to take a
L4	ratio of how much exposure the worker could
L5	have gotten, and how much exposure the badge
L6	could have gotten, if you read it coming from
L7	the back.
L8	We used the model, the current
L9	table put out by ICRP, report number 74 or
20	page 74, uses an earlier anthropomorphic
21	phantom, this is just geometric shapes that
22	are easy to model.

WASHINGTON, D.C. 20005-3701

1	So you have a human body, the
2	torso is an ellipse, the various organs are
3	the different shapes, like an ellipse, a
4	truncated cone, and so forth.
5	This is some of the actually
6	they are redoing it now with a more realistic
7	modeling, but it's androgynous. So they use
8	the same model for a male and a female.
9	So they add on, if you want to
10	model if it goes to a female breast, they
11	simply put breasts on the same model. Well, a
12	breast is a pretty good surrogate for the film
13	badge. They are worn on the chest often, so on
14	that side of the body.
15	So I looked at the ratio. What is
16	the dose to the whole body, the effective
17	dose, if the radiation is coming from the
18	back, compared to the dose to the breast,
19	which will be the surrogate for the film
20	badge.
21	And the worst you can get is the
22	lowest energy, which is 30 keV, anything lower

1	than that NIOSH doesn't even consider in the
2	dose reconstruction, and there, the breast got
3	10 millirem, the whole body got 26 millirem.
4	So you have at most, so if you say
5	that no worker got more than 10 millirem,
6	assuming that all of the radiation came from
7	behind, and all of it was 30 keV, the most
8	they would get is 26 millirem.
9	The reality is, I was later told
LO	that there is a problem with this because the
L1	again, Joseph Zlotnicki, that was formerly
L2	from Landauer, said that and also my
L3	colleague ' identifying information redacted',
L4	I have to say this was done under time
L5	pressure said no, the film badge is not the
L6	same back to front, front to back, because
L7	from the front, it has the metal filters, from
L8	the back it doesn't.
L9	So from the back it will actually
20	over respond. So actually when I say it
21	registers 10, or the 26, you divide it up 26,
22	the dose would be the film badge will

1]	probably get more than 26.
2	But anyway I used that as a limit.
3	And the only purpose of this was to establish
4	and to in agreement with Dave's report, to
5	establish that no way is the betatron operator
6	the limiting individual for photon exposure to
7	the whole body.
8	The reality is the layout man gets
9	a much higher dose. So if NIOSH was to assign
10	the external dose of the layout man to all
11	workers, we don't have to worry about the
12	betatron operator, because whether it's one
13	whether he gets 10 millirem or gets 26
14	millirem, or anything as long as it's not
15 1	much, much higher, the layout man is going to
16	be higher, and then the real betatron
17	operators will be assigned the dose of the
18	layout man, because, again, they sometimes
19	will have worked as layout men, not wearing a
20	film badge.
21	So I think we can pretty much put

that to rest as a non-issue, that even if

1	there is a little bit of radiation coming from
2	behind, and it's more than likely the readings
3	are spurious and were caused by
4	electromagnetic interference with the meter,
5	but regardless, it's not it does not affect
6	the ability to reconstruct doses.
7	Now, we got higher doses that give
8	us so here's the comparison, the exposure,
9	but again, it's really irrelevant. Neutron
10	doses are relevant and we got higher doses
11	because we did not scale back the exposures
12	because of this this betatron control
13	badge. We did not take that into account.
14	But consequently we assume we
15	didn't scale it at all. This is simply the
16	calculated dose to the neutron dose, to the
17	betatron operator from two sources, from the
18	operating betatron while the operator is in
19	the control room, taking into account, you
20	know, the long shot, the short shot, how much
21	time he spent long periods in the control
22	room, shorter periods in the control room, all

1	of that is taken file account, and this is the
2	neutron dose using the latest model of the
3	betatron building.
4	And so we get 480 millirem to this
5	period. Oh, and this also includes the
6	neutron dose from handling uranium. There is
7	a small, small amount of neutron dose from the
8	uranium, from handling the recently-irradiated
9	uranium. It has a little photoactive
LO	photofission there and there is a small, small
11	neutron component.
L2	So this is where we got these
L3	numbers. Then the beta dose again comes from
L4	handling the uranium. And we got somewhat
L5	different I'm not quite sure what the
L6	difference is, why because I think we used
L7	the same approach but there were some
L8	differences there between my modeling and the
L9	DCAS modeling, the beta dose to the hand and
20	forearm, the beta dose to the skin one foot
21	away, this is to the betatron operator.
22	So the layout men oh, and they

1	also get I'm sorry they also get a beta
2	dose from the irradiated steel. They are
3	assumed to be handling the irradiated steel
4	half the time. Half the time they are doing
5	the layout, they are touching the steel.
6	So there, we get a higher dose
7	yes, excuse me, that was the explanation. We
8	get a higher dose because as it turns out,
9	repeating using the latest version of
10	MCNPx, which is where the major difference is,
11	you get a fivefold higher concentration of the
12	beta-emitting isotopes generated from the
13	steel. It's a just more refined model and the
14	beta doses is from the steel, not from the
15	uranium.
16	CHAIRMAN ZIEMER: Is that simply a
17	difference in you using the later version
18	versus
19	DR. ANIGSTEIN: Mostly, yes. Yes,
20	it is, because
21	CHAIRMAN ZIEMER: It's not a
22	difference in assumption, starting assumption

