U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES CENTERS FOR DISEASE CONTROL NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH

+ + + + +

ADVISORY BOARD ON RADIATION AND WORKER HEALTH

+ + + + +

WORK GROUP ON MOUND

+ + + + +

TUESDAY
JULY 27, 2010

+ + + + +

The Work Group convened in the Frankfurt Room of the Cincinnati Airport Marriott, 2395 Progress Drive, Hebron, Kentucky, at 9:30 a.m., Josie Beach, Chair, presiding.

PRESENT:

JOSIE BEACH, Chair BRADLEY P. CLAWSON, Member ROBERT W. PRESLEY, Member PHILLIP SCHOFIELD, Member PAUL L. ZIEMER, Member

ALSO PRESENT:

TED KATZ, Designated Federal Official NANCY ADAMS, NIOSH Contractor* ISAF AL-NABULSI, DOE* ROBERT ANIGSTEIN, SC&A* ROBERT BISTLINE, SC&A* RON BUCHANAN, SC&A MEL CHEW, ORAU Team* JOE FITZGERALD, SC&A STU HINNEFELD, DCAS EMILY HOWELL, HHS KARIN JESSEN, ORAU Team* JEFFREY KOTSCH, DOL* JENNY LIN, HHS ARJUN MAKHIJANI, SC&A JOHN MAURO, SC&A ROBERT MORRIS* JAMES NETON, DCAS BRANT ULSH, DCAS

^{*}Participating via telephone

C-O-N-T-E-N-T-S

Welcome	4
Neutron Dose Reconstruction - SC&A/NIOSH	12
Stable Tritium Compounds - SC&A/NIOSH	142
Radon Post 1980 - SC&A/NIOSH	313
High-Fired PU-238 - SC&A/NIOSH	316
Adequacy/Completeness of Internal Dose and Roadmap Integrated Issues	325
D&D - NIOSH/SC&A	293
Adiournment	365

1	P-R-O-C-E-E-D-I-N-G-S
2	(9:30 a.m.)
3	MR. KATZ: Good morning, everyone in
4	the room and on the line. This is the
5	Advisory Board on Radiation and Worker Health.
6	This is the Mound Working Group,
7	and we're just getting started with roll call.
8	I'm Ted Katz. I'm the Designated Federal
9	Official of the Advisory Board, and we'll
10	begin with Board members in the room.
11	Chair.
12	CHAIR BEACH: Josie Beach. No
13	conflicts with Mound.
14	MR. KATZ: Yes, thank you. Everyone
15	address whether you have a conflict situation.
16	MEMBER PRESLEY: Robert Presley, no
17	conflict with Mound.
18	MEMBER CLAWSON: Brad Clawson, Work
19	Group Member, no conflict with Mound.
20	MEMBER SCHOFIELD: Phillip
21	Schofield, Work Group Member, no conflict with
22	Mound.

1	MEMBER ZIEMER: Paul Ziemer, Work
2	Group Member, no conflict with Mound.
3	MR. KATZ: And do we have any Board
4	members on the line?
5	(No response.)
6	Okay. Then, NIOSH ORAU Team in the
7	room.
8	MR. HINNEFELD: Stu Hinnefeld,
9	Interim Director, no conflict with Mound.
LO	DR. ULSH: Brant Ulsh, no conflict
L1	with Mound.
L2	DR. NETON: Jim Neton. I have no
L3	conflict with Mound.
L 4	MR. KATZ: NIOSH ORAU Team on the
L5	line?
L6	MS. JESSEN: Karin Jessen, ORAU
L7	Team, no conflict with Mound.
L8	MR. KATZ: I'm sorry. Who is that
L9	again?
20	MS. JESSEN: Karin Jessen.
21	MR. KATZ: Thank you.

MS. JESSEN: You're welcome.

- DR. CHEW: Hi, I'm Mel Chew, no
- 2 conflicts with Mound, ORAU Team.
- 3 CHAIR BEACH: Hi, Mel.
- 4 DR. CHEW: Good morning.
- 5 MR. KATZ: Okay. Welcome, all of
- 6 you. And SC&A in the room.
- 7 DR. MAURO: SC&A, John Mauro, no
- 8 conflict.
- 9 MR. FITZGERALD: Joe Fitzgerald, no
- 10 conflict with Mound.
- DR. BUCHANAN: Ron Buchanan, SC&A,
- 12 no conflict with Mound.
- MR. KATZ: And SC&A on the line.
- DR. BISTLINE: Bob Bistline. SC&A.
- No conflict.
- MR. KATZ: Very good. Federal
- officials or contractors to the feds, HHS,
- DOL, DOE in the room: right now we do not have
- 19 attendance yet.
- 20 On the line?
- MR. KOTSCH: Jeff Kotsch, Department
- of Labor.

1	MS.	ADAMS:	Nancy	Adams,	NIOSH
---	-----	--------	-------	--------	-------

- 2 contractor.
- MR. KATZ: Okay. That was Jeff
- 4 Kotsch and Nancy --
- 5 MR. KOTSCH: I'm sorry, yes. Jeff
- 6 Kotsch, Department of Labor.
- 7 MR. KATZ: And Nancy Adams that's a
- 8 contractor to NIOSH.
- 9 Others?
- 10 DR. AL-NABULSI: Isaf Al-Nabulsi,
- 11 DOE.
- MR. KATZ: Welcome.
- DR. AL-NABULSI: Thanks.
- MR. KATZ: Very good. And now any
- 15 members of the public on the line. There are
- 16 none in the room.
- 17 Great. Okay. We'll acknowledge
- others as they join us because I'm sure OGC,
- 19 at least, will join us.
- 20 So do you want to get things
- 21 rolling on the agenda?
- 22 CHAIR BEACH: Yes. The agenda is

1	posted online for anyone that doesn't have it
2	in front of them. We are going to start this
3	morning with neutron dose reconstructions. I
4	did not put times down purposefully because I
5	do not know how long the discussions will
6	take. And the end time today is, I'm
7	assuming, 4:00 to 4:30.
8	We're going to then go into stable
9	tritium compounds, discuss radon,
10	adequacy/completeness of internal dose, the
11	high-fired Pu-238. We're going to talk about
12	the roadmap and D&D issues.
13	At the end of this, we will
14	hopefully make recommendations amongst the
15	Work Group to take to the Board for our next
16	meeting in Idaho in August.
17	Ted, I'll turn it back over to you.
18	MR. KATZ: Sure, and Emily Howell
19	has joined us in the room for OGC HHS.
20	So I just want to make a disclosure
21	at the head of this meeting. SC&A is rolling
22	out but doesn't hasn't had any place in the

1	past, an attribution policy for its documents
2	such that all authors involved in any given
3	document are identified in its document, as
4	well as the review chain for clearing the
5	document are identified.
6	So that's coming, but it doesn't
7	exist in a consistent way currently or it
8	hasn't in the past. So we have two documents
9	that I think I believe just two documents
10	that we're dealing with today.
11	MR. FITZGERALD: Three. Two on
12	neutrons and one on completeness and adequacy
13	of internal
14	MR. KATZ: Well, let me finish and
15	then you can correct me if I'm wrong.
16	MR. FITZGERALD: All right.
17	MR. KATZ: I think there are two
18	documents that are being discussed today where
19	we have I should make a disclosure because
20	we have a person who is a primary or a leading
21	author for it who has a conflict. And that is

the adequacy/completeness of internal dose.

22

I

1	believe that document or however it's titled,
2	Adequacy of Data. And a very brief piece on
3	tritium, stable tritium. Joe authored that,
4	but that was investigated by Kathy and Joe
5	substantially, too.
6	MR. FITZGERALD: Right.
7	MR. KATZ: So, Kathy Roberston-
8	DeMers, just again for disclosure, she worked
9	at Mound and she, thus, is a potential
LO	claimant down the road or a potential
L1	beneficiary if there's an SEC Class to be
L2	added to Mound down the road.
L3	And so going forward, people, since
L4	February we've had a policy. We've sort of
15	well, continuing this program. This program
L6	has worked with tightening its policies for
L7	conflict of interest and appearance of bias.
L8	And we've been doing a lot of work
L9	over the past year and we rolled out a policy
20	in February that sort of canvasses and sort of
21	equalizes things across the landscape here

with Board members and contractors and NIOSH

1	employees to the extent that can be equalized
2	in terms of how conflicts of interest and
3	appearances of biases are addressed.
4	And SC&A is busily implementing
5	developing and implementing a new conflict of
6	interest plan which will end up on the web
7	when it's completed. Steve Ostrow is leading
8	that effort and getting its ducks in a row to
9	implement it at the same time as they're
10	developing the plan that will be published.
11	And there will be new disclosure statements
12	and so on. That will all appear on the web.
13	But so, I just wanted to say at the
14	outset of this, since we're discussing two
15	documents for which, under the new policy
16	Kathy DeMers would be found to have an
17	appearance of bias issue, that she was the
18	author of those.
19	And I don't know any of these other
20	documents is she a primary on any of these
21	other documents that are being discussed
22	today?

1	MR.	FITZGERALD:	No,	the	only
---	-----	-------------	-----	-----	------

- 2 correction I would make is I'm the primary on
- 3 the tritides piece.
- 4 MR. KATZ: Right.
- 5 MR. FITZGERALD: Right.
- 6 MR. KATZ: Right. Okay. And that's
- 7 it. Thank you.
- 8 MR. FITZGERALD: Okay.
- 9 CHAIR BEACH: Okay. So, Joe, if you
- 10 would like to get us started on neutrons?
- 11 MR. FITZGERALD: Okay. This is Joe
- 12 Fitzgerald, SC&A. We're going through on the
- topic of neutron dose reconstructibility, and
- I was reflecting on the history. We've had, I
- 15 think, a pretty vigorous and productive
- 16 discussion on this. It's covered a lot of
- 17 time, but it's been, I think, a pretty good
- 18 discussion on the aspects of the ER that dealt
- 19 with neutron dosimetry.
- 20 As far as background, I'm going to
- 21 turn to Ron in a bit to give a little bit
- 22 because every time we have these meetings that

1	are six months, eight months apart, the thread
2	gets a little weak. So I think it's useful
3	just to make sure we're on the same page as
4	far as what we would see as the history of
5	this thing.
6	We identified in the past issues
7	related to the coworker approach in terms of
8	applying derived N/P ratios. That was one
9	issue and certainly also mentioned some
10	concern over the use of the categorical dose
11	rather than the actual dose felt at the NTA.
12	And this is the early period: 51 to 60.
13	So there was a number of issues.
14	Some of which we felt were, as John would say,
15	tractable and the discussion was centered on
16	that. The most recent development, the one
17	that perhaps we were particularly concerned
18	about was the proposal, the proposed
19	application of the MCNP model, the Monte Carlo
20	model for addressing the low-energy neutrons
21	being at issue. And that was introduced in
22	the December 2009 I think I got the date

Τ	rignt		wnite	Paper	tnat	tne	Work	Group
2	receive	ed.						

3	And this was just before the
4	January 5th and 6th Work Group meeting. And I
5	remember because we were quickly and busily
6	looking at this over the holidays, but we
7	didn't really get a chance to spend much time
8	with it except just to ask clarifying
9	questions. And as this group will remember,
10	we had a pretty detailed discussion with the
11	help and facilitation of two former Mound
12	workers at the last Work Group meeting which,
13	you know, we were looking at the configuration
14	that they could recall in some of these plant
15	locations.

We were asking questions about the shielding involved. I think there was some question of shielding. And that was helpful because I think they shed some light on what shielding would have been used back in that time, which has some real significance for what the attenuation might be.

NEAL R. GROSS

16

17

18

19

20

21

1	And the way that was left, I think,
2	was to go back and examine the MCNP
3	application, the use of this new approach,
4	this new tool and the implications of applying
5	that new tool relative to things like the
6	attenuation afforded by this shielding, the
7	thickness of the material in the gloveboxes
8	and some of the other issues, and this was a
9	large part of what we examined.
10	It is a bit of a detour because
11	this was an issue we had not seen coming in
12	terms of the MCNP application and these
13	implications. But I think over the last
14	several months both NIOSH and SC&A had looked
15	at that and are bringing that back to the Work
16	Group. And this is the thrust of the several
17	White Papers that have come out: was to look
18	at this particular issue and to examine it
19	since it is a relatively new proposal that has
20	come before.
21	And as I recall, this is the first
22	time, and, Jim, you can correct me, but that

1	MCNP used in this application. So it was
2	something we wanted to take a look at, and I
3	think the Work Group wanted NIOSH to come back
4	with something as well.
5	So we had done that and we do have
6	some questions which we'll get into, but again
7	I think Ron's been sort of our go-to person
8	for neutrons. So I wanted to go ahead and
9	have him walk through a little bit of this
LO	history, then where we came out relative to
L1	these analyses.
L2	DR. BUCHANAN: Okay. Thank you,
L3	Joe.
L4	Mr. Ron Buchanan with SC&A. And
L5	what I'd like to do, we've all done a lot of
L6	things since January 5th, so I wanted to go
L7	back through how this progressed the last
L8	couple of years and why it is an issue.
L9	Recently in TBD-6, it was decided
20	to apply some correction factors for the
2.1	lower-energy threshold cutoff and for fading

for angular response.

1	And later on then when these came
2	in to question, then the MCNP tool was used to
3	further qualify the amount of dose lost
4	between below the threshold. And again I'd
5	like to go back over some very basic
6	interactions of the neutrons with the
7	dosimeters so we can understand why this is an
8	issue.
9	NTA film was used at most sites in
10	the 50s, 60s and 70s. At Mound it was used
11	we're talking about the period from 49 through
12	77, NTA film, which is an emulsion.
13	The neutron interacts with the
14	hydrogen, creates a recoil proton, creates
15	tracks in the emulsion, and then someone has
16	to look at that through a microscope and count
17	the number of tracks and relate that to the
18	dose. And I go into that level of detail
19	because this is different than photon film.
20	Most gamma and X-ray films, you read the
21	density automatically through a densitometer
22	and it's a fairly simple process.

1	Neutron detection is always more
2	complicated. NTA film is more complicated;
3	it's prone to errors and also calibration
4	factors.
5	And so NTA film starts to decrease
6	its response as the energy of the neutron
7	decreases because it doesn't create as many
8	tracks. The reader has to see at least three
9	dots in the track to be able to identify it as
LO	a dot and not some background.
L1	And so the problem at Mound is that
L2	if the worker is exposed to low-energy
L3	neutrons, then some of these neutrons will
L4	create minimum tracks, say three dots or less
L5	and so some of that information is lost to the
L6	reader. And so if you're calibrating with a
L7	higher-energy neutron source and using that
L8	calibration factor and you're reading film
L9	that's exposed to a lower-energy neutron

you need a correction factor to compensate.

won't record all the dose and so this is where

source, you'll not read all the dose.

20

21

22

You

1	Say, for example, the person was
2	exposed to a hundred millirems and the reader
3	only reads 75 millirems because some of the
4	dots were too short to register. And so you
5	would need to correct it by 1.3, one over .75,
6	to get back to the hundred millirem.
7	Now the problem is you have to know
8	what the energy spectrum is out in the field
9	where the worker is actually working to attain
10	this correction factor. And so originally in
11	the TBD-6, it was set at 1.14 from the
12	Savannah River data. We questioned that and
13	some other factors, and so NIOSH went back and
14	used the MCNP tool, which is simply a
15	scientific program.
16	It's like your a very
17	complicated calculator. Okay. You put
18	parameters in and those calculations follows
19	each neutron, says how many below the
20	threshold, and that's what NIOSH used then to
21	make the adjustment factor. You must realize
22	that MCNP is a tool. It's a computer program

1 and what it depe	nds on is	s what y	ou put	into
--------------------	-----------	----------	--------	------

- 2 it. Do you put in the right parameters, you
- 3 know, garbage in/garbage out or correct
- 4 information in/correct information out.
- 5 And so what we wanted to look at
- 6 was what parameters NIOSH was putting into the
- 7 program, and were these realistic for the
- 8 Mound site? And so the debate came out, like
- 9 Joe referred to, in the January 5th meeting as
- 10 what was the parameters that were put in and
- 11 was it realistic.
- 12 Well, some of the former workers
- 13 said you can have up to 12 inches of
- 14 moderation. Now shielding is good in any
- 15 case. However, as you moderate the neutrons,
- they decrease in energy, and so you lose more
- 17 and more of them falling below the readable
- 18 threshold. And so in that case it's
- 19 detrimental because you lose more and more of
- 20 the information. And so you have to make an
- increased adjustment factor for that.
- 22 And so what we wanted to see was we

1	SC&A ran their own simulation to look at
2	how many would fall below the threshold as
3	compared to what NIOSH presented and did we
4	agree.
5	Number one, did we agree that the
6	neutron energies did not fall off to the point
7	where you couldn't detect them? I mean, you
8	could envision a situation where the neutrons
9	would fall below the threshold, all of them or
10	90 percent of them, and you couldn't detect
11	them. And so you don't have that information
12	to correct.
13	Well we did these simulations using
14	our own equations and such and we found out
15	our number one thing we wanted to look at was,
16	did they all fall below the detectable
17	threshold. And, no, they didn't. Even if you
18	went out to 12 inches of water, you still
19	the neutron spectrum flattened out and you
20	still had an array of neutrons, some higher-,
21	medium-, and low-energy that were detectable.
22	And so this was one of the basic

1	questions we wanted to answer. And using our
2	model our simulations, we found out that
3	that about eight to ten inches of water was
4	the most claimant-favorable position to use.
5	Since we didn't know what all the
6	gloveboxes consisted of and stuff and we said
7	the maximum 12 inches, we ran it from zero to
8	12 inches. We found eight to ten inches of
9	water maximized the correction factor and
10	would be claimant-favorable without and be
11	plausible. And so we ran those simulations to
12	check on that.
13	Also, we ran the simulations to see
14	how they compared with NIOSH's model presented
15	in their December of 09 paper. And what we
16	found was we actually, to put it simply, NIOSH
17	looked at using the Monte Carlo technique to
18	look at the number of neutrons that fell below
19	a half MeV and say that 25 percent fell below
20	a half MeV.
21	So you do a correction factor of
22	one over .75, 1.3, times the recorded dose. A

1	fairly simplistic point of view. Now what we
2	did, we went back and we got to looking at the
3	Mound data and the Meyer's log book and his
4	report, and found out that Mound used a lot of
5	different conversion factors during their
6	history.
7	Back in the 50s, 60s and into the
8	70s, neutrons were kind of a new area that
9	people were working in, and they weren't sure
10	what the conversion factor from flux to dose
11	was. In other words, how many particles per
12	centimeter squared per second created one
13	millirem of dose?
14	Sometimes they used 50, they were
15	going to use 27 and a half, sometimes they
16	used 70. So it varied over a wide factor
17	through the years at Mound, but it was
18	recorded.
19	And so what we did with our
20	simulations, we used the Lehman document to go
21	back to the very basics, the primary principle
22	of neutron interactions in the emulsion and

1	deter	штпе	HOW	lllarry	tra	CKS	wou	та	be	cre	ateu
2	that	were	reco	ognizak	ole	in	the	em	ulsi	on,	and

3 then calculated what the correction factor

4 would be from that -- folding in.

Mound had used, implied.

What we did, we backed out, we --5 Mound -- flux-to-dose conversion factor which 6 7 changed periodically. We knew when changed. Backed that out and in so that that 8 wouldn't influence the dose on a superficial 9 10 basis that we would have the raw data, so to speak, without the correction factor that 11

And so going from first principle, we derived that, like I say, eight to ten inches was the most claimant-favorable thickness moderator to use. The neutron flux flattened out so it was usable. And that the observer position -- now when you talk about tools and modeling, the MCNP is a tool, a complicated calculator. The modeling comes in when you put in parameters. Okay. What parameters you put in.

NEAL R. GROSS

12

13

14

15

16

17

18

19

20

21

1	Okay. The problem came up was, at
2	Mound they had no real specific neutron
3	energy. And so we had to say measured in
4	the field that was really documented that we
5	could use as benchmarks. And so what we have
6	to use is what we think a maximum thickness
7	would be for the person that would be exposed
8	to the maximum low-energy neutrons that
9	wouldn't be registered, et cetera.
10	And NIOSH set up what they
11	considered a maximum exposure potential, which
12	was a concrete silo with a source in the
13	middle with zero to six inches, we extend it
14	up to 12 inches, of water moderator of
15	polyethylene, and then count the scattering
16	the low-energy neutrons created. So that's
17	the modeling we did and the parameters you put
18	into the MCNP.
19	And so what we found out was that
20	it appears to us that the MCNP can be used as
21	a tool, a complicated calculator, to take
22	these parameters and calculate the amount of

1	correction factor that should be applied from
2	first principles, not necessarily just how
3	many fell below the half MeV, because we came
4	out with factors that differed from NIOSH.
5	Some were lower correction factors; some were
6	much higher.
7	And we really don't know exactly
8	why, other than we backed out the dose
9	conversion factors and started off with the
10	raw data, so to speak. We used up to 12
11	inches of water rather than stopping at six,
12	and several other details which we can get
13	into more, if it's necessary.
14	But we did reach two conclusions.
15	Number one is that it looks like it's a usable

- Number two, we don't agree with the 16 tool. correction factors provided. So far we think 17 they missed too much of a dose. 18 19 reason is that, really, the decrease sensitivity in NTA film 20 is not step а function. 21
- You don't really have a threshold

1 at .5 or .7, .8. It varies across, dependi	1	at .5	or	.7,	.8.	Ιt	varies	across,	dependi
--	---	-------	----	-----	-----	----	--------	---------	---------

- on who you talk to, but .5 is a little low.
- 3 But even if you assume that, it isn't a step
- 4 function.
- 5 Any time your exposure field is
- 6 lower, is more moderated than your calibration
- 7 source -- which Mound used an unmoderated
- 8 calibration source -- then you're going to
- 9 lose some neutrons. And it's a rapid decrease
- 10 from your calibration source down to where you
- can't read anything at all about .4, .5.
- 12 And so we actually used the slope
- of the curve as opposed to a threshold. And
- 14 so that could explain some of the difference,
- 15 too. So we came up with the fact that it is
- 16 usable. However, I think first principles
- 17 need to be used rather than just a cutoff
- 18 point.
- 19 Now this did lead to another
- 20 situation we found, was that fading is
- 21 important in NTA film both for if you use a
- 22 correction factor or you use a cycling method.

1	And let me go a little bit into
2	fading because it's somewhat connected to what
3	I just talked about, is that as the neutron
4	energy decreases, you create smaller tracks.
5	And so if you have a high-energy source, say a
6	4 MeV or even a 2 MeV neutron source, bare
7	source and you expose the film to it and you
8	create six to eight dots per track and some of
9	them - half of them fade away, you still got
10	three left and so you count that.
11	With high-energy Pu-Be or Po-Be
12	sources around 4 to 5 MeV, you can expose them
13	and within a week or two read them, and you
14	have a small amount of track fading. However,
15	if you expose an NTA film to lower-energy
16	neutrons, say plutonium fluoride which Mound
17	started using then in 63/64 time frame, then
18	you start getting more fading. And Mound
19	recognized that, and they did three papers.
20	One was an undated, unsigned two-
21	page letter memo it wasn't a report that
22	saw nine percent fading. Another one was a

1	published Mound Publication 1490: 33 and 56
2	percent fading at one week and two weeks
3	respectively. Another one saw 16 and 30
4	percent fading or something like that.
5	Now the problem is none of these
6	matched the workers' fields because the
7	workers' fields was moderated. And these were
8	done without moderation other than the last
9	one I spoke of and it was moderated higher
10	energy source. So it brought it back down to
11	about 50 fluoride energy range.
12	So we're looking at the fading
13	studies done at 1.3 MeV average energy, and
14	we're looking at the worker, what little,
15	scarce information we have at Mound, around .8
16	MeV was some of the average energies measured
17	out in the field, .75, .9.
18	So your fading is going to go away
19	faster on your low-energy neutrons and that's
20	just a known fact. And so our concern at this
21	point is that in the TBD, they recommend on
22	Page 30, they recommend 33 and 56 percent

1	fading,	33	percent	for	one	week,	56	percent
2	for two	wee	ks.					