1	or anything, it's a refinement in the model
2	that has caused that?
3	DR. ANIGSTEIN: No. No, we didn't
4	change the model, because actually Dave took
5	our numbers directly for the beta dose from
6	the steel, and so we
7	CHAIRMAN ZIEMER: I'm trying to
8	get a feel for the difference in the numbers
9	I'm seeing on the chart.
10	DR. ANIGSTEIN: Under which, under
11	which column?
12	CHAIRMAN ZIEMER: On the beta dose
13	to the skin.
14	DR. ANIGSTEIN: Yes. The beta
15	dose to the skin is primarily due to the MCNP
16	newer version of MCNPx
17	CHAIRMAN ZIEMER: That's what I'm
18	asking.
19	DR. ANIGSTEIN: predicting
20	higher concentrations of the beta-emitting
21	activation products in the steel.

ZIEMER:

CHAIRMAN

22

you're

And

2	they were using an earlier version?
3	MEMBER BEACH: 2008 version.
4	DR. ANIGSTEIN: They no. They
5	took the actual numbers from the report, my
6	2008 report.
7	MR. ALLEN: If I remember right,
8	we took yours for steel, did them for the
9	uranium, and this is a combination of the two,
LO	right? The steel and uranium beta dose?
11	DR. ANIGSTEIN: Yes, yes, yes.
L2	MR. ALLEN: So there's a little
L3	difference there and we used we used a
L4	different model for the uranium, very similar
L5	to what you did.
L6	DR. ANIGSTEIN: Yes, you did, you
L7	reran the uranium but you did not rerun the
L8	steel
L9	MR. ALLEN: Right.
20	DR. ANIGSTEIN: You just took our
21	results for steel, and we are and so I
22	felt a little badly towards Dave, because he

saying DCAS took the same starting numbers but

1	was	accepting	our	results	and	I	said,	wait	а

- 2 second, we don't accept the results anymore.
- 3 But it's -- yes, the interaction.
- 4 So basically, and the basic
- 5 conclusion is: we believe, that's the
- 6 position, that doses during this period of the
- 7 betatron -- from the betatron operation, and
- 8 these are limiting. I just want to point out
- 9 a couple of things. One is I have got a
- 10 question mark. I think Dave, I think there
- 11 was a mistake here in these numbers. You
- 12 didn't divide by two to account for the half
- here. Here, you divided by two, `65 to `66
- 14 goes down exactly by two, and here I don't
- think you divided by two for -- well, over the
- 16 six months.
- 17 MR. ALLEN: I'll have to double
- 18 check. It kind of looks that way.
- 19 DR. ANIGSTEIN: Yes. Otherwise it
- 20 would mean that the monthly rates, they went
- 21 up -- and this is only a six-month period, so
- I guess, you know, it was just a slip.

2	want to make is: first of all, this is you
3	assuming this is assigning the new betatron
4	to the old betatron, and let's just say it's
5	claimant-favorable. It's simple.
6	We did run the old betatron,
7	satisfied ourselves, and it's in the 2008
8	report, that the doses are lower simply
9	because the energies are lower.
10	And you didn't have, as far as we
11	know, there wasn't this business of shooting
12	on the railroad tracks, but at any rate, the
13	energies were lower.
14	And that time I just scaled the
15	energy, naturally the exposure rates were
16	considerably lower, it was 100 100 Rs per
17	hour, per minute or maybe 100 as opposed to
18	160. They were considerably lower, through
19	the compensator.
20	CHAIRMAN ZIEMER: So SC&A is
21	suggesting that if you use the new betatron
22	values to bound doses during those years, and

But another -- another point I

Τ	someone is working either then or earlier in
2	the old betatron
3	DR. ANIGSTEIN: Right.
4	CHAIRMAN ZIEMER: you just
5	you give them the same value even though you
6	are overestimating.
7	DR. ANIGSTEIN: Right, that's
8	bounding then if they want to, I mean, NIOSH -
9	_
LO	CHAIRMAN ZIEMER: Are you guys
L1	saying the same thing as that?
L2	MR. ALLEN: Yes.
L3	CHAIRMAN ZIEMER: Okay. So but
L4	why not give them what they had for the old
L5	one?
L6	MR. ALLEN: It would make sense.
L7	CHAIRMAN ZIEMER: It's just easier
L8	to do and you are claimant-favorable because
L9	you are overestimating?
20	MR. ALLEN: It's
21	claimant-favorable plus we had the dimensions
22	in the dose rate survey of 1971, to kind of

2	building.
3	CHAIRMAN ZIEMER: So you're more
4	confident that the model is
5	MR. ALLEN: There was a lot more
6	unknowns with the old one.
7	CHAIRMAN ZIEMER: More unknowns
8	with the old model, but you know enough to be
9	able to say, in spite of those unknowns, the
10	new one will capture it, because of the higher
11	energies?
12	MR. ALLEN: Yes, you can still
13	if you still have drawings, you can scale off
14	of those drawings, but it's not like having
15	the dimension that's measured and put on the
16	drawing.
17	DR. ANIGSTEIN: But you wouldn't
18	have this layout worker, because and that's
19	the other issue. I mean, it's not an issue,
20	it's just the I'd like to point out the
21	both the strengths and the weaknesses, and
22	here we have the layout man always getting the

calibrate this model for the new betatron

1	same dose. But in reality this is a layout
2	man in the 10 Building
3	CHAIRMAN ZIEMER: I understand.
4	DR. ANIGSTEIN: being irradiated
5	by the new betatron. The new betatron wasn't
6	there prior to `64. So that would be a
7	hypothetical construct, and if you want to go
8	back and but you can say, well, there will
9	be other workers getting other exposures, and
10	this is probably limiting. So you can use that
11	as a kind of a, as a realistic bounding value.
12	But again, the bottom line is: we
13	disagree in detail but not in principle. I
14	think that is GSI is extremely well-
15	documented and even though there may be, like
16	always, some minor inconsistencies where one
17	person recalls this and one person recalls
18	that, and workers that I've spoken to will
19	contradict what other workers have said, and
20	after 50 years, what do you expect? It's not,
21	it's not going to be that's not surprising.
22	But if you put the whole picture

1	together, and you get a reasonably consistent
2	picture that's adequate for, again, giving a
3	bounding estimate, you're not going to get the
4	right number for every single individual, it's
5	just a bounding estimate, and the fact that
6	during that time period, or during the covered
7	period with the badges, there was one incident
8	of, in one week, which is some kind of an
9	incident, most likely to the film badge rather
10	than to the worker, of over two rem in one
11	week, and the same worker had a film badge for
12	every week and it was always m, except that
13	one reported. And the others had: 300 was the
14	second highest, the third highest was 40 and
15	after that there were either actual numbers of
16	10 or m which we equate to 10.
17	So and there are very few
18	missing badges, because we went through I
19	went through every week's records and there
20	was very rarely was there a missing badge.
21	Sometimes somebody loses their badge, somebody
22	takes it home.

WASHINGTON, D.C. 20005-3701

1	But the film badge record seems to
2	be extremely complete, extremely consistent.
3	There were some incidents and questions that
4	were raised as we have discussed, in later
5	years, but that is outside the covered period.
6	So that's about it now.
7	CHAIRMAN ZIEMER: Have you
8	finished your
9	DR. ANIGSTEIN: I'm finished.
LO	CHAIRMAN ZIEMER: Okay, I'll open
L1	it up for questions to the Work Group. I've
L2	already asked several but Wanda, did you have
L3	additional questions?
L4	MEMBER MUNN: The only question
L5	that I have in my mind, and I haven't gone
L6	back and reviewed our original documents, has
L7	to do with the old betatron building.
L8	DR. ANIGSTEIN: Yes.
L9	MEMBER MUNN: And I can't remember
20	whether we had good as-builts on the old
21	betatron building or not.
22	DR. ANIGSTEIN: No. the old

1	betatron building would only have the FUSRAP.
2	Those later FUSRAP drawings That's the
3	only thing we have. The only reason we have
4	these is because they wanted a license for the
5	80-curie source, and they did this radiation
6	survey and they show here's where we are going
7	to use it. I think they ended up using it in
8	the old betatron as well, but again, that was
9	not near not right next to an area, 10
10	Building where you have workers
11	MEMBER MUNN: Correct.
12	DR. ANIGSTEIN: working, you
13	know, on it. They may have been passing by,
14	they may have outdoors, but not somebody who
15	could plausibly have a work station right
16	outside that door.
17	MEMBER MUNN: It was so far
18	removed from the other activities
19	DR. ANIGSTEIN: Yes.
20	MEMBER MUNN: At least it appeared
21	to be so, on the

1	it was several hundred feet away.
2	MEMBER MUNN: Yes. Yes.
3	CHAIRMAN ZIEMER: Josie.
4	MR. ALLEN: I got one one thing
5	to say about all this, okay, about everything
6	today, is the location of the badge and the
7	control room or whatever, that was my bad
8	assumption. But now we're showing a badge
9	rack in the building that has, from everything
10	we've been told so far, has everybody
11	either has their badge on that or it's on them
12	in the control room, or the betatron is off
13	and they're out in the shooting room.
14	CHAIRMAN ZIEMER: Yes. Yes.
15	MR. ALLEN: So the same kind of
16	concept still applies to the badge rack
17	CHAIRMAN ZIEMER: Right. So does
18	that change
19	MR. ALLEN: It changes the numbers
20	
21	CHAIRMAN ZIEMER: That's going to
22	change a possible number in the control room