3 And this taken from was an unmoderated PuF source which would be slightly 4 higher in energy than you have out in the 5 6 field. And then in the ER they recommend a nine percent fading factor taken from the 7 unnamed, unpublished report. 8

And so we find that fading -- doing this MCNP analysis and looking at the fading documents at Mound, we did not find where -- that it was documented where they did a fading study using the appropriate moderated source either for a correction factor to go back and multiply it by, or when they started cycling.

Now when they recognized this they decided, well, we need to do our calibration in the same sequence that the worker is exposed. In other words, if we're on a two-week cycle and we expose a calibration film, one every day to a little bit of radiation for two weeks assuming the worker is even exposed

9

10

11

12

13

14

15

16

17

18

19

20

21

2	fading will match that to the worker, and
3	that's a good idea. That's halfway home.
4	But the other part we didn't
5	incorporate was when they used the calibration
6	source, they didn't use a moderated source.
7	They used a bare source, which would have
8	higher-energy neutrons.
9	The worker was out there, say his
10	film badge went a week or two weeks, and he
11	was exposed to lower-energy neutrons in many
12	cases. So he would have a greater percent of
13	fading.
14	And so the fading studies done at
15	Mound, like I say, was halfway there, but they
16	didn't use moderated. So the worker would
17	have a lower reported dose than he should have
18	even after he corrected for the cycle or a
19	calibration factor.
20	So, as far as the recorded NTA data
21	that the dose reconstructor is going to use
22	when he does dose-reconstructs a claim, he

through those two weeks, then our calibration

1	will be using the data that's recorded which
2	everybody admits is low. However, the
3	correction factor for the number, the amount
4	of dose lost below the threshold, and that's
5	lost because it wasn't readable because of
6	fading, will be lower than what the ER reports
7	its correction factors will correct for.
8	And so that is where we're at on
9	that. That's the two issues we have with MCNP
10	is that we feel that it needs to be run more
11	realistically, and that the fading factor
12	needs to be addressed.
13	We don't feel that it has been
14	sufficiently addressed. It's kind of been on
15	the table but not really addressed, and we
16	felt it is headed in the wrong direction going
17	from the TBD to the ER.
18	CHAIR BEACH: So, NIOSH, do you want
19	to jump in?
20	I know, John, you had
21	DR. MAURO: The only I guess in
22	listening to the issues, it seems to me that

1	the when we first began this, the main
2	concern was that, you know, we have more than
3	two inches of shielding, could have as many as
4	12.
5	I guess I walk away after talking
6	to Joe and Ron about, well, this really made
7	me concerned, you know. That has to be looked
8	at and whether or not we had a tractable
9	situation. And the reality is we do have a
10	tractable situation.
11	That is, yes, you could add 12
12	inches and there are ways to accommodate that.
13	It's not that when you have 12 inches all of
14	a sudden you can't detect anything. You're
15	going to get a reading on your film badge that
16	- and you can derive adjustment factors to
17	account for the fact that you've attenuated
18	the film.
19	So the way I look at it is that
20	part of the problem appears to be a tractable
21	problem. The problem, of course, is that we
22	feel that the adjustment factors that you

1	folks derived and the method you used needs to
2	be looked at again because we've actually come
3	up with adjustment factors that are somewhat
4	different. As Ron pointed out, in some cases
5	our adjustment factor is lower, but in some
6	cases they are quite a bit higher, but I think
7	it's tractable.
8	The part of the problem that Ron
9	just described that we don't know how to
10	approach it is the business of fading. What
11	factors do you apply?
12	Right now I believe you are
13	recommending a nine percent fading factor per
14	week, I believe it is. Based on as Ron
15	described, we don't think that number is
16	necessarily the correct number. It could be
17	higher, and it could be substantially higher
18	because that nine percent was based on looking
19	at fading from a naked source with a
20	relatively higher energy distribution than an
21	attenuated source.

Now it's possible that there's some

1	literature out there that would give insight
2	into, okay, what's the fading factor per week,
3	the percent per week loss or an attenuated
4	neutron spectrum that's closer to the
5	attenuated spectrum that we now know based on
6	our calculations.
7	So I mean so I see that we have
8	what I would call part of the problem is
9	certainly tractable, but right now with the
10	other part we're not sure. And that's the
11	fading part.
12	With regard to modeling, I know
13	that modeling is of great importance to the
14	Work Group and to the Board. And I know it
15	was extensively discussed regarding Blockson,
16	and they were concerns. Some folks liked the
17	model, some folks didn't like the model.
18	I just wanted to point out that in
19	this case that we call MCNP a model, but it's
20	important to recognize it's a physics model.
21	Which means that it's sort of like gravity or
22	a point-kernel. In other words if you know

1	the initial conditions and you correctly
2	design the initial conditions, define the
3	initial conditions, the physics of it are
4	straightforward.
5	The questions you could ask: are
6	the cross-sections proper. Well, these are
7	well established. The MCNP cross-sections,
8	neutron interaction, well researched, well
9	documented, well tested. So if you define
LO	your initial conditions correctly, you are
11	very confident that the outcome of your
L2	calculation is going to be correct.
L3	One of the issues that was raised
L4	originally was, well, we have to use at least
L5	some information that's site-specific. And so
L6	this is required by Part 83.
L7	And so the way I see it is that,
L8	well, some of the site-specific information we
L9	have is we know something about the neutron

22 So that's site-specific.

And

we

NEAL R. GROSS

regarding the actual readout on the NTA film.

also

have

sources.

20

21

information

1	One of the questions that came up
2	that we specifically looked at, but we really
3	didn't look at the geometry and the kind of
4	glovebox and could that have a bearing on the
5	outcome, an initial condition, and it turns
6	out it doesn't. It really doesn't matter what
7	kind of glovebox you have.
8	What does matter is the thickness
9	of the shielding, of course the original naked
10	source, and what the outcome of your film
11	badge reading is, but it doesn't really matter
12	what glovebox you use. Another thing that
13	mattered is we assumed when we looked at the
14	problem, one of our concerns was, is the
15	source in front of the person or is it
16	possible that there's another glovebox behind
17	the guy.
18	For example, I'm working on a
19	glovebox standing here and working. Okay.
20	Here's my neutron source. And here's some
21	shielding between me and my film badge, right?
22	And we model that using MCNP, a

1	physics problem. And the thing that's
2	important is we know what the energy spectrum
3	is at the source, we know how thick, how many
4	feet of water. Okay. And then we've got our
5	reading, and it's a physics problem now.
6	And the fact that it's in this box,
7	how the box is shaped and what it's made out
8	of really doesn't change anything. But what
9	does change something is if there's another
10	guy over here working in this neutron source
11	right back to back. Okay. Then what happens
12	is all bets are off.
13	But based on the information we
14	have, and, Joe, you could confirm this when we
15	were speaking, and you folks were interviewing
16	a lot of folks, we really only have AP,
17	anterior posterior, exposure geometry. We
18	don't have a significant source of neutrons
19	coming from behind the person.
20	So when we looked at the problem,
21	our initial conditions, we basically said here
22	we have the source and there's a concrete

1	room, we have certain dimensions, it was
2	concrete because you get scatter and it's all
3	built into the calculation, but we do not
4	assume that there is another neutron source
5	behind the guy coming in through him from the
6	back. And if that's the case, if there's
7	reason to believe that that in fact exists,
8	well, then we have a problem.
9	But right now given the initial
LO	conditions and our understanding of them, we
11	feel that you have a tractable problem. And
L2	the only part of the adjustment factors that
L3	we don't know what the answers are, and I
L4	guess we look to NIOSH to look into this
L5	matter, is the fading question. Because the
L6	fading is going to be greater for an
L7	attenuated source than an unattenuated source.
L8	But we do feel strongly that MCNF
L9	is a very useful, powerful tool as long as you
20	have the initial conditions well defined.
21	Thank you.

BEACH:

CHAIR

22

so

Ι

just

And

understand, and then the moderator, how many
2 inches you use, that's important also?
DR. MAURO: Yes, what we found out -
4 - in fact, we have a table that you haven't
5 seen this. What happens is the let's say I
6 we have a naked source, and I know what the
7 dose is to me from the naked source. And
8 let's say that's one. The dose is one. All
9 right.
Now as you increase the amount of
11 water attenuating it, what happens is you have
12 to multiply that. Because you're starting to
13 attenuate a source, you have to apply ar
14 adjustment factor. You're going to start to
lose the tracks. You're going to start losing
16 tracks and you're going to if you don't
17 take into consideration the attenuation.
18 And you hear people say, well, it
19 flattens out. Well, what does it the
20 adjustment flattens out. Well, what happens
is if you add one inch, you have to multiply
whatever dose you're reading by a factor: 1.1.

1	You have to say, well, it's reading
2	one, let's say. But because you have an inch
3	that would be for the naked source. But if
4	you put an inch in of water, you might have to
5	multiply that by 1.1. If you put two inches,
6	you might have to multiply by 1.15.
7	And what we did is we looked at as
8	you added more and more inches of water,
9	shielding, you have to have an adjustment
10	factor that gets higher and higher. Well, it
11	turns out that it does flatten out. When you
12	reach around depending on the distance,
13	there are other variables, but it does flatten
14	out.
15	That is once you reach eight, nine
16	inches, the multiplier may go up as high as
17	1.3, maybe 1.4. And then when you add more
18	inches, it doesn't change. You have to go to
19	11 inches, you go to 12 inches, it's 1.4, 1.4.
20	It doesn't change.
21	So the multiplier flattens out and
22	that's a very important finding because that

1	makes this a tractable problem. And so that
2	was, I would say, the single most important
3	finding that concern initial concern at the
4	meeting. Does it flatten out?
5	Or the real concern was let's say
6	you had 12 inches and you're getting and
7	all the neutrons that are coming off the naked
8	source are all below .4 MeV.
9	Now here's a guy standing there,
10	he's getting hit with a flux of .4 MeV
11	neutrons, but the film badge is not reading
12	anything. That was the problem. That's an
13	impossible situation, but that didn't happen.
14	Reality is we still get plenty of
15	neutrons that you can count and you could
16	predict what the adjustment factor is and it
17	does flatten out. Now where it flattens out
18	is it depends, but we're finding out even,
19	you know, maybe under all circumstances at
20	around eight inches, it flattens out.
21	So you can put an upper bound on
22	what the adjustment factor is to account for

1	the amount of shielding there is. So I mean
2	we come away from this thinking that a large
3	portion of the concerns we have, have been
4	alleviated in terms of, I think we have a
5	tractable situation, except one. And that is
6	the adjustment factor for this fading issue.
7	And I think that is there any
8	more to the story that you think or is that
9	really what it boils down to?
10	MR. FITZGERALD: No, I think that
11	captures it. And the question, you know, the
12	one question in January was applying the MCNP
13	as a whole in terms of, you know, a more
14	generalized tool, model and whether that 83
15	the regs, but I think that again we felt
16	better going through the analysis and doing
17	that.
18	We have other issues on the
19	coworker model, but I think I want to hold
20	those because I think we're focused pardon
21	me?

CHAIR BEACH: And I was going to say

1	if anybody had any questions on the first two
2	issues that Ron brought up and then
3	MR. FITZGERALD: Yes, I think we
4	should keep on those issues and then
5	CHAIR BEACH: Yes.
6	MR. FITZGERALD: go to NIOSH
7	and, you know, I think that's pretty much a
8	thumbnail sketch of where we came out.
9	CHAIR BEACH: Any other questions on
10	those first two?
11	MEMBER ZIEMER: I just wanted to
12	clarify because the issue of the possibility
13	of another bank of gloveboxes behind, we
14	discussed that at pretty much length the last
15	time.
16	And it seems to me as I recall,
17	that we had a pretty good picture of the
18	layout from the workers that were here and
19	then we determined that either the distance or
20	the in fact, there wasn't another bank
21	behind it. I can't remember which it was, but
22	

1	CHAIR BEACH: Paul, I thought there
2	was, but the distance was great.
3	MEMBER CLAWSON: There's two sets of
4	gloveboxes.
5	MEMBER ZIEMER: Yes, yes. But it's
6	not like they were right the distance was
7	really great. You know, there's another
8	important factor that causes the value to fall
9	off. It's basically an inverse square thing
LO	plus the moderation.
11	And I think one could calculate
L2	this, but intuitively the contribution from
L3	basically thermal neutrons at that distance
L 4	compared to the direct has got to be awfully
L5	small.
L6	DR. MAURO: That's where we came out
L7	also.
L8	MR. FITZGERALD: And that was the
L9	most valuable input, as you said, having the
20	workers put
21	MEMBER ZIEMER: Right.

MR. FITZGERALD: -- schematics up

- 1 because in one case you had a horseshoe with
- the workers on the outside of one building,
- 3 and then you had a bank of --
- DR. ANIGSTEIN: If this is --
- 5 CHAIR BEACH: Just a sec, Bob.
- 6 We'll get right to you.
- 7 MR. KATZ: Bob, there's a discussion
- 8 going on.
- 9 MR. FITZGERALD: You had, as you
- 10 said, two parallel banks, but they were so far
- 11 apart.
- 12 MEMBER ZIEMER: Right, right.
- DR. BUCHANAN: Twenty-five feet or
- 14 so.
- MR. FITZGERALD: Twenty-five feet or
- 16 so. So it wouldn't have been an issue. So
- 17 that was --
- 18 MEMBER ZIEMER: Right, but I didn't
- 19 want us to get into that sort of complicating
- 20 factor because I think the main issues at
- least have been identified here, we can, you
- 22 know, debate on what the correction factors

1	would be.
2	And the theoretical models we like
3	to rely on, but also in a practical situation
4	those field measurements still are important.
5	And they don't always agree because you can't
6	really model the detail of the whole thing,
7	you know. You have the workers' bodies
8	moderating and so on. But I think the issue
9	of how they calibrate is an important one to
10	think about with the bare source.
11	As I understand it, the film badges
12	in those days didn't have a a lot of
13	neutron badges in more recent decades have had
14	a moderator ahead of the film, but they
15	weren't doing that at that time, I don't
16	think.
17	DR. BUCHANAN: Other than just the
18	wrapper and the
19	MEMBER ZIEMER: No, no, I'm talking
20	about the
21	DR. BUCHANAN: Cadmium filters?

MEMBER ZIEMER: Huh?

- 2 something?
- MEMBER ZIEMER: No, no, not cadmium.
- 4 No, no, no, no.
- 5 DR. ANIGSTEIN: Excuse me. This is
- 6 Bob Anigstein, SC&A.
- 7 MEMBER ZIEMER: Yes, Bob may recall,
- 8 but -
- 9 DR. ANIGSTEIN: The Mound film badge
- 10 had a one-millimeter cadmium filter in front
- 11 and behind.
- 12 MEMBER ZIEMER: That's not a
- moderator, though.
- DR. ANIGSTEIN: No, no, but they
- 15 did filter out -- so, Mound never made any
- 16 attempt to count thermal neutrons.
- 17 MEMBER ZIEMER: It filtered them
- 18 out, but --
- 19 MR. KATZ: Bob, do you want to just
- 20 address because you -- I don't think you were
- 21 with us when we began, right?
- 22 CHAIR BEACH: Yes, he was.

1	MR. KATZ: You want to address
2	whether you have any conflict of interest with
3	Mound?
4	DR. ANIGSTEIN: No conflict of
5	interest.
6	MR. KATZ: Thank you. Just for the
7	record.
8	DR. MAURO: Bob, did you have any
9	I saw that you wanted to add something or
10	DR. ANIGSTEIN: No, I was just
11	commenting, somebody, I'm not sure who, maybe
12	this was Brant Ulsh, mentioned thermal
13	neutrons. And thermal neutrons don't even
14	enter into this because Mound deliberately or
15	at least consciously did not count thermal
16	neutrons.
17	And we did not consider thermal
18	neutrons either, because they were filtered
19	out by the first they used one millimeter
20	of cadmium. Later they switched to one
21	millimeter of lead.

That was my only comment other than

1	the	fact	that	I	think	it	was		I	think	it	was
---	-----	------	------	---	-------	----	-----	--	---	-------	----	-----

- pretty well covered.
- 3 CHAIR BEACH: Thanks, Bob.
- 4 Any other questions for Ron? John?
- 5 MR. MORRIS: Brant, this is Bob
- 6 Morris. Did you want me to jump in at this
- 7 point?
- DR. ULSH: Well, in just a few
- 9 seconds, Bob. I'm going to make a big attempt
- 10 at some artwork.
- MR. MORRIS: All right.
- DR. ULSH: Which, unfortunately, you
- guys on the line won't be able to see.
- 14 MEMBER ZIEMER: Or fortunately.
- DR. ULSH: Yes, considering my lack
- of artistic ability.
- 17 MR. MORRIS: Ted, this is Bob
- 18 Morris. I have no conflict at Mound.
- 19 MR. KATZ: Thank you for doing that,
- 20 Bob.
- 21 MR. MORRIS: I notice you didn't ask
- our last caller who has now hung up, whether

1	she	had	а	conflict	or	not.
_	\sim	110.0	o.		\sim \pm	TTO C .

- 2 MR. KATZ: I don't think she works
- 3 for the Agency.
- DR. ULSH: Okay. So, it seems to me
- 5 that while we can discuss whether or not we
- 6 picked the right parameters for MCNP, I mean
- 7 first of all we never had a question about
- 8 MCNP whether it was applicable or not, because
- 9 it's an industry standard.
- 10 I mean pretty much everybody uses
- 11 MCNP or some variant thereof. So, we always
- 12 had confidence in it.
- But as Ron said as with any model,
- 14 the validity of your output depends on the
- 15 validity of your input, and so I think we
- 16 could have further discussions.
- 17 John uses the words tractable
- issues, I use the words TBD issues, and there
- 19 might be some things for us to discuss there
- and, Bob, you might want to get into that when
- 21 I turn it over to you, but by and large I
- 22 quess what we're talking about now is the

1	fading issue. And I think Ron did a good job
2	of queuing up what the issue is here, but
3	there's one piece of the puzzle that I think
4	we haven't discussed yet.
5	And I would refer you back to our
6	report dated March 18th, 2009, and there are a
7	series of graphs there. And I'm going to
8	attempt to reproduce it here, at least one of
9	the examples, if I have a good marker.
10	I'm also going to try to remember
11	to speak into the microphone. But if I
12	forget, someone please speak up if you can't
13	hear me, and let me know.
14	Okay. So, in our report back in
15	March starting with Figure 7-10 is an
16	example of one of those figures.
17	And I'm going to draw here in the
18	room this is an approximation of what that
19	figure shows. And the x-axis is the energy of
20	the neutrons. And the y-axis is the dose
21	equivalent weighted spectra. And this is the

think we're

piece

that

I

22

missing, dose

Τ	equivalent.
2	So, think about in terms of a
3	neutron source. And this is going to be a
4	very imperfect analogy because I just thought
5	of it during the discussion.
6	If I'm standing in front of a
7	glovebox with source material inside the
8	glovebox and it's emitting neutrons, think of
9	maybe a hose shooting out marbles. Okay?
10	Again, I admit this is an imperfect analogy.
11	There's a couple of things that
12	you're going to be concerned with. How many
13	marbles are coming out, that's one. Number
14	two, how fast are they being what kind of
15	energy do they have? How fast are they going
16	to hit you?
17	So when we talk about fading, what
18	we're talking about is the number of marbles.
19	Are we counting the right number of marbles?
20	And the problem is, as Ron
21	mentioned, once these marbles get below a
22	certain energy, they are not registered on the

1	NTA	film

- 2 So, you might undercount the number
- of marbles that actually would hit a person.
- 4 Here's the missing piece, though.
- 5 As those marbles lose energy, as they go
- through the shield and hit water, as they lose
- 7 energy and become not visible or not
- 8 detectable on an NTA film, you have to
- 9 consider what is the effect on one of those
- 10 marbles when they actually impact a person.
- 11 And that's the piece that we're not
- 12 considering.
- So, what I've drawn here is Figure
- 7-10 from our report. And this is a dose
- 15 equivalent. Dose equivalent is a way of
- 16 calculating what the actual physical damage is
- 17 to a person when hit by, in this case, a
- 18 neutron.
- 19 And what you see here is that most
- 20 of what we see in this spectrum occurs up
- 21 around one MeV, easily detectable by an NTA
- 22 film.

1	And for those in the room when
2	you're talking about dose equivalent in terms
3	of dosimetric significance now, you're talking
4	about the area under the curve. That's what
5	we're concerned about.
6	This is by the way, this x-axis
7	is logarithmic scale. So, you've got one
8	here, 0.1 here, 0.01 here.
9	So, what I've drawn essentially if
10	you think in terms of a normal x-y graph, is
11	starting from the y-axis and going to the
12	right, pretty much a straight, flat line at
13	zero and then a hump out here by 1.0.
14	So, what we're talking about with
15	fading low-energy neutrons, those that are
16	undetectable to an NTA film, largely we're
17	talking about this part of the spectrum and
18	whether or not we've counted the right number
19	of marbles.
20	I would submit to you it's not
21	zero. I'm not going to say it's zero. But
22	the impact of undercounting this number of

1	marble	es even	if	we	grant	for	argument's	s sake
2	that	that's	the	e c	ase,	is	minimal.	We're

- 3 tilting at windmills here. The impact in
- 4 terms of a dose that a person would experience
- 5 is almost trivial.
- So, you know, we can discuss
- 7 whether we should apply a different fading
- 8 factor. I think that's something that we can
- 9 talk about. But we can't lose sight of the
- 10 fact that the real action is up here where the
- 11 NTA film adequately detects what a person is
- 12 exposed to.
- So, Bob, with that I'll turn it
- over to you to pick up on that issue or any
- 15 other issues that we discussed.
- MR. MORRIS: Okay. Thanks.
- 17 Yes, we've come a long way since
- 18 the original discussions where we were
- 19 discussing whether MCNP was valid. The second
- 20 conversation was, does it have site-specific
- 21 gloveboxes designed into it.
- So, now we're to the point where

1	we're discussing what's the correct threshold
2	for the cutoff for NTA sensitivity.
3	Note that we have already picked a
4	number at half an MeV, 500 keVs, that has been
5	already endorsed under one of the NIOSH
6	documents, Implementation Guide 1, if I recall
7	correctly.
8	DR. ANIGSTEIN: This is Bob
9	Anigstein. Can I comment on that?
10	MR. MORRIS: Can I just talk for a
11	moment, please?
12	DR. ANIGSTEIN: Sure.
13	MR. MORRIS: Is that okay?
14	DR. ANIGSTEIN: Yes, fine.
15	MR. MORRIS: And so now we're at a
16	point where we've actually accepted a number
17	in terms of the threshold cutoff to use for
18	the conversation at least that is based on
19	guidance that can be reviewed by a procedures
20	committee or something, some other form if we
21	choose to. But at any rate, we've got a basis

for choosing what we've chosen.

1	We have now gotten to the point
2	where we're having a conversation about the
3	location of the person who's getting the dose,
4	the size and shape of the room that they're
5	in.
6	You notice that in many cases we've
7	taken conservative, claimant-favorable
8	approaches to these questions.
9	For example, we put the worker in a
10	silo of concrete that's fairly tightly
11	constrained, actually, compared to the real
12	workplace.
13	Now, when you put concrete on all
14	sides of a worker like that, you're going to
15	increase the amount of scattering, lower the
16	neutron energy and maximize the amount of low-
17	energy neutrons in that room, probably,
18	compared to the reality of the situation. I
19	think we need to acknowledge that.
20	DR. ULSH: Actually, Bob
21	MR. MORRIS: Also when we have
22	chosen which correction factors to apply,

1	we've chosen to use the ones for the observer
2	location, not for the arm's-length worker
3	location.
4	And when you choose that one that's
5	two-and-a-half meters away from where the
6	worker is standing or from where the source
7	is, you actually are going closer to those
8	concrete walls standing in a softer neutron
9	spectrum and consequently using the correction
10	factor that is 10 or 15 percent higher than
11	the one that the worker who's getting the most
12	dose would actually see.
13	So, whether or not we've got these
14	numbers exactly right in terms of, you know,
15	have we got a tally that is exactly the one
16	that Drs. Ulsh and Anigstein would have
17	chosen, I don't think that's really the issue.
18	The issue is have we got a
19	materially different outcome from what they
20	would predict, or has it failed to be
21	claimant-favorable, and I haven't heard in

either case that we've got that.