1	for you, won't it, because
2	MR. ALLEN: It will
3	CHAIRMAN ZIEMER: You're saying
4	that you're going to be saying the 10 is
5	not in the control room, it's out here
6	somewhere, which conceptually pushes the
7	control room up some amount
8	MR. ALLEN: Right.
9	CHAIRMAN ZIEMER: in your model.
10	So your other doses are going to change
11	upward a little bit?
12	MR. ALLEN: Yes. It'll make changes
13	to the numbers, not the general concept.
14	MEMBER MUNN: They should be
15	relatively minor.
16	CHAIRMAN ZIEMER: Yes. And one
17	thing that was a little new to me, Bob, was on
18	the door. You're saying that, and I guess
19	these folks are asking, or maybe challenging
20	that, that there may have been a shield on an
21	inner door, which was a roll door. Do we know

22

that for sure?

1	DR. ANIGSTEIN: Just to say,
2	however I should say in my I'm just
3	throwing that out, however in my model,
4	because it was not, because we can't be
5	certain that the lead was not added later,
6	there's no lead in my model.
7	CHAIRMAN ZIEMER: Okay.
8	DR. ANIGSTEIN: But my 9.2 rem to
9	the layout man assumes that he is
10	CHAIRMAN ZIEMER: Right, so you
11	didn't assume any lead in there?
12	DR. ANIGSTEIN: No, I picked the
13	worst location
14	CHAIRMAN ZIEMER: Right. But
15	while you're doing that while you were out
16	of the room, Dr. McKeel showed some numbers
17	comparing the earlier SC&A results with the
18	later runs, and that was remarkably higher,
19	but you had some questions on the earlier
20	models that didn't seem to change, I think, on
21	SC&A, right?
22	DR. ANIGSTEIN: The earlier model

1	two things. The earlier model to the
2	betatron worker calibrated was not from MCNP.
3	It was from this 15 millirem it was from
4	the 15 mR per hour, at that time we took it as
5	gospel. It was before we had film badges.
6	DR. McKEEL: To the layout men?
7	DR. ANIGSTEIN: So the reason that
8	they had to shoot 12 and 13
9	CHAIRMAN ZIEMER: In your earlier
10	models you okay, I
11	DR. ANIGSTEIN: That was most of
12	the exposure was from this residual betatron
13	operation.
14	CHAIRMAN ZIEMER: You were
15	modeling the residual time based on the 15
16	DR. ANIGSTEIN: Right, right. It
17	was not an MCNP model, it was just the
18	scaling was just the inverse square law and
19	time and motion studies.
20	This is, in case you're curious, I
21	put the layout man, either he he couldn't
22	be on the railroad track, because he would be

1	blocking the rail cars. So I assumed his
2	casting was either here or here. We did both
3	and took the higher level, so he is just maybe
4	20 feet from it's probably unrealistic.
5	This is the worst location, based on my
6	limited knowledge, where he could be for that
7	eight hours a day, and he doesn't even and
8	even in the earlier model, we had a which
9	NIOSH also used we had a there was, I
LO	guess it would be easier to show it here, out
L1	here you can see it, right here.
L2	There was a restroom. It was used
L3	not by the betatron workers, but by other
L4	plant workers, in the 8, 9, 10 Building. And
L5	that one was within line of sight with nothing
L6	in between to the betatron.
L7	Well, that's not true anymore.
L8	Now we know this would have been here, now we
L9	know we have this wall and having put that
20	wall there, the dose to the restroom now is
21	lower than the dose to the location of the
22	layout man.

1	So we simply assumed that the
2	layout man spent eight hours a day on his job
3	because he would actually be getting less dose
4	if he went to the restroom.
5	CHAIRMAN ZIEMER: Now, Bob, for
6	purposes of what you've demonstrated or are
7	demonstrating today, you've identified this,
8	which in your mind is a worst case scenario.
9	Are you using numbers from that to assign to
LO	all those folks? Whereas I think NIOSH is
L1	saying you're looking at several different
L2	ones, and you're not assigning that worst case
L3	100 percent of the time, you're scaling it in
L4	a sense, is that right?
L5	MR. ALLEN: Right. That worst
L6	case there, I did just a quick scoping
L7	CHAIRMAN ZIEMER: Well, I'm trying
L8	to get a feel for the comparison that I think
L9	Dr. McKeel was raising the issue of the
20	difference in the comparisons of the models,
21	but are you you're using 100 percent time
22	for the worst case and you're using a scaling

1	
2	DR. ANIGSTEIN: That was not the
3	worst case, because the worst case, you see,
4	in Dave's worst case, he was shooting like
5	this. He was shooting not at the casting.
6	Let me go back, angling not at the casting, he
7	was shooting like this at the casting, now the
8	betatron was here, here and here, so there was
9	going to be much more going out the door from
10	that direction and
11	CHAIRMAN ZIEMER: But he wasn't
12	assuming that that happened all the time
13	either.
14	DR. ANIGSTEIN: But then, using
15	these assumptions about the betatron control
16	badge, this only represented something like
17	2.5 percent of the time
18	CHAIRMAN ZIEMER: That's what I'm
19	asking.
20	DR. ANIGSTEIN: And 97.5 percent of
21	the time it was shooting towards the back

wall.

1	CHAIRMAN ZIEMER: Right.
2	DR. ANIGSTEIN: So there was much
3	less radiation going out of the building.
4	CHAIRMAN ZIEMER: Right. Well
5	I'm just trying to get a feel for what's being
6	proposed in terms of bounding, if you use a
7	weighted sort of distribution of those versus
8	taking a worst case and saying, well, worst
9	case will bound everything but is that really
LO	realistic?
L1	DR. ANIGSTEIN: Again, this is not
L2	my worst case is not as bad as his worst
L3	case.
L4	CHAIRMAN ZIEMER: No, no, but he
L5	wasn't using worst case to assign the doses
L6	either.
L7	MR. ALLEN: I was using a worst
L8	case for a small percentage of the time. You
L9	were using a less worst case 100 percent of
20	the time.
21	(Laughter.)
22	CHAIRMAN ZIEMER: That's right.

2	can bound if we were to accept bounding in
3	principle, you still have the issue of, okay,
4	but then what's the number you would assign?
5	And you know, is it and I think Dr.
6	McKeel's point is that those are a ways apart
7	at the moment.
8	MR. ALLEN: Well, I don't know if
9	they're that far apart. I was going to say, I
10	did a real scoping, just a scoping-type of,
11	you know, I wouldn't trust this run, I just
12	did it overnight real quick, and without the
13	lead in the door and with the badge rack in
14	the new location, and that run there that Bob
15	did, the estimate he did to give the nine rem
16	to the layout man, it gives you about 60
17	millirem a week at the badge rack.
18	CHAIRMAN ZIEMER: Yes. Well, the
19	only thing I'm getting at is if there's any
20	refinements, we want to see them pretty fast,
21	okay?
22	MR. ALLEN: Yes, that's why I'm

But you guys are both trying to show that you

1	mentioning this, because I would like to try
2	to make that refinement, but I don't want to
3	go to that trouble then have everybody say the
4	hell with that.
5	But, I mean, the truth is you had
6	the badges at the badge rack or on the person
7	in the control room or in the shooting room,
8	and six millirem at the badge rack is the
9	lowest dose
10	CHAIRMAN ZIEMER: Well, the bottom
11	line is what we're going to eventually have to
12	grapple with is if, option 1, if we say yes,
13	we think you can bound, what is it what's
14	that going to be, and petitioners need to know
15	what that's going to be and what the basis is.
16	MEMBER BEACH: And if it's going
17	to cover all years or
18	CHAIRMAN ZIEMER: Yes, right. And
19	so we're not going to have that comfort degree
20	if there's all these numbers out here that are
21	far apart. So it's
22	DR. NETON: The main difference

1	seems to be, though, is: do you give any
2	credibility to the badge readings -
3	CHAIRMAN ZIEMER: Right.
4	DR. NETON: in trying to
5	establish the bounding, or do you ignore them
6	completely and come up with numbers based on
7	just workers
8	CHAIRMAN ZIEMER: Right.
9	DR. ANIGSTEIN: No, the badge
10	my model assumes the badge readings
11	CHAIRMAN ZIEMER: But they both
12	used the badge the approaches are the same,
13	they just haven't used as many options. He's
14	used one scenario and you've used
15	DR. NETON: I just heard Dave say
16	that the badge rack would be receiving 60
17	millirem per week.
18	CHAIRMAN ZIEMER: Well, he made an
19	assumption about where the badge rack was
20	MR. ALLEN: Based on the new
21	stuff, I mean, I ran this like yesterday.
22	CHAIRMAN ZIEMER: Yes, right, so -

1	_
2	DR. NETON: And so there's ar
3	inconsistency there between
4	CHAIRMAN ZIEMER: Okay, well
5	MR. ALLEN: I guess the question
6	for the Work Group right now is: is the
7	concept that that badge rack can't be more
8	than 10 millirem a week acceptable to the Work
9	Group or not? That seems to be reality to me.
10	MEMBER MUNN: Well, that's what
11	the badge reports say. Correct?
12	MR. ALLEN: Correct.
13	DR. ANIGSTEIN: But there was a
14	control badge at the
15	MR. ALLEN: Right, but the control
16	badge
17	DR. ANIGSTEIN: was subtracted,
18	so whatever their badges got during the badge
19	rack
20	MR. ALLEN: But the control badge
21	is on the Landauer reports, it was always zero
22	until 1971, and Landauer normally subtracted

1	on a dose basis. They would read the dose on
2	all these things and then subtract that dose -
3	_
4	DR. ANIGSTEIN: No, but there
5	would have been already the report no,
6	that's not correct. This is again, the people
7	who worked at Landauer said they the report
8	would the control badge would be
9	subtracted, not the betatron control
LO	MR. ALLEN: I know, the control
11	badge is also on the report.
L2	DR. ANIGSTEIN: The control badge
13	would be subtracted already prior to them
L4	sending out the report. They might either
15	he said there were two possibilities. One,
L6	either they assigned the dose to the control
L7	badge, or they simply took the density, as a
L8	factor of the density before calculating the
L9	dose.
20	MR. ALLEN: Which is directly
21	proportional to the same thing. It's a
22	calibration curve. It's the same thing.