1	It certainly was not listed that
2	way in the findings of the June 29th report of
3	your review of the topic.
4	So, my sense is that we can tune
5	this up. We can leave it alone. In any case,
6	we've got an approach and a value already on
7	the table that's going to be good enough to
8	make these dose estimates.
9	DR. ULSH: So, I would just add,
10	Bob, that, you know, you were describing the
11	scenario that we modeled, a concrete silo and
12	some other things.
13	And for people who are listening on
14	the phone who might have actually been there,
15	I'm not aware of a situation where someone was
16	actually working in a concrete silo.
17	So, someone could make the argument
18	that, well, this isn't realistic to what I was
19	exposed to. And I think at least at the
20	beginning, SC&A raised the same kinds of
21	objections, in other words, that we had to
22	model what the exact layout was at Mound.

1	And I the point that I made
2	earlier and I'll repeat here, is that you are
3	absolutely right. These are not realistic
4	scenarios. They are not designed to be
5	realistic scenarios. They are designed to be
6	worst-case type of scenarios.
7	Worst-case meaning whatever we're
8	looking at. In this case, the amount of the
9	neutrons that fall below the NTA threshold.
10	These scenarios are designed to maximize that.
11	So, there are some site-specific
12	parameters that we're using. For instance,
13	the source terms that actually existed at
14	Mound, the kind of NTA or the kind of neutron
15	detection systems that were used at Mound,
16	that kind of thing, but we don't purport to
17	show or to assert that these scenarios that
18	we've modeled are 100 percent accurate for
19	Mound. They're designed to give you a worst-
20	case answer.
21	MR. KATZ: Bob, were you done?
22	DR. ANIGSTEIN: Yes, I want to talk

1	about	this	. 5	MeV	issue.	When	he	said	it.	was
	about	CIII	• •	1.10	rbbuc.	MIICII	110	Бата	エし	war

- 2 in the guidance, the guidance does not
- 3 actually say that. It simply mentions some
- 4 reference. It says that it's not detectable
- 5 below .5 MeV.
- 6 The closest guidance that I was
- 7 able to find in NIOSH documentation is OTIB-
- 8 51, which is -- technically it's applicable to
- 9 Y-12, but the author reviews the literature on
- 10 the thresholds: Kerr, et al. Kerr is the
- 11 senior author.
- 12 And to quote, he says the threshold
- 13 energy of 700 keV appears to give a
- 14 conservative estimate of the missed dose from
- 15 NTA film measurements at most facilities.
- 16 He then goes on to cite that there
- 17 were some authors suggest higher, 800, 900.
- 18 He settles on 700 as a conservative
- 19 compromise.
- DR. ULSH: Okay. Well, here's the
- 21 thing. This has been extensively discussed at
- 22 Y-12, as you mentioned, with George Kerr. And

1	the threshold, the energy threshold that you
2	have for NTA film depends a lot on how you
3	actually count the film. How many grains you
4	actually count as a track. And that is site-
5	specific.
6	So, yes, at some sites it might be
7	800 because you had a higher threshold for
8	higher criteria for determining what was a
9	track. At some sites if you count three
10	grains as a track, then the threshold is
11	different.
12	So, yes, there are some differences
13	and we could discuss until we're blue in the
14	face, because I know we already have, under Y-
15	12, what the exact value of that threshold is.
16	Everyone agrees that there is a
17	threshold and it's not a step function. We
18	all agree to that, too.
19	DR. ANIGSTEIN: But that's the main
20	point. I mean when Bob Morris, I believe it
21	was, said there is so little dose below the
22	threshold, using his marble analogy, I don't

1	quite agree because the our analysis which
2	used a sliding threshold, and we made use of
3	the curve that was derived by a man named
4	Lehman at Berkeley Laboratory, at the Lawrence
5	Berkeley Laboratory.
6	Actually it stops at .4. At .4, he
7	says it's zero. And then it starts gradually
8	increasing. And then there is a maximum in
9	the levels also.
10	We actually multiplied each neutron
11	that hits the badge through the attenuation.
12	We multiplied the neutron energy by it's
13	detectability.
14	And what we found is that the as
15	compared to the bare source which is used for
16	calibration film, you might have to increase
17	the factor by as much as 35 percent to account
18	for the dose.
19	In other words, if the film reader
20	at Mound, by simply taking the worker's film
21	and comparing it to the calibration source
22	said, okay, we have a one-to-one relationship

1	here if there is maybe eight inches of water,
2	it could be that it if he recorded a
3	hundred millirem, it actually could have been
4	as high as 135 millirem.
5	So, I consider that not trivial.
6	DR. ULSH: Okay, but we're talking
7	about
8	DR. ANIGSTEIN: And, by the way, the
9	measure that we used was the ambient dose
LO	equivalent because that's one of the two
L1	measures that is in IG OCAS-IG-0001 for
L2	converting the measured dose to organ dose.
L3	Dose equivalent is not used in IG-
L4	0001, and actually it's an obsolete concept
L5	going back to, what, 1971 from the NCRP 38
L6	report and there are big differences.
L7	There are differences, depending on
L8	the energy, as much as plus or minus 30
L9	percent between the ambient dose equivalent
20	and the old conflict of dose equivalent.
21	Just wanted to that may be a
2.2	little pedantic but I'm going to throw that

_	
1	מי
_	T11.

- So, we agree that the issue -- that
- John Mauro said and as Ron Buchanan said, we
- 4 all agree that the issue is tractable. It's
- 5 just a matter of debating which is the best
- 6 correction factor to use.
- 7 I'll just reiterate what I said
- 8 before. The fading, we at SC&A having looked
- 9 at -- having examined this and having a
- 10 dosimetrist from -- a former dosimetrist from
- 11 Los Alamos that worked with NTA film and
- 12 specializes in neutrons, and we could not come
- 13 up with -- find any literature or come up with
- 14 an adjustment factor that would take care of
- 15 fading of different energies.
- 16 The various reports that Ron
- 17 Buchanan mentioned that were cited in the
- 18 Mound literature seem to be energy dependent.
- 19 There was the one report that was
- 20 done very carefully and was published, which
- 21 was for PuF4, which has an average energy -
- 22 this is interesting. It has a total average

1	energy	of	1.3	MeV.

- 2 But if you then discard the low-
- 3 energy neutrons and weight the neutron
- 4 spectrum by its detectability using this
- 5 Lehman calculation, it comes out that the
- 6 average energy is actually 1.49.
- Well, that's the average energy of
- 8 the neutron that you actually detect on the
- 9 NTA film.
- 10 And here we have many measurements
- 11 within the plant, and I'm not looking at it
- 12 now, but my memory serves that at some time at
- least one measurement, I seem to recall, is in
- 14 that database referred to as NIOSH. NIOSH
- actually wrote about a 50-page report and then
- 16 there is about a thousand pages of various
- 17 documents interspersed between the pages.
- 18 It's a report that we actually wrote.
- 19 And I seem to recall .5 something
- 20 in one particular location as the measured
- 21 actual average neutron spectrum.
- So, they go down quite low, and the

1	answer is how the fading the two reports on
2	fading where they give details, there is more
3	fading for the PuF4 source.
4	The attenuated PuO2 source where
5	they attempted, deliberately ran an experiment
6	trying to see, can we account for the energy
7	dependence of fading, and there was apparently
8	an error in the report which was never issued
9	which was in draft form where they say, well,
LO	with the I think they said eight inches of
11	polyethylene, that the average energy is .9
L2	MeV. That's incorrect.
L3	It's actually about 1.8 MeV because
L4	we ran that simulation. We did ten inches of
L5	water. We did the same amount of hydrogen as
L6	eight inches of polyethylene.
L7	He did his calculations, he put
L8	down his result, but he made a misstatement in
L9	his report.
20	So, actually he had a higher-energy
21	source. And as one would predict from just
22	first principles, there was less fading

1	because, as Ron pointed out, I believe the
2	threshold that they used at least in some
3	cases, I mean the Lehman report is four
4	grains.
5	Anything under four grains could be
6	background. Three grains you can just get
7	from radiation background.
8	So, if you have four grains and you
9	lose one, you no longer have a track. If you
10	have ten grains, I mean let's say you lose
11	half the grains. So, if you lose - if you
12	have four grains, you lose half the grains or
13	even if you have six grains, you lose half the
14	grains, you don't have a countable track.
15	You have ten grains, you lose half
16	the grains, you're left with five and you have
17	a countable track. So the higher the energy,
18	the less the fading.
19	And there was another report that I
20	can not from Mound; I think it was INL
21	where they did a polonium-beryllium source
22	which has over 4 MeV average energy and they

1 said, there's really no fadin	1	said,	there's	really	no	fading
---------------------------------	---	-------	---------	--------	----	--------

- 2 There's some -- we did -- we look
- 3 at this, we look at that, sometimes it's
- 4 higher, sometimes it's lower, we can't really
- tell, we admit there's probably some fading,
- but the data is such it's so little that they
- 7 really can't assign a number to it because
- 8 they had high-energy source. They were losing
- 9 dots, but not losing numbers of tracks.
- 10 So, I'm just amplifying that this -
- 11 what my colleagues have said, that this is
- 12 an issue. And unless someone comes up with
- literature or someone commissions a laboratory
- 14 study, which is something that certainly is
- 15 doable, I mean the study can be doable, the
- 16 commissioning of it may not be.
- 17 I don't know how to do this. None
- 18 of us know how to do this.
- 19 DR. MAURO: This is John. I think
- 20 what Bob Morris had mentioned is there are
- 21 differences in models, the degree of
- 22 conservatism, the assumptions made, certainly

2	with all that.
3	And when we did it and the
4	judgments we made and the techniques we used,
5	for example, using a continuous distribution
6	of the energies that might be attenuated as
7	opposed to a step function, there's all of
8	this and I would agree it's all tractable.
9	And the bottom line is that, you
10	know, when we look at the problem and talk
11	about what kind of adjustment factors might be
12	needed, we actually say that, well, depending
13	on the circumstances, we might even have an
14	adjustment factor that's lower than yours.
15	But if our interest is to make sure
16	that we're placing a plausible upper bound,
17	we're saying that, well, our adjustment factor
18	might be higher than yours by a factor of two
19	or so, depending on the circumstances.
20	So, what I'm getting at is I don't
21	I think that we do have some differences of
22	opinion and methods of approaching this

there's judgment involved in that, and I agree

1	problem, levels of granularity to which we did
2	an analysis, and where we come down is, yes,
3	we're going to come down with differences in
4	our adjustment factors where ours might in
5	some circumstances be twice as high as yours.
6	And I'm making a very simple
7	generalization. I don't think that's
8	important to the SEC.
9	Okay. What I do believe is
10	important to SEC, what you just did up on the
11	blackboard is something very important,
12	because you're coming at the problem of fading
13	in a different way that I haven't thought of
14	and I think it's important.
15	What you're saying is, yes, there
16	might be some fading and that would drive the
17	curve down, but it's not going to change the
18	dose.
19	I'd like to hear more
20	quantitatively if you can demonstrate that,
21	yes, that you're right. We don't have any
22	studies at least for right now in front of us

1	that say this is the it's 50 percent per
2	week for an attenuated spectrum under humid
3	conditions, you know. We don't have that.
4	Okay, and if you don't have that,
5	one could argue, then how are you going to
6	deal with it.
7	You just came up with an idea that
8	is interesting to me. And that is, well, one
9	way you could deal with it is let's see what
10	kind of effect it would have on the dose. And
11	what you're saying is it shifts the
12	distribution in the way that it drives more
13	neutrons down to an energy where those
14	neutrons are not going to contribute to dose.
15	MEMBER ZIEMER: Well, that's exactly
16	right. And, in fact, the more important the
17	fading becomes, the less important the dose is
18	for that neutron, is another way of looking at
19	that.
20	The ones that you lose like the
21	three trackers that you lose by fading,
22	weren't very important to start with. The ten

1	trackers	are.

- 2 And so as you move down that curve,
- 3 where you will start to lose the count for
- 4 tracking, for tallying, the less important
- 5 those are in terms of contributing the dose.
- 6 This curve also is an expression of
- 7 what traditionally was called quality factor.
- 8 And that's why fast neutrons, you know, the
- 9 one where a millirem of fast neutrons takes
- 10 about, what is it, about ten neutrons, for
- 11 thermals it takes thousands to deliver the
- 12 same dose.
- So, losing large numbers down in
- this range doesn't mean very much.
- DR. BUCHANAN: Well, I'd like to put
- 16 a qualifier on that, is that this here, say,
- is at your 1.3 MeV bare source.
- Now, as you moderate that bare
- 19 source, that whole thing shifts downward.
- 20 Okay. And so you're going to be -- actually,
- 21 this line should come up to .5. That's where
- 22 we're talking about.

1	And I agree with what you
2	MEMBER ZIEMER: Yes, and so you
3	worry about this lower quadrant, right?
4	DR. BUCHANAN: This becomes more
5	important as this shifts down, because you
6	have less up here. You have more of your
7	dumps down here, and we don't know what that
8	is.
9	Maybe that's a way to solve the
LO	problem just to show how much of that dose
L1	equivalent is down in this region to a
L2	moderated source compared to an unmoderated
L3	source.
L4	And we're not saying that's not a
L5	solvable problem. We would just like we
L6	don't think the fading has been sufficiently
L7	addressed in the ER and we didn't fight going
L8	from a before we had 33 and 56 percent one
L9	week, two weeks. And we got down to ninety
20	percent in the ER. And we've seen that we
21	flew in the wrong direction especially when
22	you consider this

1	Is this a solvable problem? Maybe
2	it is, but we need to and maybe you can't
3	do it in detail, but maybe you can set a limit
4	and say, okay, this amount of this
5	difference in dose here can't exceed over 25
6	percent or something and factor that in.
7	DR. ANIGSTEIN: I'd like to weigh in
8	on this.
9	CHAIR BEACH: Just a second.
10	MR. KATZ: One at a time, please.
11	DR. MAURO: Yes, Ron was just
12	speaking, Bob.
13	DR. ANIGSTEIN: Well, okay. I
14	thought he finished.
15	DR. MAURO: Yes, please, go ahead.
16	DR. ANIGSTEIN: Okay. I mean I just
17	want to comment I want to go back to what
18	Bob Morris said when he said the amount, you
19	know, that only the low-energy neutrons fade,
20	I mean at least they fade more. And,
21	therefore, being low energy, they contribute
22	less to the dose.

1	That would be fine if you had a
2	worker who was exposed to a range of sources
3	and much of his exposure, much of his tracks
4	came from high energy, and some of them came
5	from low energy and you say, well, that
6	doesn't count very much to the dose.
7	What about a worker who's in a
8	location, and there are such locations at
9	Mound, or were such locations at Mound, where
LO	the whole spectrum is a low-energy spectrum?
L1	Does that worker do we say that
L2	the neutron dose to that worker is simply
L3	unimportant?
L4	Because by taking this 1.3 MeV
L5	spectrum, I actually went back and took the
L6	not just they said well, they said 34
L7	percent, but he actually showed the actual
L8	numbers.
L9	So, I did that. I did a curve fit
20	and I came up with a slightly different number
21	than what we have currently, and I came up
22	with about six percent per day.

1	And if you integrate that over
2	and some of the badge periods, at one point
3	they went to a 28-day, four-week badge cycle.
4	So, at the end of 28 days from the
5	first day, you only have 17 percent left. And
6	if you and it saves half of and then if
7	the real fading is twice that because you have
8	a much lower energy spectrum, it's a
9	significant difference.
LO	I don't think it can be waved away
11	by simply saying the fading only affects the
L2	area where there is no dose, so we can just
L3	ignore it.
L4	DR. ULSH: All right. Let me
L5	clarify.
L6	I'm not saying it only occurs at
L7	low doses and so we can just ignore it. I'm
L8	not saying that.
L9	What I'm saying is it's a bigger
20	issue with lower-energy neutrons. And as Paul
21	said as they go lower in energy, the
22	dosimetric significance diminishes

1	DR. ANIGSTEIN: That's true.
2	DR. ULSH: And, furthermore I
3	don't know, I don't want to speak in absolutes
4	here.
5	But since Mound was working
6	primarily with plutonium fluoride or polonium
7	beryllium sources, I can't think of a
8	situation at Mound where a worker would have
9	been exposed only to low-energy neutrons.
10	Now, there may be
11	DR. ANIGSTEIN: There are surveys
12	that show areas where the average energy is as
13	low as I think .59 I'm going by memory now.
14	So, I'm a little shaky, but I remember a very
15	low number and definitely a whole building
16	where the average of all the locations is less
17	than 1 MeV average average energy.
18	So, the workers were exposed. Some
19	workers were exposed to low energy in the
20	neutron spectrum.
21	DR. ULSH: Please understand what
22	I'm saying.

1	DR. ANIGSTEIN: And all the
2	calibration of the badges including when they
3	started compensating for fading, was based on
4	the unattenuated, the bare source.
5	So, there is no question that some
6	workers are going to get shortchanged by
7	ignoring the increase fading of the low-energy
8	neutron spectra.
9	DR. ULSH: Please understand what
10	I'm saying. I'm not saying that workers
11	weren't exposed to low-energy neutrons. They
12	were.
13	Because for one thing, especially
14	in PP Building when they moved operations, the
15	plutonium operations into PP Building, they
16	increased the moderator or increased the
17	shielding, which of course would lead you to
18	low-energy neutrons. But it's not only low-
19	energy neutrons.
20	And in fact if we go back to SC&A's
21	summary at the beginning, you all concluded
22	based on your own modeling that there weren't

1	situations where it was all below the
2	threshold. You all concluded that.
3	DR. ANIGSTEIN: I'm not saying that.
4	DR. ULSH: No, let me finish.
5	I understand, but there's not going
6	to be a situation at Mound or anywhere else
7	okay, let me back up before I make a mistake.
8	There's not going to be a situation
9	at Mound where workers were only exposed to
10	low-energy neutrons. There will be some high-
11	energy neutrons there.
12	Now, maybe most of those marbles
13	are low-energy neutrons, but not all of them.
14	But for those marbles where and, by the
15	way, that was my analogy, not Bob Morris'.
16	So, all blame goes to me on that.
17	Once those marbles are knocked
18	below that energy threshold, knocked into the
19	low-energy region where you can't see them on
20	an NTA film, the dosimetric significance is
21	minimal. That's what we're saying.
22	I'm not saying it's zero. I'm not

1	saying we should ignore it. We should talk
2	about it. I think it's important to decide
3	whether or not the factor is nine percent or
4	35 percent or 20 percent or something entirely
5	different.
6	We can discuss that, but we've got
7	to keep in mind the fact that as we've got
8	competing phenomenon going on here.
9	As the neutrons drop in energy,
10	they become harder to detect on the film. But
11	at the same time, they become less and less
12	dosimetrically important.
13	MR. MORRIS: Brant, this is Bob.
14	One thing I would add is that is
15	exactly the reason that those curves asymptote
16	at a and then turn and actually go flat at
17	eight inches of water.
18	DR. ULSH: Yes, exactly. Exactly.
19	And when we say it's an important
20	thing to check out and to investigate, I would
21	refer you back to our March 18th report where
22	we did exactly that.

1	CHAIR BEACH: Is it the same diagram
2	you're talking about?
3	DR. ULSH: Yes, it's that one up
4	there on the Board.
5	DR. MAURO: But the nine percent per
6	week fading adjustment factor that you folks
7	offer up in your ER, are you saying that you
8	probably need to revisit that in light of the
9	discussion we just had?
10	DR. ULSH: Well, John, I would say,
11	you know, we can talk about that. I mean we
12	can talk about whether nine percent is the
13	right number.
14	But I think you hit the nail on the
15	head earlier when, yes, let's talk about it,
16	but it doesn't seem to me that this is an SEC
17	issue.
18	Maybe the number is not nine
19	percent. Maybe it's whatever you guys use.
20	We can do some modeling. We can have some
21	more interactions about this. I think maybe
22	we should

1	CHAIR BEACH: It has the potential
2	to be an SEC issue.
3	DR. ULSH: Well, it's not a hundred
4	percent. I mean you have to consider first of
5	all how long they wore the badges and how long
6	until they developed it. Because the longer
7	the wear time, the higher the fading that you
8	get.
9	Now, I'm stepping out on a limb
10	here, but just going from memory, the people
11	who were in the highest neutron exposure
12	fields were the ones that had the most
13	frequent badge exchange cycles, which would
14	tend to minimize not okay. It would
15	diminish the effect of fading.
16	I'm not saying it's zero. But the
17	quicker you change out the badges and develop
18	them, the less impact fading has.
19	The problem that you get into is
20	when someone is issued an NTA badge and they
21	wear it for six months. And if you make a
22	worst-case assumption and say they got all of

1	their exposure on the first day that they wore
2	it and it was by and large low-energy
3	neutrons, that signal could fade before you
4	actually develop the film.
5	CHAIR BEACH: It will fade, yes.
6	DR. ULSH: Absolutely it will fade.
7	DR. ANIGSTEIN: Let me comment on
8	that. The policy at Mound from what I read,
9	was that the so-called visitor badges were
10	issued on a quarterly basis.
11	And the NTA film was not developed
12	unless there were two requirements, one is
13	the photons had to be above a certain
14	threshold. I think it was a hundred millirem.
15	I don't know. It doesn't really say. It just
16	says significant photon dose. And then, two,
17	they have to know on which day they were
18	exposed to neutrons.
19	So, if they take that badge on June
20	30th and say this is a three-month badge and
21	they say, okay, are we going to develop the
22	NTA film?

1	They won't even develop it unless
2	there was some evidence, oh, yeah, on May 31st
3	you went into this high-neutron area and
4	that's where you would have gotten the neutron
5	dose. And, therefore, we can correct the
6	fading. Otherwise, they won't even bother
7	doing the NTA film. And, rightly, because
8	they won't have any idea what correction to
9	apply to it.
10	DR. BUCHANAN: In that case they
11	would apply the coworker model, I understand.
12	DR. ULSH: Right. That's not an
13	unimportant issue. It's just a different
14	issue than what we're talking about now.
15	Josie, I don't know if you want to
16	get into that discussion.
17	CHAIR BEACH: No, no, no, no. What
18	I'd like to do is before we get into coworker,
19	I want to take a break.
20	But I would like to ask NIOSH if
21	you would come back with the response to the
22	Work Group on the fading issue, and then with

1	the adjustment factors as a White Paper,
2	because I know this has come up in several
3	meetings and it's never really been answered
4	in writing.
5	MR. HINNEFELD: So, now just kind of
6	thanks for doing that, because I was thinking
7	we should wrap this up and you did exactly
8	that.
9	One is that there is so, you
10	want an evaluation back from us on both
11	issues. Both an evaluation of SC&A's sort of
12	recalculation of the correction factor.
13	CHAIR BEACH: The correction factor.
14	MR. HINNEFELD: Which everybody kind
15	of agrees that's just a question of what will
16	the number be. Not can you generate a number,
17	but what will the number be.
18	CHAIR BEACH: Right.

21 CHAIR BEACH: Yes.

MR.

something we need solved.