_	DR. ANIGSTEIN: Tes, yes, it s the
2	same thing.
3	MR. ALLEN: But they wouldn't
4	subtract the control badge dose from itself
5	and then record that.
6	MEMBER MUNN: No.
7	MR. ALLEN: What I'm saying is
8	DR. ANIGSTEIN: I hear what you're
9	saying.
10	MR. ALLEN: We have the number and
11	what they subtracted was zero.
12	DR. ANIGSTEIN: Yes, and they do
13	report the let me ask that question of my
14	colleague.
15	CHAIRMAN ZIEMER: Dan, do you have
16	some additional questions or comments? You
17	want to react to what
18	DR. McKEEL: I do want to react.
19	I want to modify my last slide. So I looked
20	at Bob's table, which I've got to admit, Bob,
21	are we going to get that your PowerPoint
22	presentation? Can we get your PowerPoint

1	oresentation?
_	or operiod ereri.

- 2 CHAIRMAN ZIEMER: Give it to Ted
- 3 and he can distribute it.
- 4 DR. ANIGSTEIN: I'll put my slide
- 5 back up.
- DR. McKEEL: No, I don't need your
- 7 slide, I just want to know if we can have it
- 8 to examine it.
- 9 MR. KATZ: You can send it to me
- 10 and I can distribute it.
- DR. ANIGSTEIN: Oh, yes, yes.
- DR. McKEEL: All right, well -- so
- 13 I was writing down the differences between the
- 14 SC&A and the NIOSH numbers for photons and
- 15 neutrons and the beta skin dose just to the
- 16 forearms and the hands.
- 17 And earlier on there's been a lot
- of what I would call -- gee, I want to be
- 19 polite, but I want to also be a scientist --
- 20 talk about roughly similar and the same and so
- forth, and somebody, maybe David, maybe Bob
- 22 Anigstein, I'm not sure, somebody said that

1	roughly if a model agreed with another model,
2	with real data within 200 percent, twofold,
3	that would be okay. Maybe you said it.
4	Somebody said it.
5	DR. ANIGSTEIN: I think I said it.
6	DR. McKEEL: Okay, good. So I
7	would say I disagree with that. I think that
8	in academic papers where you propose a
9	computer model and you test it with real data,
10	I don't believe anybody would buy it within
11	twofold. I think they would say 10 to 20
12	percent, from the papers that I've seen.
13	But let's say 200, let's say 200
14	percent. That's fine. So I did a bunch of
15	ratios here between SC&A and NIOSH, just
16	looking at them, and basically, for most year,
17	let's say for photons, the ratio is three or
18	higher, 300 percent or higher.
19	For neutrons the difference is
20	fourfold up to fivefold. That's the point.
21	The ratio has changed from year to year, and
2.2	if you look at beta skin dose they run along

3	precipitous change in the ratio which goes
4	down now to 1964, SC&A 10.7, NIOSH 3.5.
5	So that's 300-plus percent. So
6	I'm just saying that, you know, numbers
7	when you are in the business of doing
8	quantitative analysis, numbers matter, and
9	these numbers do not agree with each other,
10	and I think that if I were the editor of a
11	peer-reviewed journal and I had an editorial
12	board, I would expect my reviewers to point
13	that out, that these numbers are not in
14	agreement.
15	So that's one comment.
16	CHAIRMAN ZIEMER: Incidentally,
17	this reflects something, and you kind of
18	raised it earlier, Dan, SC&A is not taking the
19	NIOSH model and revalidating it, it's sort of
20	a it's kind of a different model.
21	DR. McKEEL: But you've got to
22	CHAIRMAN ZIEMER: I know, I'm
	NEAL R. GROSS

almost one to one, one to 0.8 for quite a long

time, and then after 1962, you notice a

1

2

1	saying, so that's, that's what we're saying
2	here, and we do want to have some assurance
3	that, and Bob's here, as in the next two
4	weeks, just that looks very specifically at
5	the NIOSH model, however they come out with
6	it, with any final modifications, and make
7	sure that you know, that you guys would come
8	up with the same thing using their assumptions
9	if you unless you think their assumptions
10	are way out in left field.
11	But I mean right now we are
12	talking about, okay, here, I'm going to try to
13	see if I can you've kind of modeled
14	independently here from what was done and
15	that's led to this issue.
16	DR. McKEEL: Well, again this is -
17	- these are not independent models being
18	compared. These are so biased, because we
19	start the starting point is an SC&A
20	calculation that is then and it said NIOSH
21	used their input parameters to MCNPx. So
22	they're not independent models. They're

Т	actually comparing the same models, and that's
2	the further point, which is an enormous point
3	that just can't be overlooked, and that is
4	that MCNPx is a research computer code. It is
5	not fixed in stone. It's not like IREP, and
6	even IREP is upgraded from time to time. But
7	it's not even standardized like IREP. That's
8	used all over the world for all sorts of
9	things, as you all know better than I do.
10	But he's saying that in the
11	specific version that may be two weeks apart,
12	the numbers change.
13	DR. ANIGSTEIN: It's three years
14	apart.
15	DR. McKEEL: Okay, but they've
16	changed a lot, Bob. Right.
17	DR. ANIGSTEIN: No, they were just
18	beginning to develop these capabilities
19	DR. McKEEL: I understand that, I
20	worked with a man
21	DR. ANIGSTEIN: it is now the
22	final one because it is already at the time

1	was only available to beta testers.
2	DR. McKEEL: I understand.
3	DR. ANIGSTEIN: At this point it
4	is now being distributed by RSICC as the
5	final, official version.
6	DR. McKEEL: I understand that,
7	but my friend who is a programmer distributed
8	a number of successive, official versions, and
9	all I can say is the software gets changed.
10	And what you're saying is you're
11	here to assign whatever winds up in
12	Appendix BB, like that 1.73 R per year for the
13	non-badged workers, that's what they got for
14	94 percent of those dose reconstructions, and,
15	you know, if you come out with a number that
16	you know could change any time depending on
17	the code, you have to stick with that number.
18	So all I'm saying is: please be
19	reasonable about that. I mean, you know, at a
20	certain point there's no bright white line
21	between what is acceptable agreement. But I
22	suggest that those two the numbers are far

1	apart, and that we don't even know, I don't
2	know, you know, there's MCNPx running on two
3	different computers. I still haven't heard
4	this morning, David, if the exact code that
5	you were using, the version, was exactly the
6	code that Bob Anigstein was using. I
7	personally, if I read these numbers, I'd want
8	to know that. I'd want to know exactly what
9	version
10	MR. ALLEN: Using the computer run
11	with the exposure model, I mean, the computer
12	
13	DR. McKEEL: No, I want to know
14	what I'm calculating it with
15	MR. ALLEN: He was running 26E a
16	few years ago and now he's running 27E.
17	DR. McKEEL: But it's a different
18	that's a different code.
19	DR. ANIGSTEIN: It is.
20	DR. McKEEL: And, as Bob says, as
21	Bob says, they also have an ancillary database
22	that includes a lot of other data that can be

1 (culled	in	а	sub-routine,	I'	m	sure,	into	MCNPx.
-----	--------	----	---	--------------	----	---	-------	------	--------

- 2 I don't know if NIOSH has that.
- DR. ANIGSTEIN: No, it's a
- 4 standard -- the data, the database, the data
- 5 files, I should really say, are distributed
- 6 with the code. Everybody who gets that code
- 7 package gets the identical code and it runs
- 8 identically on every PC.
- 9 DR. McKEEL: Okay.
- DR. ANIGSTEIN: So, it's not like
- one machine, you know, runs it differently
- 12 than another. We have the same operating
- 13 system.
- 14 DR. McKEEL: I do understand that.
- DR. ANIGSTEIN: And also, because
- of this fact, as I noted in my report,
- 17 because of this, we got an independent MCNP
- 18 expert who knew nothing about this. I mean, we
- 19 put him on there, actually he worked for SC&A
- in the past, also doing exactly the same
- 21 thing, doing independent QA. He's from Los
- 22 Alamos, Ph.D., CHP, he looked over this and he

1	completely agreed. He checked everything. He
2	found discrepancies like of three thousands of
3	an inch where I miscopied a number from the
4	DR. McKEEL: Bob, he's validating
5	your measurements but what I'm saying is
6	DR. ANIGSTEIN: He validated the
7	calculation. He didn't validate the
8	measurements; he validated the calculation.
9	DR. McKEEL: I understand. Your
LO	numbers and David's numbers differ from each
11	other by the ratio
L2	DR. ANIGSTEIN: Because of
L3	different assumptions.
L4	MR. ALLEN: It's not because of
L5	MCNP for the most part, it's because of what
L6	we do with MCNP as a tool.
L7	DR. McKEEL: Okay, but I'm saying
L8	that if I were the Board what I ask of the
L9	Board is to insist that you all be closer
20	together, to accept these data.
21	CHAIRMAN ZIEMER: Well, that's
2.2	hasically what I was asking

1	DR. McKEEL: Yes, I know that, I
2	just wanted to make sure. Then I agree with
3	you, but I just
4	CHAIRMAN ZIEMER: Yes, because
5	it's hard for us as Work Group Members if
6	these are way far apart by 300 percent, so
7	DR. McKEEL: And then I have to
8	put my final statement about the double-leaf
9	door, and that is that the workers are
10	unanimous, 100 percent, not a dissenter, that
11	it was the door to the tunnel, not the door to
12	the break area, that in 1964-66 was that red,
13	ribbon, roll-up door that I looked at, and my
14	point is that even you know, even if you
15	model forget the lead. Take the lead away.
16	Just talk about a double-leaf steel door
17	versus a roll-up steel door. The steel's not
18	the same. The thickness is not the same
19	DR. ANIGSTEIN: I modeled a very
20	thin one sixteenth inch steel, which is
21	negligible amount of shifting.
22	DR. McKEEL: Well, whatever you