MR. HINNEFELD: And then the second

NEAL R. GROSS

HINNEFELD: But

19

20

it's still

1	item is the fading issue and is in fact that a
2	tractable problem, because the discussion here
3	doesn't convince either side, anybody of
4	anything. At least doesn't convince me of
5	anything.
6	So, I think there needs to be some
7	more discussion of that issue in order to
8	decide whether that's an SEC issue or a Site
9	Profile issue.
10	Is that where you're at on this?
11	CHAIR BEACH: Yes, yes.
12	MR. HINNEFELD: Okay. Perfect.
13	CHAIR BEACH: Everybody okay with
14	that?
15	MR. MORRIS: This is Bob Morris.
16	I would note that we don't have
17	anything in writing on fading in terms of the
18	findings in the June 29th paper.
19	And so if we could get that data
20	that you're suggesting we should look at, I'd
21	like to see it.
22	We haven't been able to get access

1	at	lea	st 1	that	I'V	e f	oun	d ye	t,	to	the	rece	nt
2	pap	er.	the	2010) par	er	bv	Ania	ste	in	and	Olsch	er

- 3 titled Sensitivity of NTA Film -- The Sources
- 4 At Mound Laboratory, which is cited in your
- 5 review, but wasn't made available to us.
- DR. ANIGSTEIN: Yes, can I comment?
- 7 This is Bob Anigstein again.
- 8 We reissued that paper because it
- 9 was just one error, one slip-up in one of the
- 10 links.
- 11 So, that paper was reissued on July
- 12 -- I think it came out on July 23rd and it was
- transmitted to NIOSH and to the Work Group.
- 14 So, everyone -- at least everyone in the room
- 15 from the Work Group and from NIOSH should have
- 16 a copy of this.
- DR. ULSH: Right.
- DR. ANIGSTEIN: And this, the one
- 19 that you've cited, the sensitivity of NTA
- 20 Film, and that has an analysis -- what I just
- 21 cited I was reading from the report -- that
- 22 has a section on track fading.

1 DR.	ULSH:	All	right.	Let	me	clear
-------	-------	-----	--------	-----	----	-------

- 2 up perhaps some misunderstandings here.
- 3 The June 29th paper that Bob
- 4 referred to I think we do have. That's -- Bob
- 5 Morris has seen that.
- 6 MR. MORRIS: Yes.
- 7 DR. ULSH: That's another problem is
- 8 we've got two Bobs on the phone.
- 9 And that's not a problem, but in that June
- 10 29th paper that SC&A issued there is a
- 11 reference to a document, Anigstein and Olscher
- 12 2010, Sensitivity of NTA --
- DR. ANIGSTEIN: NTA Film. That's
- the one I was just referring to. That is the
- one that discusses the fading issue.
- DR. ULSH: Exactly.
- 17 DR. ANIGSTEIN: It was originally
- issued in May 24th, but then there was a
- 19 revision that came out on July 23rd, I
- 20 believe.
- DR. ULSH: Okay. That's the one at
- least Bob Morris hasn't seen.

1	DR.	ANIGSTEIN:	Yes,	but	it	was
---	-----	------------	------	-----	----	-----

- 2 transmitted by our production manager, Nancy
- 3 Johnson, to the Mound Work Group. And I think
- 4 it went to Brant Ulsh and --
- 5 MR. FITZGERALD: Yes. Apparently
- 6 Bob hasn't seen it, but that can be taken care
- 7 of.
- DR. ULSH: Okay. So if I got it, I
- 9 will forward it to Bob Morris.
- DR. ANIGSTEIN: Right.
- DR. ULSH: And that's not an issue
- 12 then.
- DR. ANIGSTEIN: I mean it's not PA
- 14 cleared, but that shouldn't be -- but it has
- 15 been DOE reviewed.
- MR. FITZGERALD: And as I recall,
- it's essentially one table that was really --
- DR. ANIGSTEIN: It was one table
- 19 with change.
- 20 MR. FITZGERALD: The change was
- 21 numbers were --
- DR. ANIGSTEIN: There was basically

- 1 a reference to the other table where it said -
- 2 I had them aligned and in the final
- 3 production it came out to be shaded areas,
- 4 which was a little confusing.
- 5 MR. FITZGERALD: Well, I did hear
- 6 Bob mention that, you know, that should
- 7 satisfy your need, Bob, for the fading
- 8 discussion that you don't have right now. So,
- 9 that should take care of that issue as well.
- MR. MORRIS: Okay.
- MR. FITZGERALD: Okay.
- 12 CHAIR BEACH: All right. So, let's
- 13 take a ten-minute break.
- 14 Is that enough time?
- MR. KATZ: Sure.
- DR. ULSH: So, back again at five
- 17 past the hour?
- 18 CHAIR BEACH: Yes.
- 19 (Whereupon, the above-entitled
- 20 matter went off the record at 10:54 a.m. and
- 21 resumed at 11:06 a.m.)
- 22 CHAIR BEACH: Okay. Is everybody

	1	ready?	Let's	qo	ahead	and	start
--	---	--------	-------	----	-------	-----	-------

- 2 MR. KATZ: Okay. We're just
- 3 reconvening after a short break.
- 4 CHAIR BEACH: Okay. And before we
- 5 leave Mound, we are -- or not Mound, neutron
- 6 discussion. We have one more issue under the
- 7 coworker issue that I know Ron's ready to
- 8 discuss.
- 9 DR. BUCHANAN: Okay. Coworker
- issue, we're talking about people with dose of
- 11 record, is what we've been talking about so
- 12 far. They had NTA film dose of records, how
- we'd be able to adjust that.
- Now, what about the workers that
- 15 did not have NTA film dose of record? Might
- 16 have photon dose of record, but no neutron
- dose of record either because they weren't
- 18 badged for neutrons, weren't anticipating
- 19 exposure at that time, or they actually wore a
- 20 badge, but it wasn't read because the photon
- 21 dose was below a certain level. And so they
- 22 didn't go to the trouble of reading the NTA

1	film.
2	As I say, the NTA film was much
3	more consuming and costly to read than photon
4	film. Well, this is one way of sorting them
5	out.
6	So, in either way the worker does
7	not have a neutron dose of record and for some
8	reason they're in dose reconstruction. It is
9	by today's standard, should have been
LO	monitored, and so how do we assign a neutron
11	dose?
L2	As standard practices at other
13	sites, one method is to use a coworker dose.
L4	In other words, look at the neutron exposure
L5	to the people that were badged and read and
L6	have records, and see what their doses were
L7	each year on a yearly basis and assign either
L8	a 50th or a 95th percentile of that dose to
L9	the unmonitored worker.
20	And so in NIOSH's paper of December

of 2009, they presented a method to limit that

In other words for an SEC, you want to

dose.

21

22

1	write a method that would limit the dose.
2	And one way was to use N/P method,
3	which is that you look at all the workers that
4	had records above a certain point, say 50
5	millirem. And there's something like 10,000
6	records for the whole time period.
7	I went back and looked at some of
8	those and they are actually there on the MESH
9	database of recorded NTA film and gamma-
10	matched pairs. And look at this on a yearly
11	basis and say what was the ${\rm N/P}$ values, and
12	then assign that worker for that year.
13	For example, let's say the average
14	N/P value for 1960 was four. And so you if
15	the person got a hundred millirem of gamma
16	dose, that would you would assign them 400
17	millirem of neutron dose in addition to that,
18	and this is an acceptable method.
19	However, this is a NIOSH limited
20	this as a limiting method or labeled this
21	as a limiting method to bound the dose.
22	Another method that they proposed

1	was that the way I understand, it would be
2	more realistic assigning the individual doses
3	was to use categorical data from 1951 to 1960,
4	those ten years in which some HP reports
5	listed categorical information for neutron
6	dose, which was not specific dose recorded,
7	but how many badges read in a zero to a
8	hundred millirem range, how many read in a
9	hundred to 300, and how many read over 300
10	millirem, which I'll call categorical data.
11	And then this information, both the
12	neutron NTA-recorded data and this categorical
13	data, was multiplied by the MCNP correction
14	factor, fading factors and angular
15	distribution factor which we previously talked
16	about. So, those factors bear upon the
17	coworker dose also. And then they provided
18	tables of the 50th and 95th percentile in
19	their paper.
20	Now, SC&A would like to address two
21	issues. Number one is the validity of the N/P
22	values which we talked about in January. We

don't have any further information on that	аt,
--	-----

- 2 which I reiterate that.
- And secondly, the fact that the
- 4 categorical data, SC&A does not feel this is
- 5 necessary or valid data method to use.
- 6 And so in our opinion, the
- 7 categorical data doesn't really add to the
- 8 ability to assign dose.
- 9 If we're going to use something, we
- 10 have quite a bit of NTA film data. We'll use
- it if it's verified. If it's not verified,
- 12 then the categorical data isn't any good
- 13 either. So, we would like not to use the
- 14 categorical data.
- The neutron-to-photon ratio data,
- 16 the two issues we have there is we think
- 17 there's quite a bit of data there. However,
- when we look at the spread in the data from
- 19 year to year or within a year, there does not
- 20 seem to be a good correlation between the
- 21 neutron and photon ratios.
- 22 And we did not go through and do a

	1	lot	of	analysis	on	it.	But	in	the	ER	paper,
--	---	-----	----	----------	----	-----	-----	----	-----	----	--------

- we have Table 4-4 which lists the medium and -
- 3 50th and 95th percentile distribution for
- 4 each year. And we see that there's large
- 5 variations in this, which we brought up
- 6 before, from one year to another. It might
- 7 change by a factor of two or three years.
- 8 And then the box and whisker plot
- 9 on Page 20 in Figure 4-2, shows a large
- 10 variation within the year.
- So, we question the applicability
- of this N/P data. And we also question why
- 13 just -- we haven't looked at it. We just
- 14 wonder wouldn't the NTA film data for each
- 15 year, just use it as coworker dose as we do
- 16 gamma dose.
- 17 In other words if you have a
- 18 hundred readings, you look at the 50th and
- 19 95th percentile of a hundred readings for
- 20 1960, and the same thing for `61, and just do
- 21 a coworker dose assignment based on the NTA
- 22 film rather than trying to use the N/P values

Т	which seem to fluctuate a fot.
2	So, maybe there's a valid reason we
3	don't want to use the NTA data by itself. And
4	we also would like some assurance that the N/P
5	values are paired I mean are correlated,
6	the neutron is correlated with the photon
7	since the information we have doesn't
8	appear to be very correlated.
9	So, that's where we stand on the
10	coworker neutron issue at Mound.
11	CHAIR BEACH: Anybody have any
12	questions for Ron before NIOSH?
13	Any other comments?
14	Okay.
15	DR. ULSH: Okay. So, this is Brant
16	Ulsh.
17	Basically, to go back to the
18	approach that NIOSH has put on the table and
19	just kind of summarize where we are, we've
20	talked about earlier in this discussion, a
21	situation where people who wore visitor badges
22	now, this is a little bit different than

1	what you might be thinking. This does not
2	refer to visitors to Mound.
3	So say, for instance, someone came
4	to Mound from Los Alamos. That's not the
5	situation we're talking about here.
6	The visitor badges that we are
7	describing are, for instance, SM Building. If
8	a Mound worker was not routinely assigned to
9	SM Building, say, for instance, I don't know,
LO	a pipefitter, but he got called up to SM
11	Building to do some work up there, he would,
L2	at least, in the early years, be assigned a
L3	visitor badge.
L4	So, this is a Mound worker who's
L5	not normally assigned to that building. And
L6	the visitor badge would consist of a gamma
L7	film and an NTA film.
L8	So he goes in, he does his work, he
L9	drops his badge when he's done. And as
20	someone described earlier, I don't recall who,
21	there was a time period where, if the gamma
22	badge didn't read above a certain level that I

Τ	don't know off the top of my head, then they
2	wouldn't bother to read the NTA film.
3	So, in a situation like this, even
4	though the worker wore an NTA film, we would
5	consider that an unmonitored dose because the
6	film wasn't read. So, he might as well not
7	have been wearing it. So, that's the
8	situation we're talking about in the early
9	years.
10	And for that time well, one more
11	point to make. Ron described two categories
12	of people to whom the coworker model might be
13	applied, the neutron coworker.
14	The first was people who were not
15	badged at all, and the second was the category
16	I just described where people were badged, but
17	not read.
18	Now, regarding the first category,
19	people who were not badged at all, we've
20	discussed that there were a couple of workers
21	here at the meeting in January, and then
22	I'm trying to think at least one of them

1	I	think	both	of	them	participated	in	а

- 2 subsequent interview. And, Ron, I know you
- 3 weren't involved in that interview.
- 4 But during that interview, we
- 5 discussed with them what the badging policy
- 6 was in terms of who wore badges and who
- 7 didn't. And we went into a bunch of different
- 8 examples, scenarios. People who took out the
- 9 trash. People who moved boxes from here to
- 10 there. Would they have been badged?
- 11 And I recall very clearly that the
- input that we got is, yes, people would have
- 13 been badged.
- 14 So, I would contend to you that
- that first category of people, people who just
- 16 simply weren't wearing a badge, I'll never say
- 17 it's zero. But by all indications that we
- 18 have, people were badged if they had an
- 19 exposure potential.
- 20 DR. BUCHANAN: For gamma and
- 21 neutron, or just gamma?
- DR. ULSH: For gamma and neutron.

1	DR. BUCHANAN: Okay.
2	DR. ULSH: That was the specific
3	topic of that interview was neutrons and
4	neutron issues.
5	DR. BUCHANAN: Okay.
6	DR. ULSH: So, that category I think
7	is going to be fairly it's going to be
8	really small. I won't say zero. But the
9	other category is a bit problematic, people
10	who wore badges and the badges weren't read.
11	So, essentially you're talking about they
12	essentially weren't monitored.
13	Now, we've proposed a number of
14	different approaches based on the data that we
15	have readily available.
16	For the early years when we have
17	the health physics progress reports, and those
18	run from I think day one, 1949 up through
19	about 1960. It's been a while since I've
20	looked at them. And those reports typically
21	contain the categorical data that Ron

22

described.

1	So, the number of badges read that
2	fell into the zero to a hundred millirem, for
3	instance. And then the 100 to, what was it?
4	300, Ron?
5	DR. BUCHANAN: Yes, and above 300.
6	DR. ULSH: Yes, and then above 300.
7	So, different categories of neutron exposures
8	there.
9	The problem is, is we don't have
10	those reports past 1960, as we've described
11	before.
12	I'd sure like to have them, but I'm
13	ready to conclude that they simply weren't
14	written after 1960, because we looked really
15	hard for them and just don't have them.
16	I don't know. I've never
17	understood the objection to categorical data.
18	I understand that it lacks the resolution
19	that you might have from looking at just the
20	entire population of NTA films and, by the
21	way, I think that the reason we didn't propose
22	just looking at the NTA films themselves was

1	because prior to some year, I think it's in
2	the 1970s, what we have readily available in
3	terms of electronic database, data that is
4	readily useable for this kind of an
5	application prior to 1977, what we have is
6	annual totals.
7	I don't think that we've got in an
8	electronic format, the individual cycle-by-
9	cycle reads.
10	Now, that's not to say that we
11	couldn't go grab the neutron dosimetry
12	logbooks, code all that data and use it, you
13	know. I'm not saying that. It's just that it
14	wasn't readily available.
15	And keep in mind the purpose of all
16	of these reports that we have written that
17	we're talking about here and that's simply to
18	determine whether or not we have an SEC issue,
19	a completely unboundable neutron exposure, at
20	worst, we contend that we don't have an SEC
21	issue here. Because that categorical data
22	while it lacks resolution, it's perfectly

1	adequate for this.
2	I mean we can establish an upper
3	bound dose that can be applied to people who
4	perhaps wore a visitor badge and their neutron
5	film wasn't read. There's no reason why we
6	can't do that.
7	I know that SC&A doesn't like that
8	data, using that data, but I've never really
9	understood the basis for that.
10	Now, in terms of the N/P ratios,
11	Ron referred to a couple, you know, a table
12	and a graph from the report that we wrote, and
13	I think we're in agreement that those values
14	are variable. We don't deny that.
15	However, I would contend that that
16	works in the worker's favor. As in other
17	situations here in this program, the more
18	variable the data and you take, you know, an
19	upper 95th percentile, well, then the higher
20	the N/P ratio you pick.
21	Is it going to overestimate its

Sure it is, but why is that a problem?

dose?

22

Τ	I don't understand why that would be an
2	issue.
3	Bob Morris, do you have anything
4	that you want to add on this?
5	DR. NETON: Before Bob talks, we
6	talked about this N/P ratio issue several
7	times where there's a lack of correlation, and
8	I've never understood the objection there
9	either.
10	Because effectively, what we have
11	is the distribution of the N/P ratio to the
12	worker. It is what it is and there's no prior
13	reason to believe that they're correlated.
14	But as Brant said, we're not using
15	a point value here. We're using either a
16	distribution that's applied or the 95th
17	percentile at worst case.
18	So, I'm not sure why there's sort
19	of an up-front impression that the N/P ratios
20	have to be correlated for them to be useful if
21	you apply distribution.
22	Because the distribution is what it

1	is,	and	you	can't	arque	that	the	95th

- 2 percentile in distribution is the highest N/P
- 3 ratio or one of the high-ended N/P ratios that
- 4 was observed. That's always been an issue.
- 5 I think we talked about it at
- 6 several other meetings. It seems to keep
- 7 coming up.
- Bob Morris, do you want
- 9 to add anything?
- MR. MORRIS: No, I have nothing else
- 11 to add, Brant.
- DR. ULSH: Okay.
- DR. MAURO: We were talking about
- 14 this, and we've talked about it before and I
- 15 was thinking about this.
- So, we have two numbers that are
- 17 measured, they're a couple. There is no
- 18 apparent correlation for some reason. Often
- 19 there is, but in this case there's not. And
- 20 whatever the reason is, it is.
- Okay. Now, bear with me because
- I'm not trying to be a wise guy.

1	Let's say I had numbers where I
2	measured a person's height and measured his
3	had paired numbers. Height and neutron dose.
4	Okay. No reason to be correlated maybe
5	there is. I don't know.
6	But I made a table, and here's the
7	ratios and I say, well, I'm going to pick the
8	highest one. There's something about that,
9	that disturbs me.
LO	DR. NETON: Yes, except for the fact
L1	that those were not measured in the field at
L2	the same time.
L3	DR. MAURO: No, I'm saying if you
L4	did that.
L5	DR. NETON: No, but the height
L6	the height is not a variable that was
L7	observed.
L8	You observed two variables in the
L9	field that were measured simultaneously, and
20	all we're saying is that the neutron, the
21	photon ratio, the highest possible one that
22	you found, which is valid, is a valid worker

_	
1	assignment.
	abbranner.

- 2 The height has nothing to do with
- 3 the exposure of the worker at all.
- DR. MAURO: Well, we're saying if
- 5 they're not correlated. If there's some
- 6 reason in this case --
- 7 DR. NETON: I'm not saying --
- 8 DR. MAURO: The correlation
- 9 coefficient is one, .1 or something some very,
- 10 very low.
- 11 So in other words, unlike -- see,
- intuitively we feel that there should be some
- 13 relationship between whatever the neutron
- 14 exposure is and what the photon exposure is.
- 15 And so you measure -- you pair them up.
- DR. NETON: All I'm trying to say,
- John, is the upper end bound of that ratio.
- 18 These are measurements based on a worker,
- 19 right?
- 20 I mean, so what is the highest
- 21 experienced neutron-to-photon ratio? Let's
- 22 say we're going to use the highest value.

1	We're	not	proposing	that,	but	let's	say	what
---	-------	-----	-----------	-------	-----	-------	-----	------

- is the highest possible scenario that existed
- 3 in the planet that this worker had ten
- 4 neutrons for every photon measurement?
- 5 That's a valid bounding estimate.
- 6 DR. MAURO: You measure two
- 7 parameters.
- But they're measured
- 9 simultaneously.
- 10 DR. MAURO: Measured together.
- 11 Okay.
- DR. NETON: Right.
- DR. MAURO: Again, let's say instead
- of doing that, when I measure the neutron dose
- for that change-out period, I also measure, as
- 16 I said at that time period for that person,
- 17 his height or his weight.
- DR. NETON: But his height has
- 19 nothing to do with the exposure of parameters
- 20 that we're --
- DR. MAURO: Well, they're not
- 22 related, right. But the two parameters if

1	they're	not	correlated,	there's	no	reason	to
---	---------	-----	-------------	---------	----	--------	----

- believe there's a relationship between neutron
- and photon dose.
- DR. NETON: Yes, there is.
- DR. MAURO: I'm saying is that any
- 6 more meaningful than if I was to couple up
- 7 some other paired parameter?
- DR. NETON: It is because I can
- 9 confidently say that no one was exposed to
- 10 more neutrons than ten times the photon dose.
- 11 So, whatever it was. Because that's the
- 12 highest value I observed in the workplace
- 13 setting.
- 14 I've done an empirical measurement
- and I said any time there's photons, the worst
- 16 case I've ever seen for neutrons is this. So,
- 17 I bounded the worst-case scenario.
- Now, we can argue whether it should
- 19 be the 95th percentile or you do it by
- 20 distribution, but these are empirically
- 21 measured numbers -- I mean values.
- 22 MEMBER ZIEMER: John, I would

1	maintain that they are correlated, but we
2	don't know the correlation.
3	DR. NETON: Maybe that's the
4	MEMBER ZIEMER: I always tell my
5	students in I don't know of any case where
6	you have neutrons where there's not a gamma
7	field. They are present at the same time.
8	You can have a gamma field without neutrons,
9	but you never have a neutron field without
10	gammas.
11	There is a correlation, but it's
12	not consistent because there are so many
13	factors that affect it.
14	There's geometrical factors,
15	there's
16	DR. MAURO: Shielding.

21 correlation in every instance and

22 different.

17

18

19

20

NEAL R. GROSS

there's all of these things that go on.

neutron spectrum changes in a different amount

than the gamma and so on, but there is a

MEMBER ZIEMER: Shielding factors,

it's

1	You go in a different room,
2	different sources, it's a different number.
3	DR. MAURO: Under the circumstances
4	that this is
5	MEMBER ZIEMER: Unlike height and
6	neutron dose where there truly is no
7	relationship, if everybody's geometry and
8	source was identical in that plant at every
9	instant, you would probably get the same
10	ratio, but it isn't.
11	DR. MAURO: It isn't.
12	MEMBER ZIEMER: It isn't. At least
13	this is how I think about it.
14	DR. MAURO: I see.
15	MEMBER ZIEMER: So, you go through
16	the plant and you measure a whole bunch of
17	different situations. You get one ratio,
18	here's another, here's another, and you get a
19	distribution of ratios.
20	But that informs you, you know,
21	what's the lowest, what's the highest. That's
22	how I think about it.

2	even higher that you didn't measure? I think
3	there could.
4	But if you do a distribution, you
5	actually allow for a tail to go on up beyond
6	what you actually measured.
7	DR. MAURO: I see what you're
8	saying.
9	So, yes, in other words, the fact
10	that every circumstance
11	MEMBER ZIEMER: We sampled the
12	workplace of
13	DR. MAURO: There's an unlimited
14	number of situations.
15	MEMBER ZIEMER: Right. An unlimited
16	number of ratios.
17	DR. MAURO: Ratios.
18	MEMBER ZIEMER: We have sampled them
19	throughout the workplace. And from that we
20	build the distribution, which is not unlike
21	what we do in other cases where we've sampled
22	the workplace.