1	modeled, I'm just saying that those two doors
2	are different, but the door that was there, if
3	you want to use reality, was the red ribbon
4	steel door. I promise you that. That's all
5	I'm saying.
6	CHAIRMAN ZIEMER: And I think we
7	probably can accept that as the
8	MR. ALLEN: Yes, I think I have
9	to, because when you look at it, it's very
10	clear to me in 1971 there was lead in that
11	door, just looking at the dose readings that
12	were taken five feet versus 10.
13	MR. DUTKO: Dr. Ziemer
14	CHAIRMAN ZIEMER: Hang on
15	DR. ANIGSTEIN: January `68,
16	actually, was the first roll-up door.
17	DR. McKEEL: I will say that there
18	is no testimony on the record, and there were
19	men who were there in `71, nobody has ever
20	confirmed that by visual sighting. You had
21	folks
22	MR. ALLEN: Well, you would never

-		. 1			. 1	7	
1	SEE	tne	Lead	าท	the	door.	

- 2 DR. ANIGSTEIN: You wouldn't see
- 3 the lead because you would have sheet metal on
- 4 the inside -- on both sides.
- 5 (Simultaneous speaking.)
- 6 MR. RAMSPOTT: No, I have
- 7 pictures. It's not made that way. No. It's
- 8 rusted on both sides. It's a single piece of
- 9 steel --
- 10 MR. ALLEN: The double-leaf door
- in the old betatron building?
- MR. RAMSPOTT: Absolutely. I've
- 13 got pictures right here.
- 14 DR. McKEEL: Absolutely. Now, it
- is possible that there was a piece of lead on
- 16 there that was then removed carefully and
- 17 gone. I can't prove that, you know, between -
- 18 but it wasn't there in 1966, that's the
- 19 truth.
- 20 MR. RAMSPOTT: About the same
- 21 thickness as a stop sign piece of material.
- MR. ALLEN: And hollow in between?

NEAL R. GROSS

1	MR. RAMSPOTT: I'm sorry?
2	MR. ALLEN: Hollow in between?
3	MR. RAMSPOTT: No. Oh, no, it's
4	one piece it's one thin piece of steel.
5	CHAIRMAN ZIEMER: Mr. Dutko, did
6	you have another comment?
7	MR. DUTKO: I didn't want to
8	interrupt anybody, sir. I'd like to comment
9	briefly.
10	CHAIRMAN ZIEMER: Yes, go ahead.
11	MR. DUTKO: I left in November,
12	late November of 1966. I promise you, there
13	was not a double-leaf door on at that time.
14	It was a red ribbon door.
15	Maybe I'm wrong, but I was there.
16	There simply was not any doggone lead there,
17	nor did anybody else I worked with ever see
18	any lead or see evidence of it.
19	CHAIRMAN ZIEMER: Yes, I think
20	we're agreeing that that's the direction we
21	are going with this.
22	MR DITTKO: I just wanted to make

_	cliac crear, sir.
2	CHAIRMAN ZIEMER: Thank you.
3	MR. KATZ: Thank you.
4	MEMBER BEACH: So Dave, are you
5	going to your new model without the lead
6	MR. ALLEN: I'm going to take the
7	lead out of it.
8	MEMBER BEACH: Perfect.
9	DR. NETON: Get the lead out there.
LO	CHAIRMAN ZIEMER: We're all going
11	to get the lead out.
L2	(Laughter.)
L3	CHAIRMAN ZIEMER: Thanks,
L4	everyone. That's been very helpful, certainly
L5	for me, and we're going to
L6	MEMBER BEACH: So I have one other
L7	question. How soon do you think you can get
L8	the updated matrix to us, Bob?
L9	DR. ANIGSTEIN: The matrix?
20	MEMBER BEACH: Yes.
21	DR. ANIGSTEIN: Maybe in a week.
22	MEMBER BEACH: Okay. Thank you.

NEAL R. GROSS

1	CHAIRMAN ZIEMER: So we have it as
2	a reference when we are meeting, and then
3	so we'll get those new numbers from Dave and
4	Bob, we want you to take a look at Dave's
5	final numbers too.
6	DR. ANIGSTEIN: Will do. I've got
7	to rush out.
8	CHAIRMAN ZIEMER: Thanks.
9	MEMBER MUNN: Safe travels.
10	MR. KATZ: I've got to rush too.
11	CHAIRMAN ZIEMER: Thanks. And Dan
12	and John, thank you for coming. Appreciate it.
13	MR. RAMSPOTT: Thank you all for
14	listening.
15	MR. KATZ: Thank you all,
16	everybody, this was a great discussion. I'm
17	glad I was here.
18	MR. KATZ: Thank you for coming,
19	Dr. McKeel and Mr. Ramspott.
20	(Whereupon, at 2:58 p.m., the above-entitled
21	matter went off the record.)
22	

1

2

3

4

5