Could there be another one that's

3	to me, I was struggling with this and I had
4	that silly relation here, but I understand the
5	difference now the way you just described it.
6	There is a relationship, but it's
7	not we don't we don't in any given
8	circumstance, we don't know what that
9	relationship is.
10	But we do know that when we
11	measured it, we got thousands I don't know
12	how many. Thousands of them. And you know
13	that it was never really higher than this,
13 14	that it was never really higher than this, which might represent the worst circumstance
14	which might represent the worst circumstance
14 15	which might represent the worst circumstance where you've
14 15 16 17	which might represent the worst circumstance where you've MEMBER ZIEMER: Or at least you have
14 15 16 17	which might represent the worst circumstance where you've MEMBER ZIEMER: Or at least you have a picture of the distribution no more than
14 15 16 17	which might represent the worst circumstance where you've MEMBER ZIEMER: Or at least you have a picture of the distribution no more than eight point or two or you've got lots of
14 15 16 17 18	which might represent the worst circumstance where you've MEMBER ZIEMER: Or at least you have a picture of the distribution no more than eight point or two or you've got lots of points and you get a distribution.

That's one way to think about it.

DR. MAURO: What you just explained

1

1	Paul	just	painted.

- What we've got is a sample. So,
- 3 we've measured the N/P ratios at certain
- 4 points, and that's a sample of what actually
- 5 exists in the workplace.
- 6 But the point that I would make is
- 7 that's not a random sample in any sense of the
- 8 word.
- 9 In fact, we would have picked the
- 10 points that would have been the worst where
- 11 the neutron field is the highest. Those are
- 12 the points that we would have non-randomly
- 13 selected to measure.
- So, when we're talking about this
- 15 distribution that we've built, we've got a
- 16 biased representation high. It's claimant
- 17 favorable to do that.
- DR. BUCHANAN: This is Ron Buchanan,
- 19 SC&A.
- 20 Okay. I think the problem comes in
- as when we use this data at the assigned dose,
- 22 by definition, we are saying to the worker

1	that there is a correlation between your
2	photon and your neutron dose we're going to
3	assign by using that method.
4	Yet, on the other hand, the data
5	we're using does not correlate it, and so
6	that's where the rub comes in. We're kind of
7	talking out of both sides of our mouths.
8	It's not correlated, but we're
9	going to use that data. And we're telling the
10	worker this is correlated, we're going to
11	assign you this dose.
12	DR. ULSH: I understand exactly what
13	you're saying, Ron, and I've been thinking
14	about it while we've been talking here.
15	And I think if what we were trying
16	to do is to provide a best estimate, a most
17	accurate estimate of the dose, we might have a
18	problem because there's no - we don't know
19	what the correlation might be if there is one.
20	However, that's not what we're trying to do
21	here.

In terms of an SEC discussion, what

1	we're trying to do is put an upper bound on
2	it.
3	So, when you take that already
4	biased population of samples that we have and
5	we pick some high percentile value, whatever
6	we choose to pick, what we're saying is we
7	don't really know what your neutron dose was.
8	It's somewhere between zero and this upper
9	limit that we're establishing. That's what
10	we're saying.
11	But we're not trying to say we're
12	going to use the neutrons or the gamma dose
13	and that is a reliable predictor of the exact
14	number that your neutron dose was.
15	I think there we would have a
16	problem, because there's an unknown
17	correlation, if any.
18	DR. NETON: Actually, I think what
19	we're trying to say is we don't know what your
20	neutron/photon ratio is. We don't know where
21	you actually work. So, we're going to assign
22	you the highest neutron/photon ratio for a

	person who did a job where it was the greatest
2	or at the higher end of the field. That's all
3	we're really saying.
4	DR. ULSH: And keep in mind here, I
5	mean, the people that we're talking about
6	assigning this to with maybe some exceptions,
7	I don't know, but by and large, these are the
8	people with low exposures, the people whose
9	badges weren't read because they didn't go in
10	there five days a week and work and then their
11	gamma badge exceeded that threshold. These
12	are the people who went in, did a quick job,
13	came out.
14	So, when we're using the most
15	exposed workers to bound our dose, there's
16	another claimant favorable factor built in.
17	CHAIR BEACH: When you say they did
18	a quick job, you're talking about the workers
19	that didn't have badges that were assigned to
20	that building for a job.
21	DR. ULSH: Yes.
22	CHAIR BEACH: And it could be a

1	quick	job	or	it	could	be	an	evolution	of	а
---	-------	-----	----	----	-------	----	----	-----------	----	---

- job, a day, two days.
- DR. ULSH: Yes.
- 4 CHAIR BEACH: So, you have to kind
- of put it in terms of a quick job is not just
- 6 always in and out.
- 7 DR. ULSH: I agree.
- 8 MEMBER ZIEMER: But they were not
- 9 permanently assigned in that area.
- DR. ULSH: Correct.
- 11 CHAIR BEACH: Right.
- 12 MEMBER ZIEMER: It was a temporary
- 13 job.
- DR. ULSH: Discrete, generally short
- 15 term, which I would define as, you know, I
- don't know, a week or less. You might be able
- 17 to find one longer. I don't know. But not
- 18 guys that worked up there for quarters at a
- 19 time.
- 20 DR. BUCHANAN: Now, tell me again
- 21 why -- I mean, just intuitively I would like -
- 22 I guess if I was doing this, I would want to

1	look	at	the	NTA	data	since	you	have	that	data,

- and compare it to the top dose you assign
- 3 using N/P ratios.
- 4 Why isn't the NTA data readily
- 5 accessible to do a coworker dose model?
- 6 DR. ULSH: Okay. This is really
- 7 going back into the memory banks here, Ron.
- I think it's because prior to --
- 9 okay. The data that we have readily available
- is, for instance, what's in the MESH database.
- 11 The problem with the MESH database
- in this particular instance, is that prior to
- 13 a certain date we don't have cycle-by-cycle
- 14 NTA badge reads paired with cycle-by-cycle
- 15 gamma badge reads. I think what we've got is
- 16 annual totals.
- 17 DR. BUCHANAN: Okay. But that
- 18 number from each individual worker paired
- 19 data, because you had used paired data from
- 20 individual workers on an annual basis, so you
- 21 had a neutron number and you had a gamma
- 22 number.

1	I can't and I know that it's
2	probably a simplistic look at it, but it
3	looked like it would be fairly simple to go
4	back and take that neutron data and just for
5	each year do a distribution on it and see how
6	that compares.
7	I guess it would be more
8	comfortable to say, okay, we agree with what
9	you're saying there if we knew the neutron
10	data didn't say, hey, this isn't right, you
11	know.
12	DR. ULSH: Bob Morris, do you have a
13	more clear recollection of the data that's
14	available?
15	MR. MORRIS: Sure. I've got
16	something to add here.
17	If you go back to look at Table 6-1
18	which lists the categorical data by month or
19	by year or quarter that's available, you'll
20	see, for example, that in March of 1954,
21	second quarter of 1954, there were 225 badges
22	or films read that were in the range from zero

1	to 100 millirem intervals. Nine that were 100
2	to 300. And zero that were more than 300.
3	So the point of that is, is that
4	when you actually take that and you re-image
5	that in the annualized roll-up of the MESH
6	data and you would drop, say, you know, how
7	many by every month, you're dominated in
8	almost every case by an annual roll-up by the
9	zeros. And so all you're reporting is the
10	missed dose for neutrons versus the gamma dose
11	that was measured.
12	The missed dose dominates the roll-
13	up data, and that's why we didn't successfully
14	find a way to use it. It's not very
15	informative.
16	DR. BUCHANAN: Okay. This is Ron
17	Buchanan.
18	On Table 4-4 we list the N gamma
19	matched pairs. I assume Column 2 in there,
20	say 1954, is the we have 32 matched pair
21	that
22	MR. MORRIS: Let me catch up with

1	you.	I'm	not	on	that	page	yet.
---	------	-----	-----	----	------	------	------

- DR. BUCHANAN: Okay. Table 4-4.
- DR. ULSH: Page 21.
- DR. BUCHANAN: Page 21. 1954 N, we
- 5 have 32 matched pairs which we used to do the
- 6 N/P value.
- 7 Why can't we look at the NTA film
- 8 values for neutrons for `54?
- 9 You have the same absolute data
- 10 there that you used to derive the N/P values
- 11 above a certain threshold. Say 50 millirem, I
- 12 think.
- So, that data ought to be as valid
- 14 to create a coworker model as to determine the
- 15 N/P value.
- DR. ULSH: So, Ron, are you saying -
- 17 let me see if I can accurately summarize
- 18 what you're getting at.
- 19 For the example that you used, 1954
- where there are 32, I guess -- I don't know if
- those are people or film badges.
- DR. BUCHANAN: Matched pairs, the

1 w	ay I	understood	it.

- DR. ULSH: Okay. Instead of using
- 3 those 32 numbers to generate an N/P ratio, why
- 4 don't we use those 32 numbers to generate a
- 5 neutron coworker data?
- Is that what you're saying?
- 7 DR. BUCHANAN: Yes, that's what I'm
- 8 saying.
- 9 DR. ULSH: Well, Bob, do you see an
- 10 issue with that?
- 11 MR. MORRIS: Well, I don't -- I mean
- 12 we certainly can do our arithmetic, but I --
- what I said before I think still applies, is
- 14 that our data is going to be dominated by
- 15 missed dose.
- DR. ULSH: So let's say, Ron, for
- 17 example, let's say we agree to do this. And
- we came back to you and we said that for 30 of
- those 32 badges, they were less than the LOD.
- DR. BUCHANAN: Okay. Well, let's
- 21 clarify something.
- I was thinking, and maybe I'm

1	thinking about another site, but I was
2	thinking that these had to qualify to appear
3	on Table 4-4. They had to be greater than 50
4	millirem.
5	Is that not correct?
6	MR. MORRIS: I think you're right in
7	that case, Ron.
8	DR. BUCHANAN: So, therefore, we do
9	have data that is at the LOD value or greater.
10	DR. ULSH: Yes, I see what you're
11	saying. Yes.
12	DR. BUCHANAN: And so I guess before
13	we say, okay, the N over P value is what it is
14	and it sets the upper limit, I would like to
15	see that verified by looking at the NTA data
16	for each year by itself as a coworker model,
17	and see if they're out of line, you know.
18	Perhaps we'll find that the NTA
19	data would provide a lower dose.
20	DR. NETON: It seems a way to get
21	past the hurdle that we talked about earlier

though, which is this fading issue, right?

1	DR. BUCHANAN: Yes, you have to
2	correct it for all that.
3	DR. NETON: Right. And we have to -
4	- it would seem that we need to solve the
5	first or convince people that the first
6	problem is solvable. Otherwise
7	(Simultaneous speaking.)
8	DR. MAURO: But I mean after that
9	first hurdle, the fading hurdles, what we're
10	really saying is we have a lot of options in
11	front of us dealing with the problem.
12	We would have certain preferences
13	on how to come at it that some which we
14	think are not as strong as other strategies,
15	but they're all tractable once you solve the
16	fading problem.
17	DR. ULSH: So, I think if we can
18	perhaps just set aside our disagreement on the
19	suitability of the categorical data, let's
20	just for the moment say we agree to disagree
21	on that.
22	And then what we could do then is

1	go back to the data that's reflected in this
2	Table 4-4, however many film badges there are,
3	and generate distribution by year, neutron
4	coworker type data, and then we can bring that
5	back to you.
6	CHAIR BEACH: Okay. So, you would
7	actually look at it.
8	Did you want to have access to it
9	as well or would you rather have
10	DR. ULSH: Well, I mean we can
11	we'll generate it. And then of course it will
12	go to somebody to review.
13	CHAIR BEACH: Gotcha.
14	DR. NETON It's got to be reviewed.
15	DR. MAURO: The rock we're going to
16	stand on though is the neutron the first
17	problem in other words, to go through this
18	exercise before we solve the fading problems,
19	it's sort of a waste of time.
20	DR. ULSH: Well, yes.
21	DR. MAURO: That's solved, and then
22	after that, then it becomes an entire, as far

1	as	I'm	concerned,	an	SEC	issue		Site	Profile
---	----	-----	------------	----	-----	-------	--	------	---------

- issues on how do you best come at the problem
- 3 that's most claimant favorable and
- 4 scientifically sound.
- 5 But until that first piece is put
- 6 in place --
- 7 DR. ULSH: Right. So if there were,
- 8 for instance, the Working Group was not
- 9 convinced of the reliability of film badges
- and on that basis recommended an SEC, the full
- 11 Board agrees and it becomes an SEC, then
- there's no point even -- well, actually --
- DR. MAURO: Well, eventually there
- is because for the non-covered cancers.
- DR. ULSH: But no, if this doesn't
- 16 come back, we can't do it.
- 17 DR. MAURO: We could reconstruct any
- 18 neutron dose.
- 19 DR. BUCHANAN: You can't use NTA
- 20 film.
- DR. ULSH: All right. Well, Josie,
- I don't want to step on your toes here. It

1	sounds to me like we need a graded approach
2	and do fading first.
3	If we can get past that, then maybe
4	we do this.
5	CHAIR BEACH: Okay. Okay. Because
6	I was going to ask you to rewrite, but we'll
7	start with the fading. I agree with that.
8	DR. NETON: I think that makes
9	sense.
LO	DR. BUCHANAN: That's fine.
L1	DR. NETON: In fact, doesn't our
L2	original model also rely on the fading issue
L3	to be resolved?
L4	Because we've corrected for- it
L5	anyway, so
L6	(Simultaneous speaking.)
L7	CHAIR BEACH: But also to come back
L8	to that in the essence of time would not
L9	wouldn't it be wise to just go ahead and look
20	at that data so that we're not

first address the fading, once you address

MR.

KATZ: Well, I mean

21

22

if they

1	that, if you feel confident in that, then you
2	just go ahead with addressing the second part,
3	right?
4	DR. ULSH: Right.
5	MR KATZ: I mean you don't want to
6	wait another Work Group meeting before you
7	address the second part.
8	CHAIR BEACH: Right. That's what I
9	was worried about.
10	DR. ULSH: Well, let me present
11	another scenario to you.
12	We come back to you with a piece on
13	fading and the stars align, and you all agree
14	with us fading is no longer an issue, our
15	issues have been satisfied.
16	At that point, even though we
17	haven't done this second analysis that you're
18	talking about, as John suggested, it's just a
19	matter of crunching the numbers.
20	Maybe we'll have some discussions
21	on our numbers a little higher than yours, but
22	could we agree that that's most likely a TBD-

1	type	issue	and	though	it	needs	to	be	done	for

- the purpose of an SEC decision, you guys would
- 3 be able to make an informed decision on that
- 4 part of it?
- DR. MAURO: I would agree with that.
- Now, if Mark was here, he would say
- 7 I approve in principle. And in my mind, I
- 8 agree.
- 9 You solve that fading problem, and
- 10 then it becomes a matter of what I call a
- 11 classic Site Profile issue that needs to be
- 12 resolved.
- DR. NETON: Right.
- DR. MAURO: The degree to which the
- 15 Work Group wants that issue resolved before
- they make a recommendation to the full Board,
- that's the Work Group's call.
- 18 DR. NETON: I also think we should
- 19 consider in fact, though, this N/P ratio
- thing.
- I think we're in agreement that
- there's not an absolute requirement that we

Τ.	correlate. That kind or goes away.
2	I think a lot of the
3	DR. MAURO: I have to say, I listen
4	to it from the way you both describe it to me,
5	and I have to say I'm inclined to agree.
6	DR. BUCHANAN: Unless one
7	reservation there is that if we come back with
8	NTA data and it shows a completely different
9	picture, and then we still have an issue to
LO	resolve, I don't think it will, but it could.
11	DR. MAURO: I mean what happens
L2	then?
L3	So, what you're saying is that you
L4	have two different ways to come at the topic.
L5	One is dealing with the validated, verified,
L6	corrected NTA films and building a coworker
L7	model on that basis.
L8	And then from there, theoretically,
L9	you could address all issues just from the N
20	from that.
21	In other words, you don't have to
22	go to your categorical data. You don't have

1	to go to your neutron/photon issue. In
2	theory, you can go straight to there.
3	Ron points out, all right, let's
4	say the question then becomes, well, let's
5	take a look and compare the difference that
6	you would come up with.
7	And if I were to use the
8	neutron/photon approach as opposed to let's
9	say some other strategy, one might be more
10	now we're, you know, which is the one that is
11	really more claimant favorable.
12	In light of everything, all
13	considered, all factors considered, which
14	approach do you think is in the best interest
15	of the Work Group to try to reconstruct his
16	dose, his neutron dose?
17	But I would say that question is a
18	Site Profile issue.
19	DR. NETON: Right. I mean you could
20	evaluate both. And both are options on the
21	table. We could evaluate both and pick one
22	which makes the most technical sense or the

1	most claimant favorable.
2	DR. MAURO: The best that will work
3	for the claimant, yes.
4	CHAIR BEACH: What does the rest of
5	the Work Group think?
6	Just get to the fading first and
7	MEMBER ZIEMER: I think you have to.
8	CHAIR BEACH: Okay.
9	MEMBER CLAWSON: Yes, the fading
LO	issue's got to be taken care of before
11	CHAIR BEACH: Okay. Makes sense.
L2	Are we ready to move on or are
L3	there any other lingering issues for neutrons?
L4	MR. FITZGERALD: This is a two-part
L5	action, just to clarify, that the fading
L6	analysis provided for the Work Group to
L7	examine or SC&A examine. And then, if that's a
L8	meeting, but certainly maybe a call or
L9	something so we have a juncture where we can
20	move forward.
21	I mean this is not going to be
2.2	staged for each Work Group meeting.

1	DR. MAURO: When I mentioned that
2	before I said, listen, before we move on to
3	the second phase
4	MR. FITZGERALD: Right.
5	DR. MAURO: Certainly the first
6	phase now, whether or not you want to, you
7	know, you want to schedule Work Groups, but I
8	mean to me that's the sequence
9	MR. FITZGERALD: Yes.
LO	DR. MAURO: Moving through that
L1	process, you know, but let's get that first.
L2	Then the sooner we can see your
L3	fading issue White Paper and that you feel
L4	comfortable that you've got your handle on it,
L5	you know, I think then we're standing on very
L6	solid ground and you may want to move
L7	immediately forward for evaluating.
L8	MR. FITZGERALD: Yes, I was going to
L9	say from a process standpoint the Work Group
20	may want to consider a technical call or
21	something just to

DR. MAURO: Yes.

1	MR. FITZGERALD: Keep the momentum
2	going.
3	DR. MAURO: Yes, you don't want to -
4	_
5	MR. FITZGERALD: The only concern
6	would be a two-part thing and
7	MR. KATZ: Yes, except that, if the
8	Work Group is it's more in the technical
9	call, if the Work Group is going to actually
10	make a judgment about the fading piece. Then
11	that's actually what
12	MR. FITZGERALD: That's a Work Group
13	meeting.
14	MR. KATZ: That's a Work Group
15	meeting, but so that's why I said if
16	DCAS is confident in their fading White Paper,
17	I mean they could go ahead and knock the other
18	thing off too before you have a Work Group
19	meeting.
20	MR. HINNEFELD: I think that should
21	be our planned position here because there
22	could be scheduling difficulties in getting a

1	Work	Group	together	in	a	timelv	fachion
⊥	MOTV	Group	Logether	TTT	а	CTILLETA	Lasiiioii.

- 2 And if we are comfortable with the
- fading, then we can proceed on with the
- 4 analysis and talk about here this coworker
- 5 part without -- and if the Working group then
- 6 later on decides that, you know, this fading
- 7 thing isn't convincing and that falls apart,
- well, so we spent some effort, but whatever.
- 9 I mean it's timely for the
- 10 claimant. It's more timely for the claimant
- 11 to keep the work going.
- 12 CHAIR BEACH: Okay. So, everybody
- 13 clear there?
- 14 The next issue on the table is
- 15 tritium compounds.
- 16 MR. KATZ: Josie, it's ten to 12:00.
- 17 What's your ballpark? What do you want to --
- 18 MEMBER CLAWSON: Well, now that we
- 19 got the easy one out of the way.
- 20 MR. FITZGERALD: That wasn't
- 21 supposed to go all morning. Yes, that's a
- 22 consideration. This could take an hour, hour

1	and a half.
2	CHAIR BEACH: That's a good point.
3	MR. KATZ: Want to have an early
4	lunch and then take it on all at once?
5	CHAIR BEACH: Yes, let's do that.
6	Let's do that.
7	MR. KATZ: Some blood sugar.
8	CHAIR BEACH: Okay. Let's take
9	lunch then.
10	MR. KATZ: Okay. So, it's ten to
11	12:00. So, certainly by 1:00, right, we
12	CHAIR BEACH: 10 to 1:00.
13	MR. KATZ: 10 to 1:00?
14	CHAIR BEACH: Yes.
15	MR. KATZ: We'll reconvene, for
16	folks on the phone. Thank you.
17	(Whereupon, the above-entitled
18	matter went off the record at 11:47 a.m. and
19	resumed at 12:55 p.m.)
20	
21	

1	
2	
3	
4	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
5	12:55 p.m.
6	MR. KATZ: So, good afternoon.
7	We're reconvening after a lunch break. This
8	is Advisory Board on Radiation and Worker
9	Health, the Mound Work Group.
LO	Do we need to check about anybody
L1	in particular on the phone?
L2	CHAIR BEACH: No.
L3	MR. KATZ: No. Okay.
L4	CHAIR BEACH: I don't believe so.
L5	Okay. So, right now we have two
L6	papers on the table. One that was produced by
L7	SC&A, April 15th. It was just after
L8	interviews that we did in April. And then
L9	NIOSH's paper that's dated in July 2010.
20	And, Joe, do you want to kick off
21	the topic of stable tritium compounds?
22	MR. FITZGERALD: Yes. Just a little

1	history.
2	At the last meeting actually, a
3	couple of different meetings, SC&A expressed
4	some concerns over the NIOSH approach that was
5	arrived at over the last I guess it's been
6	eight, nine, ten months where it was proposed,
7	claimed, whatever, that the operations at
8	Mound that handle the and I'm going to talk
9	hafnium tritide because I think there has been
10	some confusion in the past.
11	We want to make sure that we're
12	focused on hafnium as the insoluble the
13	more insoluble compound that has figured in a
14	lot of our discussions.
15	And for hafnium tritide I think the
16	position that we had some concern over was
17	that this compound was handled in a discrete,
18	controlled operation wherein, you know, there
19	was a potential for exposure to ten workers
20	that, in fact, could be identified by name.
21	And the exposure potential of meaningful

exposure potential is limited to those ten.

Т	and we expressed concern i think
2	going in when we first heard that, that in
3	terms of the basis for that very, you know,
4	again, it was very defined and the assessment
5	was that those were the workers that would, in
6	fact, have the hafnium tritide figure in their
7	dose reconstruction.
8	I'm not going to go through the
9	entire history of some of the questions
10	regarding how you dose assess with the
11	insoluble tritide. We could do that, but I
12	think we've spent a lot of time doing this. I
13	want to focus in on that issue.
14	Because we thought, at that time
15	and discussed it with the Work Group that, you
16	know, this is an issue we should be able to
17	get to ground truth, get to the facts because
18	really the operational information surrounding
19	the handling of hafnium tritide should be
20	available.
21	Now, I would add, that should be
22	available in the classified information that

1	would be available through interviews and
2	through documentation from the site because of
3	the nature of these operations.
4	So, I think what we proposed at one
5	or two meetings was that there would be a
6	concerted effort to try to validate some very
7	specific questions; the exposure potential
8	that might have existed from operations, the
9	operations themselves that took place at
LO	Mound, historically, and in fact the workers
11	who may have been, you know, potentially
L2	exposed to hafnium tritide in operations, and
L3	to conduct the interviews and look at the
L4	documentation and, just again, let the chips
L5	fall where they may rather than sort of have
L6	this question of can you or can't you apply it
L7	to these ten named individuals and this very
L8	discrete operation.
L9	And from there we scheduled and
20	this was done actually in collaboration with
21	the Work Group and NIOSH so that sort of
22	everybody who had a clearance could be

1	involved.	And	we	scheduled	а	series	of	on-

site records reviews at OSTI where a lot of

- 3 documentation in fact resided.
- 4 Made two trips to OSTI. I think,
- 5 Brant, I think you did a separate trip. So,
- 6 there might have been a series of trips.
- 7 Scheduled interviews over a couple
- 8 days with individuals that were associated
- 9 with the tritium program. And had a couple of
- 10 secure meetings amongst ourselves in Livermore
- 11 and Germantown.

- 12 And we spent, again, considerable
- 13 time pouring over the available records at
- 14 OSTI. We looked at -- interviewed these
- 15 former Mound workers and tried to glean from
- them descriptions of the operations and what
- they could tell us in terms of these exposure
- 18 potentials, and discussed all that in these
- 19 meetings.
- 20 As I recall, at least three of the
- 21 Work Group members were present for both the
- 22 interviews and these discussions. That was

1	Josie, Brad and Phil. And I think again Brant
2	was with us and myself and Kathy Robertson-
3	DeMers.
4	And essentially, the objective was
5	to get us all on the same page. I mean I
6	think the objective was to clarify the
7	operational experience and to really get a
8	handle on what these exposure potentials were
9	and if, in fact, the individuals exposed were
10	these ten individuals that were postulated by
11	the NIOSH position.
12	And we finished this in April. And
13	I drafted the summary that I submitted to the

- I drafted the summary that I submitted to the
 Work Group essentially defining pretty much
 what I thought this review had left us, had
 that cleared by DOE. And of course we, this
 past Friday, received the critique of that
 position from NIOSH.
- Now, we hadn't had a lot of time
 with the response, but I'm just saying that we
 do now have the response.
- I'm going to just basically say,

1	based on what we reviewed, collectively
2	reviewed in terms of the classified database,
3	that we frankly feel that our concerns were
4	validated, that we do have concerns that there
5	were in fact more individuals exposed to
6	hafnium tritide than the ten that were cited
7	in the NIOSH position.
8	And that the individuals aren't
9	necessarily nameable. And that we take
10	exception to the premise that in fact this was
11	a discrete operation that one could confine
12	the issue to.
13	And that's pretty much what I can
14	say about it. I think the rest of it I would
15	defer, but certainly in this case the Work
16	Group members were present for all this data
17	capture and all the discussions that ensued
18	afterwards.
19	So in a way, they were witness and
20	party to what was found. So, I don't see this
21	as so much trying to inform or provide an
22	analysis as to just walk this thing down as

1	far as what we did.
2	But again I think the Work Group is
3	in a perfectly good position to judge what was
4	found in that classified review. And I'm
5	going to leave it at that.
6	MR. KATZ: But, Joe, you have two
7	Board Members who weren't participants in any
8	of that discovery.
9	So, it would probably be helpful
10	for them to hear rather than relying on the
11	other three Board Members.
12	MR. FITZGERALD: Yes. Well, I think
13	that's the reason I wrote up the position
14	paper the week after we finished, was to
15	capture what I felt could be said and have
16	that cleared by DOE and distributed to the
17	entire Work Group.
18	Obviously it wasn't so much for the
19	people that were there with me, but for the

CHAIR BEACH: Well, and correct me

NEAL R. GROSS

rest of the Work Group, as well as the Board

Members to see.

20

1	if	I'm	wrong.	The	unclassified	notes	are
---	----	-----	--------	-----	--------------	-------	-----

- 2 available.
- 3 MR. FITZGERALD: Yes.
- 4 CHAIR BEACH: So, those were
- 5 available to --
- 6 MR. KATZ: Yes, Joe's two-page
- 7 write-up is --
- 8 CHAIR BEACH: And that's available.
- 9 MR. FITZGERALD: Yes.
- 10 CHAIR BEACH: But I mean just the
- 11 raw notes, the unclassified version with the
- 12 whole --
- MR. FITZGERALD: Yes, the redacted
- 14 version of what we got from the interviews
- themselves of course are available.
- So, you know, there's information
- 17 available to be reviewed on a -- available to
- 18 uncleared personnel and to the rest of the
- 19 Work Group.
- So, I think that was all we could
- do, but, you know, knowing the nature of this
- 22 beast, knowing that some of this information,

1	the details, which are very important to
2	solving this question, are in fact classified.
3	I think we took the special
4	approach of saying we really need to have as
5	many cleared members of the Work Group
6	firsthand present to hear the feedback from
7	the interviewees, to look at the documents
8	firsthand, and to be party to the discussions
9	that Brant and I had because I think a lot of
10	this becomes more difficult in an open forum.
11	So, I think there was a reason to
12	do it the way we did. Didn't have everybody,
13	but I think we took some effort to translate
14	what we could into some form that could be
15	reviewed as well.
16	That's what I think what you were
17	saying is.
18	CHAIR BEACH: Yes.
19	MR. FITZGERALD: Any questions on
20	that?
21	CHAIR BEACH: Brant, what do you
22	DR. ULSH: Well, Joe gave you a

Τ	pretty good summary of the process involved.
2	For us, the process, I mean one of
3	the first one of the early events was our
4	interviews with former Mound workers about
5	this topic. About the topic of special
6	tritium compounds and specifically hafnium
7	tritide, because hafnium tritide does present
8	some challenges that you don't see with other
9	tritium compounds.
10	And if you're used to working with
11	tritium and know the issues that are attended
12	with that, you may want to set that aside
13	because hafnium tritide or particulate tritide
14	is a different beast.
15	Tritium gas tends to be very
16	mobile. It tends to get everywhere.
17	Particulate tritium is different than that.
18	It is not as I mean when we called these
19	stable tritium compounds, we were kind of
20	talking about this before how that's kind of
21	an oxymoron.

By "stable," what we mean here is

1	that the compounds don't break down as readily
2	and they're not as mobile readily as you might
3	be used to thinking of in terms of the tritium
4	gas operation.
5	So, that presents some challenges
6	to normal tritium programs where it's very
7	easy to detect.
8	When you're relying on urinalysis
9	to detect tritium intakes, normally tritium
10	gas is very readily detectable in urinalysis.
11	The problem with hafnium tritide is
12	that it tends to be more stable relative to
13	other tritium compounds. And so it stays in
14	the lungs and doesn't come out as readily in
15	the urine.
16	Now, we've always contended that
17	it's not zero, but the amount that you see
18	coming out in the urine is much less. So, the
19	dose that you could miss is much higher
20	relative than what we might see with other
21	tritium compounds.

So, we started by interviewing some

1	former Mound workers. Three of them. One of
2	whom was involved, specifically, in reviewing
3	the urinalysis data that was available for the
4	workers involved in this program and trying to
5	identify which workers might have been
6	exposed. And for those workers, estimating
7	the dose that they might have received from
8	those intakes.
9	And they identified three workers
10	that were actually exposed based on that
11	urinalysis data. And the highest dose that
12	they estimated for any of them was three rem.
13	Now, you know, that's a big dose
14	for tritium, but it's not in the realm of
15	implausibly large doses.
16	We asked those three workers about
17	a number of topics. And to be clear, the
18	position that this was a small, discrete,
19	well-contained operation did not come from
20	NIOSH. It came from the workers that we
21	interviewed who had direct knowledge of this
22	program.

1	And the list of ten or so workers
2	who were involved in the program came from
3	those worker interviewees, the people that we
4	talked to.
5	Now, Joe mentioned that we recently
6	had another round of interviews. And for the
7	record, just to be clear, what we're talking
8	about here, we had a round of interviews here
9	in Cincinnati with three of the Work Group
10	members, the three previously mentioned
11	present, and this was a different set of
12	workers.
13	And these turned out to be the
14	workers who were directly involved hands-on in
15	producing the material and doing what they did
16	with it.
17	These workers added to our list.
18	They gave us a few more names that weren't on
19	our original list of ten. So, there are more
20	than that and they gave us a few additional
21	names.
22	We also talked to them about the

1	exposure potential to other people. And, I
2	don't know, maybe we differ here, but what I
3	heard them say was here are the people who
4	were directly involved, the principals and
5	their support staff. Their technicians that
6	worked directly alongside them were in a
7	different category in terms of exposure
8	potential than anyone else.
9	They had a realistic exposure
10	potential, but to imply that the exposure
11	potential to other workers who were not
12	directly involved here is completely
13	inaccurate.
14	This is not everybody on site.
15	It's not even everybody in the buildings where
16	this operation took place. It was limited
17	very specifically.
18	And we've actually seen documentary
19	evidence down at OSTI that supports what the
20	workers told us that this was limited to
21	primary operations were limited to a couple of
22	rooms.

1	And then of course there were some
2	other activities that happened like, for
3	instance, NMR operations where you go and
4	analyze some samples. But those were always
5	doubly contained and they didn't have an
6	exposure potential.
7	So, yes, you'll see the presence of
8	this material perhaps in other places, but
9	you've got to really examine whether or not
LO	there's an exposure potential.
L1	So, we came away from the
L2	interviews and from the documentary evidence
L3	largely supporting what the workers had
L4	originally told us, although, granted, with a
15	few more names of people to be included on
L6	this list.
L7	We have also prepared a document,
L8	OTIB-0066, which tells the dose reconstructor
L9	how to reconstruct doses from this compound.
20	SC&A reviewed that document, and by
21	and large came out with the conclusion that it
22	was an appropriate and claimant favorable way

1	to do it, you do need some site-specific					
2	information in order to make this work, and we					
3	agree with that.					
4	But then SC&A's review of this					
5	topic specifically related to Mound, that is					
6	hafnium tritide specifically related to Mound,					
7	came to by and large, what I at least					
8	interpret as the opposite conclusion.					
9	So, I was a little confused by					
10	that, but I come away from this whole thing					
11	looking at the weight of the evidence, the					
12	interviews that were conducted, the					
13	documentary evidence, largely in the same					
14	place that I came into it.					
15	This was a very small, very well-					
16	controlled operation dealing with a material					
17	that was considered very precious.					
18	In other words, you aren't going to					
19	spread it all around, because each microgram					
20	is very valuable.					
21	And this was done in limited access					

People were not just wandering through

areas.

1	getting a snootful. It was very well
2	controlled. And if you didn't have a reason
3	to go into these rooms, it was security
4	padlocked. You could not go in.
5	And I think the thing that we've
6	also kind of lost sight of is that we're not
7	talking about a typical situation where we
8	would have some concerns where there's not
9	monitoring. There was extensive monitoring.
10	Urinalysis, as with the other
11	tritium workers, they gave urinalysis once or
12	even twice a week for the workers involved in
13	these operations.
14	In addition, there was air
15	monitoring, there was swipe data. They worked
16	in bubble suits whenever containment was going
17	to be breached.
18	We're not talking about the typical
19	little exotic operation where, you know, you
20	may not have bioassay. That's not the case
21	here.

So, I come away from it unconvinced

1	that what the workers told us was wrong. I
2	come away from it convinced that what they
3	told us was right. I have not seen anything
4	that would contradict it.
5	So, I guess we just have to agree
6	to disagree on that point.
7	MEMBER SCHOFIELD: Well, I strongly
8	disagree with you because you may have two
9	workers there, but you got all these port
10	people, painters, welders, pipefitters,
11	tinners, housecleaning come in, in any
12	facility.
13	Just because you have a CAM alarm
14	over here and maybe it goes off at 5,000 DPM,
15	you have particulate matter that has escaped
16	over here. It can be a million DPM.
17	Big freakin' deal. That doesn't
18	tell me how much particulate matter has gotten
19	out and gotten where.
20	The other thing is when those
21	crafts come in, particulate matter gets
22	scattered around. You know that stuff got

1	into oil. You know it got into the hoses and
2	the vac pump. You know it got there. It's
3	going to because it's the nature of the beast.
4	You go in and start cleaning that
5	up, every bolt, every nut, every pipefitting,
6	every penetration, every place that thing
7	bolted to the wall, to the floor, to each
8	other has that potential and you will find in
9	almost any facility, you are going to find
10	some contamination under there.
11	So, when you go in and clean an
12	area, I can go through and clean up the floor,
13	have the, you know, find a few big spots. Big
14	deal.
15	But now when I go in there and D&D,
16	I'm taking every nut, every fitting,
17	everything apart. Now, you've got all this
18	stuff that's been hidden in there for years,
19	weeks, days, months, whatever it is, is now
20	being brought forth and it's going to be in
21	there.

That stuff's not going to be all

21

1	nice and confined to that box. There's going
2	to be excursions. It's going to combine with
3	other things. So, it's not the only compound
4	that you need to worry about there.
5	And those supporting crafts, I
6	would be extremely shocked if they had a small
7	crew that was just dedicated to that. Usually
8	it's not. All the fitters, all the tinners
9	who were cleared, they would go in and out of
LO	there as they were needed.
11	MR. HINNEFELD: Phil, you said at
L2	one point talking about a CAM going off over
L3	here or something if particulate material got
L4	out.
L5	What's the indication of if
L6	particulate material was released?
L7	MEMBER SCHOFIELD: Well, a lot of
L8	times when you have those, you'll have a CAM
L9	alarm go off in one part now, this comes

talking about this facility.

from experience -- many times.

MEMBER

NEAL R. GROSS

ZIEMER:

20

21

not

you're

But

1	MEMBER SCHOFIELD: I am talking
2	about this facility. I'm talking about
3	basically any facility.
4	MEMBER ZIEMER: But your experience
5	is not at this facility.
6	MEMBER SCHOFIELD: No, but what I'm
7	saying
8	MEMBER ZIEMER: Your experience is
9	at the facility where you worked, and you're
10	extrapolating that experience to this
11	facility.
12	MEMBER SCHOFIELD: What I'm saying
13	though is that you can have particulate matter
14	that doesn't necessarily become as much
15	airborne, doesn't spread as much. You can
16	have some of it becomes airborne, and some of
17	it may not become airborne.
18	And that's why a lot of times you
19	can wind up these people can wind up with
20	it on their gloves, down on their feet,
21	somewhere where, yes, a CAM alarm does go off.
22	So, an amount of it's going to get airborne.

2	they're working whether they've had a torn						
3	glove, they've had a hose failure, whatever it						
4	is, would allow more particulate matter in						
5	that particular that's why you've been						
6	over there. You have hot spots.						
7	MR. HINNEFELD: So, your point then						
8	is that the CAM monitoring location is not						
9	representative of the work location where						
10	somebody might be.						
11	MEMBER SCHOFIELD: Exactly.						
12	MR. HINNEFELD: Okay. That's your						
13	point.						
14	MEMBER SCHOFIELD: That's my point.						
15	MR. HINNEFELD: Okay. I still						
16	haven't heard the evidence for this material						
17	getting out.						
18	I suppose you mean getting out of a						
19	glovebox. The particulate material getting						
20	out.						
21	I mean there was testimony, if I'm						
22	not mistaken I wasn't at these meetings						

But in that particular area where

1	because my clearance wasn't there yet.
2	didn't have my clearance yet and Brant has
3	subsequently briefed me since I got my
4	clearance.
5	There was discussion about the
6	amount of material; was there not?
7	MR. FITZGERALD: Well, let me
8	respond to that because that was, you know,
9	there's two elements to this that are very
10	important.
11	One is what you're raising. Is
12	there an exposure potential for this to get
13	out of the glovebox?
14	And, you know, the other issue is
15	are workers beyond the ten operators that
16	would have received, you know, the potential
17	for exposure, meaningful exposure.
18	The first issue, we spent some time
19	on the interviews, and it's all in the
20	unredacted and redacted notes, but we honed in
21	on that and specifically asked, okay, what's
22	the history of tritium releases from the

1	glovebox within the so-called controlled					
2	environment?					
3	If we think back to the early days					
4	in the tritium operations, well, you know,					
5	gloves, skin puncture, you know, you tend to					
6	have tritium releases, tritium alarms. That's					
7	not an infrequent thing.					
8	And so we asked the same question.					
9	What's the history of tritium releases from					
LO	these gloveboxes in this particular facility?					
L1	And the answer is, yes, we've had					
L2	those. I mean, you know, whether it was once					
L3	every so often, you know, it's just something					
L4	that happened.					
L5	And my question very specifically					
L6	is you have hafnium tritide in that box, you					
L7	know, the alarm is seeing the gases					
L8	triggering for sure, but is it reasonable to					
L9	expect that you would have any hafnium tritide					
20	leaking out as well?					
21	Now, that wouldn't be picked up,					
22	obviously, by the monitor, but it would, you					

1	know, there certainly is the potential for
2	that to get out, and the answer was yes.
3	Now, it wouldn't be considerable,
4	but, yes, there's an undefinable amount. I
5	think the answer was going to be pretty small
6	that would in fact be potentially out there
7	from that leak because it's being handled in
8	the box.
9	MR. HINNEFELD: Did he say that a
LO	small amount probably got out or did he say
11	there was a small probability that some got
L2	out?
L3	MR. FITZGERALD: I can't recall the
L4	exact words, but it's in the notes.
L5	But in terms of exposure pathways,
L6	I think that is the essential question
L7	whether, you know, if in fact you're having
L8	leakage from a glovebox, could one postulate
L9	that you're also having hafnium tritide get
20	out as well?
21	And I think that was the
22	MEMBER ZIEMER: Well, let me ask

1	this question then, Joe.					
2	MR. FITZGERALD: Yes.					
3	MEMBER ZIEMER: I don't know how					
4	much of this is classified. But if you have a					
5	glovebox with both tritium gas and the stable					
6	stuff in there, you can be sure the tritium					
7	gas is going to get out without any leaks i					
8	the gloves. It will penetrate.					
9	I mean tritium always does. That's					
10	why you double glove on the tritium gas					
11	glovebox and it's always coming out.					
12	MR. FITZGERALD: Right.					
13	MEMBER ZIEMER: So, my question					
14	really is was and are you allowed to say					
15	it? Were there actual breaches, accidental					
16	breaches in the gloves?					
17	Because the tritide is not going to					
18	get through a rubber glove like tritium gas.					
19	MR. FITZGERALD: Right. No, this					
20	isn't a permanent build issue. These are just					
21	normal events where you have breaches whether					
22	it's in the gloves or the attachment of the					

1	alove	to	the	glovebox.

- 2 MEMBER ZIEMER: Or moving things in
- 3 and out.
- 4 MR. FITZGERALD: Just the kind of
- 5 normal thing you would have in a tritium
- 6 facility. This was a very secure room and a
- 7 very secure glovebox.
- Nonetheless, you do have breaches.
- 9 On occasion the alarm would go off.
- 10 MEMBER ZIEMER: Well, but that alarm
- 11 was seeing --
- MR. FITZGERALD: The tritium gas.
- 13 MEMBER ZIEMER: Tritium gas.
- 14 MR. FITZGERALD: Right. It wasn't
- 15 able to see --
- 16 MEMBER ZIEMER: And I'm wondering
- 17 whether you would have that without a breach.
- 18 That's what I'm saying.
- 19 MR. FITZGERALD: You know, we
- 20 couched in the way could you have these
- 21 releases? And the answer is yes, we did. And
- the alarms went off.

1	Now, you know, the question that we
2	were trying to hone in on and the question I
3	think we're talking about here, is what is the
4	potential that hafnium
5	MEMBER ZIEMER: There might have
6	been breaches.
7	MR. FITZGERALD: Was able to get out
8	as well as the tritium.
9	Now, they weren't monitoring or
10	the capability wasn't there technologically to
11	monitor for tritide. So, this was one of
12	these could you in fact have hafnium tritide
13	being released through these breaches?
14	And they, you know, were
15	MR. HINNEFELD: So, he either said,
16	yes, a small amount probably got out or he
17	said there's a small probability that any
18	MR. FITZGERALD: Well, I'll have to
19	go back. We got the notes on that.
20	DR. ULSH: My recollection is he
21	said that there was a very small probability.
22	When we asked about whether or not

1	when	CAM	alarms	go	off,	was	it	а	gas	or	was	it

- the particulate, the guy that we were talking
- 3 to kind of -- I asked that question and he
- 4 kind of looked at me like I was crazy.
- 5 He said so you're asking how much
- 6 dust could have gotten out of a tritium-tight
- 7 qlovebox?
- 8 It was very clear that he was
- 9 saying that anything that would have gotten
- out would have been the tritium gas. It's far
- 11 more mobile.
- So, I mean of course you can't say
- 13 that the probability is zero. I mean a
- 14 scientist is never going to say the
- 15 probability is zero. But they were clearly
- 16 trying to indicate that when you're working
- 17 with this material, it's always accompanied by
- 18 tritium gas. And that's what you're going to
- 19 see.
- 20 MEMBER ZIEMER: Well, Phil is
- 21 certainly quite right that particulates get
- 22 out. And I've seen this firsthand. It

1	doesn't take very much mass
2	MEMBER SCHOFIELD: No.
3	MEMBER ZIEMER: To cover every
4	square inch of a room, floor, ceilings, every
5	surface in every nook and cranny.
6	I don't know how much mass we're
7	talking about here. Even with a specific
8	activity some of this stuff is could come
9	into play.
10	I mean I suppose if you and you
11	probably did some of this in some classified
12	stuff if you're talking about the masses.
13	But I guess my comfort level is
14	related to the issue of were there actual
15	known incidents of breaches versus the alarm
16	going off which would not in my mind be so
17	surprising if there's tritium gas there.
18	CHAIR BEACH: There was one improper
19	pass out of a glovebox.
20	MEMBER ZIEMER: Okay. So that
21	CHAIR BEACH: The container wasn't
22	decontaminated. It was on the floor, tracked

1	through the building. So, yes, that was
2	MEMBER ZIEMER: Okay. So, there
3	were incidents.
4	DR. ULSH: There were two known
5	incidents.
6	MEMBER ZIEMER: Okay.
7	DR. ULSH: One was the one Josie
8	just mentioned where a storage tree got
9	knocked into and it led to the situation that
10	Josie just described.
11	Another involved a person who was
12	manufacturing this material and got an uptake.
13	And I really don't want to go into too much
14	more detail, but those are the two known
15	incidents that happened.
16	The people who were involved in
17	those incidents are on this list. So, when
18	these incidents happened, we have the people
19	and we are going to treat them as if they
20	could have been exposed to hafnium tritide.
21	MEMBER SCHOFIELD: Do you have the
2.2	list of people who cleaned up in there?

1	DR. ULSH: If you recall back in the
2	interviews, we asked specifically the round
3	that we did in Cincinnati, we talked about
4	exactly those people, Phil.
5	We talked about the people that
6	came in, did the trash. We talked about the
7	support people, the technicians. Not the
8	principals, not the guy who was actually
9	making the material, but the people that were
LO	there with them.
11	And they clearly said that the
L2	exposure potential for the principals and
L3	their technicians, their support staff, was up
L4	here. The exposure potential for anyone else
L5	including the trash pickers or whatever, was
L6	much lower.
L7	They didn't say zero. They'll
L8	never say zero, but clearly in a separate
L9	class.
20	Now, anyone that goes in here is
21	going to be monitored for tritium bioassay.

BISTLINE:

DR.

This

is

22

Bistline

1	speaking, and I would like to push this
2	further.
3	And that is that the issue the
4	discussion just focused strictly on hafnium
5	tritide, and there are other tritides that
6	were handled.
7	And I am very concerned about the
8	diffusion and reactivity that we learned in
9	the meeting at Savannah River from scientists
LO	that have handled these materials, that
11	diffusion of hydrogen through tritium through
L2	the various media does occur as Dr. Ziemer has
L3	pointed out. And in the process, there is
L4	also some reactivity occurring.
L5	And so anywhere you had tritium,
L6	it's not just one glovebox which this hafnium
L7	tritide was handled, but there are other
L8	locations where tritium was handled throughout
L9	the site.
20	And in these locations, there is
21	the potential for tritides being formed,
22	either organic tritides or metallic tritides,

1	which	747 i 1 1	persist	for	vears	tο	come
	WIIICII	$\sim 10^{-1}$	PCTSTSC	TOT	years	LU	COILLE.

- 2 And D&D may very well be involved,
- 3 and so workers -- and you know from your
- 4 discussions and so forth that bioassays are
- 5 not good for tritide forms, most of the
- 6 tritide forms.
- 7 DR. ULSH: All right. A couple of
- 8 issues there that I'd like to address.
- 9 First of all, when Joe teed this up
- 10 at the beginning, he specifically
- 11 differentiated between hafniun tritide and
- 12 other tritides, and I think for very good
- 13 reason.
- 14 The reason is that hafnium tritide
- is the least soluble tritide that we know
- 16 about.
- Now, we're not saying in any way
- 18 that there may be other tritides present at
- 19 Mound through the processes that you just
- 20 mentioned and also through the fact that they
- 21 made these compounds to use.
- So, for instance, there was uranium

1	tritide, there was lithium tritide, there were
2	other tritides. We know that and we're not
3	saying that they weren't present there.
4	What we're saying is that hafnium
5	tritide is the worst case from the perspective
6	of detecting it in a urinalysis because it's
7	the least soluble tritide that we know about.
8	So, yes, Bob, I'm not saying that
9	all these things that you just talked about
10	don't lead to the formation of tritides, but
11	those compounds are much more soluble than
12	hafnium tritide.
13	They're less soluble than tritiated
14	water for sure, and our position has been that
15	for hafnium tritide we know the workers
16	involved.
17	For these other intermediate
18	solubility compounds from either what they
19	produced or the processes that you described,
20	those are more soluble than hafnium tritide
21	and don't present the same challenges that
22	hafnium tritide do.

1	DR. BISTLINE: Well, there are a
2	number of tritides that are equally as
3	insoluble as hafnium or very close to it,
4	we've learned from other sites.
5	And the concern I have is it just
6	doesn't stop with just Mound. We're talking
7	about other sites, DOE sites, a number of them
8	where tritides were handled in fairly
9	significant amounts.
LO	And talking with these people from
L1	these sites, we find out that there are other
L2	insoluble tritides that are equally or nearly
L3	equally as insoluble as hafnium.
L 4	DR. ULSH: Well, this is I don't
L5	want to go into other sites. I've got my
L6	hands full with just this one. I'll let other
L7	people fight those battles.
L8	For the record, Brad agrees, I
L9	think. And there are certainly some other
20	compounds that are to some degree or other
21	insoluble, but I would represent that hafnium
22	tritide is the worst one that we know about

1	that	specifically	comes	into	play	at	Mound.

- MR. FITZGERALD: Yes, can I turn
- 3 this back around?
- I do have the notes. This is one
- 5 of our interviewees responding to this
- 6 question, exposed potential.
- 7 It is very difficult to prove --
- 8 MEMBER ZIEMER: You can show these?
- 9 MR. FITZGERALD: Yes, this is
- 10 cleared.
- 11 (Laughter.)
- MR. FITZGERALD: I think I would get
- 13 shot first.
- 14 It is very difficult to prove a
- 15 negative. The likelihood of exposure is low.
- And one in ten to the minus x, for example.
- So, he didn't attach a number, but
- 18 relatively low.
- 19 Contamination in your face does not
- 20 lead to cancer. This would likely not happen
- 21 undetected.
- 22 What I went on to say is, but you

1	have a potential pathway of exposure to the
2	workers with tritium alarms, you have a
3	potential situation of exposures in particular
4	rooms. However, I also add that it is is
5	it remote? I said probably.
6	Now, the issue I think and this
7	is a difficult issue. If you're not
8	monitoring for something, you know, and you're
9	monitoring for tritium, the issue is what's
10	the exposure pathway? What's the probable
11	exposure pathway?
12	And there were incidents, the two
13	that I think we certainly agree were recorded
14	for tritides getting out and being tracked
15	around and workers being exposed, that did
16	occur.
17	And what I was trying to get at is
18	on a more routine basis, not the sort of major
19	incidences, but more routine basis you did
20	have these tritium alarms in the tritide
21	handling areas with the gloveboxes.

And as he was pointing out, well,

1	they weren't, you know, it wasn't being the
2	particulates weren't being detectable
3	detected, but, you know, what's the
4	probability of those tritides getting out
5	along with the tritium?
6	His answer was a low probability.
7	I guess that was what you're looking for. But
8	certainly not zero and certainly the exposure
9	potential would have existed.
10	Now, the question of how much would
11	have been out, how much would have been
12	available for exposure, that's not answerable.
13	That's also what he was saying. That's sort
14	of his proving a negative standpoint.
15	But our issue was, okay, if you
16	have an exposure potential as acknowledged in
17	the I think in Brant's piece of, you know,
18	you got ten workers, the operators themselves,
19	who were acknowledged as having exposure
20	potential, my concern from the very beginning
21	is that we all know that in a typical DOE
22	operation the operators themselves are just

1	sort of the tip. There's sort of a hierarchy.
2	You have a diverse support staff.
3	You have the people that go in and change the
4	filters. You have the people that maintain
5	the gloveboxes that go in and, you know, the
6	rad techs. You have the people that do the
7	maintenance, I mean the electricians, I mean
8	all the people that keep things running.
9	And my concern all along was what
10	about those people?
11	I mean are we saying that the
12	exposure potential of those individuals going
13	into this operating area was essentially
14	negligible, that there was no exposure
15	potential for those workers that were
16	routinely having access to this area or not?
17	And we spent a lot of time talking
18	about that both in the interviews, as well as
19	amongst ourselves saying that we just had
20	difficulty buying into the proposition that it
21	was just these ten workers.
22	And the reason that number came up

1	was a and I think Brant was acknowledging
2	this, was the interview with the sort of
3	manager or the key principal people involved.
4	And if you ask operators who, you
5	know, who are the people that are potentially
6	exposed, they're more and this is again
7	just based on my experience, they're likely to
8	name their colleagues. These are the people
9	that are operating and would be potentially
LO	exposed.
11	I think the notion of identifying
L2	all these support folks probably wouldn't come
L3	to their mind. They wouldn't think of the
L4	maintenance guy that comes in and fixes the
L5	glovebox or maintains the glovebox. That's
L6	not something that would come directly to the
L7	mind.
L8	So, I think the number ten
L9	represents a sincere estimation on the part of
20	the operating manager or staff as to, you
21	know, who counted in terms of exposure
22	notential

1	But I think out reservation is that
2	that is not the complete worker cohort that
3	would have been implicated in any exposure
4	potential in the facility.
5	The other thing I might want to add
6	is and this is something that went back, I
7	think, a little further back. I'm concerned,
8	and have been concerned, that the discrete
9	operation that Brant has referred to, it
10	wasn't the extent of hafnium tritide handling.
11	I identified in an earlier piece
12	that you have recycle operations, QA
13	operations, you know, Mound was involved. And
14	Brant and I both spent a lot of time looking
15	at documentation on those operations.
16	So, I think the cohort of workers
17	involved are not just the workers that were
18	associated with this one discrete unit that
19	has been referred to, but there was other
20	units of activity that involve workers that we
21	just don't know who those workers were and nor
22	do we have a good fix on exposure potential

1	And again I think that's an
2	uncertainty that sort of begs the question as
3	to we're trying to draw a line around a very
4	defined set of operations and a very defined
5	set of workers.
6	MEMBER ZIEMER: Joe, are you
7	referring to other Work Groups outside the
8	support people?
9	MR. FITZGERALD: No, I'm referring
10	to other activities besides the one discrete
11	operation that has figured in the
12	MEMBER ZIEMER: That would be using
13	hafnium?
14	MR. FITZGERALD: Yes, that would be
15	handling hafnium. That's as far as I can go.
16	MEMBER ZIEMER: All right. But if
17	that were the case, why wouldn't we know who
18	those were?
19	MR. FITZGERALD: That's my question.
20	It's difficult, you know, again it's
21	MEMBER ZIEMER: An operation
22	somewhere else in the facility?

1	MR. FITZGERALD: Well, to
2	specifically give you an example is we looked
3	at QA activities, we looked at recycling
4	operations and certainly they have figured at
5	Mound historically. And the question is, who
6	are those workers and what were the potentials
7	there?
8	And we did spend time looking at
9	those, but again it just becomes difficult to
LO	identify those.
L1	MEMBER ZIEMER: Well, do we know
L2	something about the movement?
L3	Somebody orders this stuff, it
L4	comes into the facility and there's some it
L5	goes somewhere.
L6	Do we know anything about
L7	DR. ULSH: Yes.
L8	MR. FITZGERALD: We may know too
L9	much and that's why we're hesitating, Paul.
20	MEMBER ZIEMER: I'll ask the
21	question. If it's not answerable here
22	DR III.SH: I can enter the nicture

1	MEMBER ZIEMER: But it does make it
2	a little tough. And this generically is a
3	problem we'll face probably in places like
4	Pantex where not all Board Members are privy
5	to all the information and they have to make a
6	decision on something.
7	DR. ULSH: I can help. I think I
8	can help.
9	This material in terms of the
10	program that we've been talking about was
11	manufactured at Mound. So, it didn't come
12	from somewhere else. It was manufactured at
13	Mound by the people that we've been talking
14	about.
15	MEMBER ZIEMER: By these people.
16	DR. ULSH: Yes.
17	Now, there was we did spend some
18	time talking about QA work. And specifically
19	in our Livermore meeting, we talked about what
20	was involved with that.
21	And my position was we walked
22	through exactly what happened and examined the

1	exposure potential. And for reasons that I
2	presented at that time, I don't feel that
3	there was a real exposure potential from those
4	activities.
5	Now, quite separate from those
6	first two things, they also operated Mound
7	also operated a tritium recovery facility
8	where they ran compounds tritium-bearing
9	compounds through this facility to reclaim
10	tritium.
11	And Joe and I the whole well,
12	not the whole, but one of the main purposes
13	for one of our trips down to OSTI was to get
14	some more details on this system. And we did
15	find information on an instance when this
16	material was run through the tritium recovery
17	facility.
18	MEMBER ZIEMER: Where somebody
19	handled it then.
20	DR. ULSH: Yes.
21	Now, the thing is the guy who was
22	in charge of that tritium recovery facility is

1	the	same	guy	who	was	invo	lved	earlier	in	the
2	hafn	ium t	ritio	de pr	coduc	tion	opera	ations.		

- 3 He then moved on over to the
- 4 tritium recovery facility. So, he's on the
- 5 list.
- 6 And for that one instance that we
- 7 know about when this material ran through the
- 8 tritium recovery facility, there are no
- 9 incident reports that we're aware of, he was
- 10 not aware of any incident related to that.
- 11 Keep in mind what they do in a
- 12 tritium recovery facility. You take, let's
- 13 say, a can of hafnium tritide. The first
- 14 thing you do is heat it up to drive off the
- 15 tritium.
- 16 And at that point you've got
- 17 tritium gas, far more mobile, it might set off
- 18 the CAM if it got out, but it's not hafnium
- 19 tritide anymore. It's not particulate
- 20 tritium.
- So, I think we know what was done
- 22 with hafnium tritide at Mound.

2	something. Maybe muddy the waters here.
3	(Laughter.)
4	MEMBER ZIEMER: We need somebody to
5	do that.
6	DR. NETON: I just got an
7	observation and it may or may not be of
8	relevance, but it's something that strikes me
9	of importance.
10	And the fact is that Mound now has
11	an SEC Class, had it through 1980, based on
12	radon exposure in the very same building, I
13	believe, where the operation occurred.
14	And in fact the same people will be
15	called, because the Class Definition is
16	defined as anyone who left a single tritium
17	sample up through 1980.
18	So, all the workers that we've just
19	been talking about through 1980 are
20	essentially members of that Class.
21	So, you know, does that have any
22	bearing on this discussion only to the extent

DR. NETON: I'd like to just say

1 †	that	if	one	comes	to	the	conclusion	now	that
-----	------	----	-----	-------	----	-----	------------	-----	------

- 2 tritide exposures cannot be reconstructed.
- 3 They no longer have any recourse for
- 4 reconstruction, partial dose reconstruction.
- 5 Again, it may or may not be of
- 6 relevance, but it may help bracket the
- 7 discussion somewhat because, again, all the
- 8 workers through 1980 at least are covered.
- 9 MR. FITZGERALD: We're talking post
- 10 1980.
- DR. NETON: Wait a minute. I
- 12 thought these activities that we were talking
- about occurred prior to 1980.
- DR. ULSH: An important thing to
- 15 keep in mind here is that the period of active
- 16 work with this compound is entirely
- 17 encompassed by the Class that Jim just
- 18 mentioned.
- Now, I want to mention what I'm not
- 20 saying here. I'm not saying that there was no
- 21 hafnium tritide on site at Mound after 1980.
- 22 I'm not saying that at all.

1	They did have archive samples, for
2	example. But the period of active work, the
3	program that involved this material was
4	concluded by 1980.
5	DR. NETON: This includes like the
6	glovebox operations where the CAMs went off
7	and the incidents occurred?
8	DR. ULSH: Well, that system
9	certainly operated beyond 1980, but not with
10	hafnium tritide.
11	DR. NETON: Right. That's what I'm
12	saying.
13	So, a lot of the issues that we've
14	been discussing about the worker testimony and
15	what happened and such really is prior to the
16	existence of this Class. It's included in the
17	Class that's already been defined.
18	And I'm not saying that there
19	aren't issues after 1980, but it seems like
20	one might want to focus the discussion more on
21	workers that aren't covered than the ones that
22	already are.

1	MEMBER CLAWSON: Let me clarify
2	something, Brant. This is Brad talking.
3	That facility where the hafnium
4	tritides were worked with continued on past
5	1980.
6	DR. ULSH: Now, wait a minute.
7	Are you talking about the tritium
8	recovery facility or are you talking about the
9	production operations?
LO	MEMBER CLAWSON: No, I'm talking
L1	about the production operations.
L2	DR. ULSH: Yes.
13	MEMBER CLAWSON: And was it all
L4	cleaned out and everything was all good,
L5	everything was wonderful?
L6	Because we never found that out and
L7	that tritium was in everything that they had
L8	in that.
L9	As we found at Mound, they would
20	start into a process, they would work it, they
21	would walk away from it, people would come in
22	with another project and it would resurrect,

2	Because we have seen it in the D&D
3	era and everything else where they've given it
4	a clean bill of health and start tearing it
5	apart, and all these old processes would come
6	back to life because there is still residual
7	there.
8	MEMBER SCHOFIELD: I would venture
9	to say that there is in all probability,
10	there is build-up anyplace you had a
11	penetration for a glovebox, the window sills,
12	the gloves, whatever seals they were using in
13	there. There were penetrations for electrical
14	penetrations, any mechanical penetrations.
15	And then what I do know, you're
16	going to have some back pumps there in the
17	system. Those I can guarantee are going to be
18	somebody had to take care of those.
19	Somebody had to maintain those.
20	And you have build-up where those
21	seals are, you have build-up in those pumps,
22	you have build-ups in those hoses, and most

1 to say, the dead from the past.

1	materials have an account balance.
2	You got XY, you know, so much
3	coming in one end, and then you have so much
4	final product go out the other end.
5	I would venture to guess there was
6	some material that didn't make it from A to B.
7	Now, whether that's extreme minute quality, 1
8	don't know. I don't know how well their
9	operation was done.
10	DR. ULSH: I can address first of
11	all Brad's points, and then yours, Phil.
12	Brad, I think your question dealt
13	with once the activities in this program were
14	concluded and they moved on, were these same
15	facilities, did they continue to be used?
16	And the answer is yes because it is
17	they moved on to other compounds. So, yes,
18	they did. However, let me just say that
19	purity was important.
20	You couldn't tolerate a lot of
21	contamination here. And certainly they

cleaned up, decontaminated and moved on.

2	can't tolerate contamination with hafnium
3	tritide. That's just not the nature of what
4	they were doing.
5	Now, we also asked specifically, I
6	asked during the first round of interviews
7	that we conducted with the workers, and then I
8	can't recall if the interviews that we
9	conducted in Cincinnati also dealt with D&D,
LO	because I think you mentioned that as well.
L1	CHAIR BEACH: Yes, we did.
L2	DR. ULSH: We specifically asked
L3	about the potential for D&D workers to be
L4	exposed when they years later went in and
L5	demolished this building.
L6	And the response that we got was
L7	keep in mind this is particulate tritium and
L8	these systems were exhausted with a hundred
L9	cubic feet per second, I think is the number
20	that he used. If it was respirable, it was
21	sucked out the pipe and gone.
22	Now, if it's non-respirable, gets

And then their next product, you

1	caught in a bend in a pipe, we don't have a
2	problem. It's non-respirable.
3	Furthermore, they elaborated that
4	D&D from this operation was a little bit
5	different than what might be typical, go in
6	with the bulldozer and knock down the
7	building.
8	Because of security concerns, they
9	had to D&D the equipment that was used in this
10	operation, and that was performed by
11	laboratory personnel before it was ever turned
12	over to D&D workers, to make sure that this
13	compound wasn't present not so much from a
14	dosimetric hazard standpoint, but from a
15	security standpoint.
16	MEMBER CLAWSON: When you say
17	"laboratory personnel," who are you saying?
18	DR. ULSH: I'm saying
19	MEMBER CLAWSON: These ten people?
20	DR. ULSH: Yes.
21	MEMBER CLAWSON: Okay. If you
22	remember right, on the interview we asked them

1	so you're telling us that you're the only ones
2	that really got involved? Yes.
3	Then we asked who took care of your
4	instrumentation? Well, that was the
5	instrument tech.
6	Who changed out your glass? Oh,
7	well, these people did.
8	Well, who changed out all of this?
9	Well, there's other people, but they
10	couldn't, you know, it wasn't a part of it.
11	He was focused on those ten, but he
12	forgets that's just the tip of the iceberg and
13	the rest of it that is sitting underneath the
14	water is the one we're worried about.
15	The support personnel that came in
16	and did this, the union people that were in
17	there had it very cut and dry and he made it
18	very clear why he was upset, because they did
19	come in and they had certain things that they
20	had to be able to do. He couldn't have total
21	control.
22	There were people there that did

1	these jobs and I don't think that they were
2	this went well past `80, some of the pumps and
3	everything else that were still in there.
4	Mound had a tendency to when they
5	got done, they walked away. And, granted, the
6	gas part of it and everything else like that
7	was gone, but residual in all the pumps, in
8	the oil, in the drip tubes and everything was
9	there. He did not say when all that was taken
10	care of.
11	DR. ULSH: Okay. Going back to the
12	first round of interviews that we did, this
13	was early on in the process, not around when
14	you guys were there, the first three workers
15	that NIOSH ORAU interviewed, we specifically
16	asked the worker who was in charge of D&D here
17	about this.
18	He's the one that told me about,
19	you know, I asked specifically about what
20	about
21	MEMBER CLAWSON: These are the ones
2.2	at the Mound facility?

1	DR. ULSH: Yes.
2	MEMBER CLAWSON: I was there.
3	DR. ULSH: No, no, no, no, we
4	interviewed them downtown at the FBI Building
5	the same place that we had the later round of
6	interviews, but you guys weren't there at that
7	point.
8	MEMBER CLAWSON: Okay.
9	DR. ULSH: Okay. He also said that
10	they crawled around up there and took swipes.
11	They took swipes looking for this material
12	and they just didn't find it.
13	Now, you have to understand here
14	that this material was only one small part of
15	the tritides program at Mound. I mean the
16	amount of material was very so, I think
17	there will be enormous amounts of dilution
18	involved even if there is anything left.
19	I'm not saying that you didn't have
20	these categories of workers go in that Phil
21	described earlier and you just mentioned. I'm
22	not saving that.

1	What they said was any time they
2	had an activity that would involve a breach in
3	containment, they put the material away,
4	everyone was dressed out in bubble suits, they
5	had monitoring going.
6	These were not people just
7	wandering through that you wouldn't think of
8	that might have been exposed. They were very
9	well aware that they had an issue here and
10	that they needed to take appropriate
11	monitoring procedures.
12	So, I guess what we're left with, I
13	mean keep in mind that the topic of support
14	workers, the topic of D&D workers was
15	specifically brought up in the interviews when
16	we were talking to the former workers.
17	I think we're pretty close to
18	agreement with what the workers actually told
19	us.
20	They didn't say the exposure
21	potential is zero. They said it was very,
22	very low.

1	Now, we might each have our own
2	interpretations of what that means. I suspect
3	that we do. So, I guess it comes down to do
4	you believe what those workers told us or
5	don't you believe it.
6	MR. FITZGERALD: Well, you know,
7	it's this question of how low is low, you
8	know. We're not operating with any numbers,
9	any measurements.
10	What we're operating with is
11	certainly the ten operators are figure in
12	those that would be afforded dose
13	reconstruction with hafnium tritide as a
14	component.
15	And I think what we're saying is
16	that the support workers that would have been
17	potentially exposed, it's not clear that the
18	low exposures that we would attribute to the
19	operators from tritides is that much different
20	than the low exposures we would attribute to
21	the support workers that would have been in
22	and around changing the filters, supporting

1	the glovebox operations.
2	Now, I think the interviewee was
3	quite correct in the sense that it's kind of
4	hard to prove a negative. And I mean the
5	thing that overshadows everything is of course
6	there were no measurements on the tritides.
7	So, you were doing it sort of
8	secondhand from the standpoint of what we
9	would surmise as the potential.
10	DR. ULSH: Well, that's not really
11	true. They took swipes.
12	MR. FITZGERALD: I'm just saying for
13	the exposure potential for the support
14	workers, we don't have swipes to what they
15	might have been exposed to.
16	What we're trying to do is surmise
17	would they have been exposed potentially to
18	levels that would be commensurate with the
19	operators.
20	And all we can say is that, you

know, it was small, but it wasn't zero, and

it's not clear to what extent they were

21

- I don't think the operators were
- 3 exposed to considerable amount of tritides
- 4 either. However, I don't think we can
- 5 discount the support workers as being that
- 6 much radically different than the operators.
- 7 MEMBER ZIEMER: Well, let me raise
- 8 an additional question, and I think Phil is
- 9 quite right.
- 10 I would imagine that you would find
- 11 traces of the tritides in all the
- 12 penetrations, in the oils, in the greases and
- 13 all of that.
- 14 My question is what's the potential
- 15 during cleanup of that becoming airborne,
- because otherwise it's of no consequence.
- 17 Some of it, the tritium will be
- 18 released as gas. That's almost a no never
- 19 mind. I'm pretty sure if it's in the -- they
- 20 have floor pumps and diffusion pumps and so
- 21 on.
- MR. FITZGERALD: Yes.

1	MEMBER ZIEMER: And that pretty well
2	the particulate stuff would be pretty well
3	trapped there and it's not an external issue.
4	So, how do they get that? How do
5	they inhale that, would be my question. Maybe
6	change the
7	MR. KATZ: Excuse me. There's
8	someone on the line that should mute their
9	phone if they even intend to be on this line.
LO	This is a conference call, Advisory Board on
L1	Radiation and Worker Health.
L2	So, if you intend to be on this
L3	line, please mute your phone. You can use *6
L4	to mute your phone if you don't have an actual
L5	mute button. Thank you.
L6	MEMBER ZIEMER: So, I'm trying to
L7	get a feel for whether any of those cleanup
L8	operations and I think you'd have to grant
L9	that there must be the tritide must be
20	present at some level in most of this stuff,
21	but does it have the potential of really
22	becoming airborne during those cleanup

1	operations?
2	CHAIR BEACH: It has the potential
3	during D&D.
4	MEMBER ZIEMER: That's what I'm
5	asking.
6	CHAIR BEACH: Cutting up the
7	gloveboxes or the ventilation
8	MR. FITZGERALD: Yes, and most
9	instructive were the they didn't routinely
10	monitor. They did some swipes occasionally,
11	but didn't routinely monitor for it.
12	But the two instances where, you
13	know, not only was it released, but it was
14	tracked around
15	MEMBER ZIEMER: No, but I'm talking
16	about the later during the cleanup.
17	MR. FITZGERALD: You mean D&D?
18	MEMBER ZIEMER: Yes, because you're
19	talking about after `80 and that pushes it

MR. FITZGERALD: Yes.

into the D&D here now.

NEAL R. GROSS

CHAIR BEACH: `80 through D&D.

20

1	CHAIR BEACH: From 1980 on.
2	MEMBER ZIEMER: Okay. Well, in any
3	event -
4	MR. FITZGERALD: But, yes, when we
5	got into the D&D phase, I think we had similar
6	questions.
7	We were saying okay, and we were
8	talking about the operators being asked to
9	essentially D&D their own facility whether for
10	security reasons or otherwise.
11	And our question was, you know, we
12	were trying to imagine these operators doing
13	that and were there techs and were people
14	actually supporting these folks as they, you
15	know, cleaned out this operation?
16	It would seem to be the case.
17	MEMBER ZIEMER: Well, I guess it
18	would depend also on how they did the D&D.
19	MR. FITZGERALD: Right.
20	MEMBER ZIEMER: When we pulled
21	tritium gloveboxes, we usually got rid of the
2.2	whole unit and cut it up

_	MR. FIIZGERADD: 165.
2	MEMBER ZIEMER: I mean you sort of
3	said that's not what I'm going to do.
4	So, what is the potential for
5	airborne?
6	MR. FITZGERALD: Yes, what is the
7	potential? And that's what we're kind of
8	focused on.
9	And the other thing is, you know,
10	we touched lightly on the recovery recycle
11	facility, but you have a D&D involved in that
12	too.
13	And we asked that question and the
14	response was, you know, that would be a fairly
15	substantial D&D for that operation as well.
16	MEMBER ZIEMER: Well, I think on the
17	recovery, they ought to be able to get a
18	hundred percent of the tritium back on a
19	recovery operation.
20	I mean are you saying there's
21	residual
22	MR. FITZGERALD: Oh, no, in terms of

1	any residual tritide in the, you know, the
2	recovery itself I think I would agree with
3	Brant. We spent some time on this looking at
4	the machinery and the off-gas system.
5	MEMBER ZIEMER: Yes.
6	MR. FITZGERALD: The only
7	opportunity is at the very front end when
8	you're doing transfer box, but that's in a
9	sealed can.
10	MEMBER ZIEMER: Yes.
11	MR. FITZGERALD: The sealed can is
12	opened.
13	MEMBER ZIEMER: Right.
14	MR. FITZGERALD: So, there isn't a
15	whole lot of potential there, but certainly
16	you have the D&D of that particular facility
17	as well. And that, you know, that wasn't
18	covered other than
19	MEMBER ZIEMER: But there the
20	tritides ought to be all gone in that, right?

Or are you saying that they might not be?

FITZGERALD:

Ι

MR.

21

22

think we were

1	trying	to	eliminate	that	one	and	the	response
---	--------	----	-----------	------	-----	-----	-----	----------

- 2 if I can find it again -- I just saw it.
- 3 MEMBER ZIEMER: Or maybe outside of
- 4 the machine where they do the heating. Is
- 5 that the only --
- DR. ULSH: Well, again, I mean we
- 7 were only able to find indications that
- 8 hafnium tritide went through that system on
- 9 one occasion.
- 10 CHAIR BEACH: Except there was a
- 11 report that they got back from -- and that was
- from `77 to `84 and it went through that same
- 13 recovery. That was reported at one of the
- interviews. It's noted in here.
- 15 MR. FITZGERALD: Yes, the comment
- 16 was -- this is relating to the recycle
- 17 facilities. There may have been a significant
- 18 cleanup effort involved with that. This was
- 19 from the worker.
- 20 DR. NETON: What time frame was
- 21 that?
- 22 MR. FITZGERALD: It doesn't say a

1	specific	time	frame.	Just	that	the	cleanup

- for that particular facility -- and it's right
- 3 here. Actually, it's R-108. The number is
- 4 right here.
- 5 It could have been a significant
- 6 cleanup. And he was very much one of these
- 7 folks that was associated with that operation
- 8 going way back.
- 9 So, I'm just saying that it gets a
- 10 little more complex and it's tied to the
- 11 activity that took place where it was handled.
- 12 So, D&D is one component. And
- 13 certainly for the operation that Brant's
- 14 referring to, the operators were the ones that
- 15 did the initial cleanup.
- But again we ask the question, you
- 17 know, were these the specific people, were
- 18 there other people that supported those
- 19 people? I think that was the question.
- 20 DR. NETON: It seemed that there
- 21 would be surveys during the cleanup operation.
- 22 It sounds to me like if there's activities

1	now	after	1980.	we're	talking	about.	dose
_	11 C VV	$\alpha \perp c c \perp$	± 2 0 0 1	W C + C	CG	azcac	4000

- 2 received from residual contamination of
- 3 hafnium tritide. That's what we're talking
- 4 about now. It's not operations where they're
- 5 working with the material at this point.
- 6 And if they clean this up, I would
- 7 suspect that there must have been surveys
- 8 during the cleanup of the operation. I can't
- 9 imagine --
- 10 MEMBER ZIEMER: Letting them know
- 11 you cleaned up and --
- DR. NETON: Well, yes, yes.
- 13 Exactly. The cleaning it up, you must have
- 14 some kind of surveys to get some sort of
- 15 levels.
- 16 MEMBER SCHOFIELD: You would have
- 17 to.
- DR. ULSH: We haven't proposed using
- 19 swipe data for estimating doses to tritides.
- 20 But certainly during D&D and during
- 21 operations, Mound had an active program to
- 22 monitor for contamination by using swipes. It

1	certainly	did
_	CCICATILLY	ara.

- We haven't focused on trying to
- 3 capture that data because we're not proposing
- 4 to use it for dose estimation. But, yes,
- 5 you're right, Jim, I mean they -- an active
- 6 program.
- 7 MEMBER CLAWSON: They did. But also
- 8 in later years, too, not all people were
- 9 badged.
- 10 The other thing with the swipe
- 11 program is, is in DOE facilities and a lot
- 12 like with Mound, paint and other things are
- wonderful things.
- 14 When you start to break that apart,
- 15 you resurrect the past. And this is what they
- 16 also found in Mound. And they had several
- 17 issues where it had been dedicated that it's
- 18 cleaned, and then they opened it up and
- 19 resurrected the past.
- 20 That's part of the issue that is
- 21 there.
- 22 DR. NETON: I suppose one can

1	concoct any kind of scenario one wants.
2	MEMBER CLAWSON: Well, and I know
3	DR. NETON: There's contamination
4	survey data and the facility is well, we
5	have to look at what they did.
6	But I mean if they surveyed it and
7	the removable contamination is within a
8	certain level, I mean it's a matter of getting
9	it airborne like Dr. Ziemer was talking about.
10	And once it's there, it sticks.
11	MR. FITZGERALD: The only cautionary
12	note on that of course is in the late `90s
13	this is actually for contemporary defense
14	boards sort of intervened and there was a
15	you may recall some of this. There was a real
16	concern over the dosimetry and the monitoring
17	and the basically a whole new standard was
18	developed for the air monitoring, sampling,
19	whatever.
20	And so the historic data has to be
21	seen in that light that reliability
22	DR. NETON: One would have to wonder

1	what techniques were used.
2	DR. ULSH: Yes, and I need to speak
3	to that too because it's been brought up
4	before, you know, selected quotes from some of
5	these defense board documents that say that
6	urinalysis is inadequate or
7	MR. FITZGERALD: No, no. I'm not
8	even going there. I'm just saying that in
9	terms of these techniques like swipes and air
10	samplings, the cautionary note is just be
11	aware that, you know, again historically they
12	were seen as limited and open to question.
13	DR. ULSH: Yes, but the context in
14	which these techniques are limited is based on
15	the reporting limit that came into force in
16	the 1990s, I believe, where they had to be
17	able to detect a dose of a hundred millirem.
18	And certainly using urinalysis for
19	a situation where you might be exposed to
20	hafnium tritide, the missed dose for that is
2.1	higher than a hundred millirem per year. So.

they couldn't meet the reporting limit.

2	they had to figure out a strategy to deal with
3	it.
4	That's why it came up in the late
5	`90s when they were talking about getting
6	really hot and heavy into the D&D at Mound,
7	because they didn't have a way to detect doses
8	that small from this material if it was there.
9	DR. NETON: I think, Joe, and also
10	Brant, I think there was some concern about
11	the measurement techniques that were used to
12	see tritides.
13	MR. FITZGERALD: Yes, separate from
14	the first one.
15	DR. NETON: You're getting into the
16	issue of self-absorption of tritium particle
17	within the matrix of essentially a metal
18	compound, but there's been some recent
19	research done on that in the last five to
20	seven years.
21	I think Strong put out an excellent
22	paper on that where they did a Monte Carlo

That posed a problem to them and

1	simulation model. And for all intents and
2	purposes, I think it demonstrates the
3	ventilation counters are quite capable of
4	seeing the tritides or the tritium compounds
5	very readily.
6	MR. FITZGERALD: Well, I think that
7	my only point is if you go back to the survey
8	data, I think you have to be aware of the
9	history of some of these questions that were
10	raised by
11	DR. NETON: Well, that certainly
12	goes without saying.
13	MR. FITZGERALD: Sure. Sure. And
	rik. 11120bitAbb. Bare. Bare. Ana
14	then particularly in this case where it was
14 15	
	then particularly in this case where it was
15	then particularly in this case where it was really being scrutinized.
15 16	then particularly in this case where it was really being scrutinized. I want to go back because, you
15 16 17	then particularly in this case where it was really being scrutinized. I want to go back because, you know, really this whole thing started with

21

22

potentially exposed.

And

spent considerable time

1	trying to interrogate sort of that proposition
2	because we were concerned about the ability to
3	draw such a firm line around these ten
4	individuals for this very, quote, discrete
5	facility.
6	And I, you know, this is a little
7	bit hamstrung by the information that we have
8	looked at and we're trying to be careful about
9	it, but I am just not convinced that these ten
10	individuals were the only individuals that
11	were potentially exposed to hafnium tritide
12	during the historic Mound operation involving
13	inhaling hafnium tritide.
14	And I, you know, there is some
15	equivocal information involved only because
16	there wasn't any direct monitoring.
17	But in terms of talking with the
18	workers, in terms of looking at the
19	documentation, I think the basis for making
20	that very, very firm claim is weak. And
21	that's basically where I'm coming from.
22	CHAIR BEACH: And let me ask back in

1	April, I think April 12th, there were some
2	emails going back and forth on some tritium
3	swipe data that NIOSH was going to look at
4	with Cheryl Kirkwood.
5	Whatever happened with that?
6	DR. ULSH: We captured it.
7	CHAIR BEACH: Anything interesting
8	or
9	DR. ULSH: I'm trying to think of
LO	the chain of events that led me to request it
L1	or I would have captured that data.
L2	CHAIR BEACH: It was after our
L3	worker interviews, I know.
L4	DR. ULSH: Yes. And I know and I
L5	got an email from Joe, because Joe had the
L6	same concern like, hey, why are we getting
L7	this data?
L8	I think the reason that I requested
L9	it, if I can recall correctly, was that some
20	skepticism about the utility of bioassay data
21	to detect hafnium tritide intakes continued to

be expressed by the Working Group and SC&A.

1	And, therefore, I considered it
2	prudent to go back and capture that swipe data
3	just in case we should have any
4	CHAIR BEACH: Tritium survey on
5	swipe data.
6	DR. ULSH: Well, yes. I mean
7	MR. FITZGERALD: Well, there was
8	also boxes being transferred to Morgantown. I
9	think there was some urgency of capturing
LO	stuff before it got shipped or something.
L1	Timing wise I think that was kind
L2	of imperative as well.
L3	DR. ULSH: I'm going to be
L4	completely transparent about this. I only
L5	grabbed it because I thought there was a
L6	remote possibility that the Working Group is
L7	going to opine that urinalysis data is no
L8	good, throw it out, and I didn't want to be
L9	standing there empty handed.
20	So, we've got that data, we
21	captured it, but again we haven't proposed to
22	use it for dose reconstruction. I just wanted

1	to have it.
2	So to be honest with you, I haven't
3	done a detailed analysis of it.
4	CHAIR BEACH: Okay. I just
5	remembered that that had happened.
6	DR. MAURO: What I heard is that it
7	seemed to me that the bulk of the matter is it
8	sounds like that the people that are known to
9	have handled this material may not be the
10	people that had the highest exposures, that I
11	know of.
12	In other words, you named these ten
13	people and maybe there's a handful of other
14	people that were associated with the
15	operations and maybe the maintenance, but then
16	
17	DR. ULSH: No, I don't think
18	(Simultaneous speaking.)
19	DR. MAURO: I'm listening to
20	MR. HINNEFELD: Not that they
21	weren't the highest, but there were other non-

trivially exposed people.

1	DR. MAURO: Right, but
2	MR. HINNEFELD: That's the argument.
3	I haven't heard anything about these guys not
4	being the highest.
5	DR. MAURO: Okay. Good. Well, I
6	want to make sure I got that right.
7	MR. HINNEFELD: Is that right?
8	(Simultaneous speaking.)
9	MR. KATZ: One at a time.
10	MR. HINNEFELD: But the argument
11	pulls either way. If there are other non-
12	trivially exposed people, the argument is the
13	same. It's not that, you know, and I don't
14	know that you would ever talk us out of the
15	fact that the people named especially the
16	ones if they were involved in the incidents, I
17	don't know if you'd ever talk us out of the
18	fact that we believe those were the most
19	highly exposed.
20	But the question here that we have
21	is have you correctly identified all the
22	people who are exposed to the extent that you

2	That's what the discussion has beer
3	about.
4	DR. MAURO: My question goes to what
5	Phil was saying before. There is a model that
6	we're building. We have facts that come back
7	from the interviews. Okay. And what's
8	happening is it's almost as if we all agree
9	that there were some undefined number of
10	people that experienced some level of
11	exposure.
12	And the so, now I think that
13	defining who those people are, I don't think
14	we can. Stay with me for a minute.
15	MEMBER ZIEMER: John, let me correct
16	something. I don't think we've agreed to
17	that.
18	DR. MAURO: We haven't?
19	CHAIR BEACH: No.
20	MEMBER ZIEMER: I've said that I
21	would like to know if there's a potential for
2.2	inhalation.

1

need to worry about it?

1	I agree that there could have been
2	contamination in other areas and that people
3	had the potential for exposure.
4	But, in fact, do we know that the
5	tritium was in a form where they could have
6	actually inhaled it?
7	Was there something about the
8	cleanup operations like were they sawing up
9	gloveboxes and generating aerosol
10	DR. MAURO: Well, I think that's the
11	question I was raising.
12	MEMBER ZIEMER: No.
13	DR. MAURO: Because I
14	MEMBER ZIEMER: I haven't agreed
15	that
16	DR. MAURO: Maybe I'm not posing my
17	I didn't word my wording right.
18	Phil explains that there's a lot of
19	activities that go on during D&D, during
20	maintenance
21	MEMBER ZIEMER: Right.
22	DR. MAURO: Of these facilities

1	where perhaps those people because of the
2	nature of the things that they are doing,
3	actually have a greater potential for inhaling
4	tritium than, let's say, people who are
5	working under very controlled conditions with
6	the glovebox.
7	I don't know. I guess that's my
8	question because, you know, if you know if
9	you could say with a degree of certainty that
10	the people that we know about that were
11	exposed either during an incident or during
12	operations, it's clear and unambiguous that of
13	all the people that might have come in contact
14	with potential airborne sources of tritide,
15	hafnium tritide, these are the people that
16	clearly had the greatest potential for
17	exposure.
18	Now, what I heard
19	MEMBER ZIEMER: If I can interrupt,
20	we sort of agree on one thing.
21	I think I would agree that
22	potential for exposure may be higher because

1	of	what	they're	doing	versus	someone	working
2	in	a glo	vebox.				

3 What is very different is the The glovebox person has the mass 4 source-term. of the material. The other person has some 5 6 amount, granted certainly not the -- it may be a millionth of it and still be, you know, 7 worth considering. 8

9 So, the potential for inhalation is 10 one thing, but the source-term involved has to 11 be considered too.

DR. MAURO: I agree with that, yes.

See, I just wanted to get a sense whether or not the people that were in the controlled circumstance and the people that were involved perhaps in the cleanup of the spill, which may very well be wearing bubble suits, I don't know, I don't know the details of it, you know, and a lot of whom that you could actually name, which may extend beyond the ten or 11 people that we know about, then there's this other cadre of people that down

NEAL R. GROSS

12

13

14

15

16

17

18

19

20

21

1	the road somewhere involved in
2	decontamination/decommissioning may have
3	opened up, re-mediated, whatever they had to
4	do, decommissioned the facility, they're at
5	play also to a certain degree.
6	Now, if one could argue they're at
7	play, but their potential for exposure to
8	airborne hafnium tritide is really much, much,
9	much less than any of these other people that
10	we know about.
11	So we have the people we know
12	about, and then we have the people we don't
13	know about.
14	And I guess in the end, the most
15	important question is, is the people that we
16	don't know about, is it reasonable to assume
17	that they may have gotten exposures that were
18	even greater than the people we know about?
19	And I think this is a judgment call
20	almost because that's where the rubber meets
21	the road, you know.

If you could say with a degree of

1	certainty that the people we know about
2	clearly and unambiguously had the potential
3	and actually experienced the exposures that
4	were clearly higher than those that we don't
5	know about because of the nature of I don't
6	know. You guys know from your interviews.
7	Then you could actually say, well,
8	all the people we don't know about, it
9	couldn't have been higher than these guys. We
10	have urine samples. We're going to assume
11	that the urine samples that we have from those
12	people that we know about, we measure these
13	many becquerels per liter, and we know using
14	OTIB-0066 we can convert that to an intake and
15	reconstruct the dose.
16	And we can as a result of that.
17	And we could also say that whatever that dose
18	is to the lung, we know the lung is a limiting
19	organ, that no one is going to have a higher
20	dose than that, including the people that we
21	don't know about.

Now, I think that that's where the

1	judgment is going to have to be made by the
2 V	Work Group and then of course eventually by
3 t	the full Board.
4	MEMBER ZIEMER: Do we have urine
5 s	samples on these later cleanup people?
6	DR. ULSH: If they were involved in
7 I	D&D in tritium facilities, they were on
8 t	tritium urinalysis program.
9	MEMBER CLAWSON: After `80?
10	DR. ULSH: Yes, even more after `80.
11	CHAIR BEACH: Well, there is a D&D
12 r	paper on that, but we haven't actually had
13 t	time to discuss it.
14	DR. ULSH: Well, yes. It addresses
15 I	D&D in general, but
16	CHAIR BEACH: It says greater than
17	90 percent urinalysis report. I don't know if
18	I agree with it, but
19	DR. ULSH: Now, with regard to
20	I'm losing track of who's raising the points.
21	We specifically asked in our first
22 1	round of interviews for the three workers that

Τ	we talked about, who got the highest exposure
2	to hafnium tritide?
3	And it was right away they said
4	it was that guy who was involved in that first
5	incident early on in the program who was the
6	guy that was making the material, one of the
7	first production runs, I guess, and he got a
8	snootful of hafnium tritide. That guy is the
9	guy that got the highest exposure. So
LO	DR. MAURO: Was he a three rem guy?
L1	You mentioned three rem before.
L2	DR. ULSH: I think so, yes. I think
L3	that's the highest guy.
L4	So, John, you're adding an element
L5	here that I don't think we've discussed up to
L6	this point. And that is what is the exposure
L7	potential for, like, D&D workers or other
L8	workers relative to the operators.
L9	I can only speak for me, but I
20	haven't heard anyone making the argument that
21	they might have an even higher exposure than
22	the operators.

1	I think what the argument has been
2	is that while it may not have been higher than
3	the operators, it may still be high enough
4	that we should consider it in dose
5	reconstruction.
6	Now, I don't endorse that point of
7	view, but that's what I have heard anyway.
8	MR. FITZGERALD: Well, you know, the
9	first question I think we were grappling with
10	on D&D was, you know, could you even identify
11	it.
12	I think the on the discrete
13	facility you were referring to, you know, the
14	fact that the operators did the first pass was
15	somewhat comforting because you know who they
16	were.
17	But, you know, I think our question
18	was, was it exclusively them? And there was a
19	little ambiguity about that.
20	The other question was, you know,
21	in D&Ding the and I just mentioned this
22	the recycling facility, who did that? I don't

1	think that would probably be operators.
2	So, you know, there's just those
3	kinds of questions and I don't know if we know
4	what the potential was for D&D workers.
5	That's one reason we didn't really grapple
6	with that so much because if the operators
7	cleaned up the facility to that extent, ther
8	the D&Ding of that facility probably would
9	have been it would have been negligible.
10	There wouldn't be much left to be exposed to.
11	DR. ULSH: Okay. Well, for the
12	production-type facilities, we were told that
13	the people who were directly involved in the
14	production operations were responsible
15	CHAIR BEACH: He said he hadn't
16	cleared
17	DR. ULSH: We're okay. Believe me,
18	I'm not going to say anything I'm not supposed
19	to.
20	The people who were involved in the
21	production were in charge of cleaning up their
22	own mess, is the way it was put. And they

±	were in charge or creating up the ractificies
2	and equipment down to clean standards, is the
3	way it was described.
4	So, they took swipes, looked for
5	contamination. If they found it, they
6	continued to clean it up until that situation
7	no longer existed, and then it was released
8	for general D&D.
9	Now, with regard to the tritium
LO	recovery system, I would almost venture to say
L1	that that's not even relevant because this
L2	material didn't go through the tritium
L3	recovery facility with the exception of one
L4	instance that we know about.
L5	And again I bring up the fact that
L6	the whole purpose of this facility was thermal
L7	decomposition of tritium-bearing compounds.
L8	In other words, you heat it up until the
L9	tritium comes off.
20	So, yes, there might have been when
21	the tritium was dissociated, it's driven off,
22	might it have resulted in some fixed

Τ	contamination? Sure, but that's not a nainium
2	tritide problem.
3	MR. FITZGERALD: No, I think the
4	excuse me for jumping in here.
5	I think the issue there is more the
6	D&D side. I think we spent a great deal of
7	time looking at the operation and I think
8	coming to a conclusion that the way it was
9	handled was pretty tight that there would not
10	have been any clear opportunity unless you had
11	a big breach in the off-gassing.
12	But in the D&D phase of that thing
13	we did raise that specifically. And the one
14	interviewee who had a lot of knowledge of it
15	said, yes, you know, you would definitely be
16	looking at a cleanup of that operation.
17	And I think it's probably from the
18	standpoint of not only the residual from the
19	one campaign that we were talking about, but
20	also the fact that Mound received, and we
21	heard this as well, returns from other sites.
22	And I won't go any further than

1	that, but that does present a question about
2	how much, how often and what was left in the
3	recycling operation after it was all done.
4	And clearly there's no account that
5	they had operators do an initial cleanup. It
6	might have happened, but
7	DR. ULSH: No, I'm not saying that.
8	MR. FITZGERALD: The D&D of that
9	particular operation would have been, in my
10	view, probably as significant as the D&D in
11	the production operation. I mean I think
12	DR. ULSH: As a hafnium tritide
13	issue?
14	MR. FITZGERALD: Huh?
15	DR. ULSH: As a hafnium tritide
16	issue?
17	MR. FITZGERALD: Hafnium and
18	related, you know. The question we asked,
19	were there equally insoluble type of compounds
20	coming from other sites that would have been
21	recycled?
22	The answer was, yes, there were

1	others.	And	I	don't	want	to	qo	any	further

- 2 than that, but I'm just saying that
- 3 complicates the situation of saying that
- 4 wasn't one campaign. That was a central
- 5 recycling operation for the complex.
- DR. ULSH: Right. I agree.
- 7 MR. FITZGERALD: So, you know, what
- 8 went through over time was more than, you
- 9 know, was not only the hafnium, but other
- 10 compounds that clearly could have had
- 11 characteristics similar to or approaching
- 12 hafnium.
- So, I think we've got to be careful
- in just focusing on one campaign. That's one
- 15 reason we did ask those questions.
- 16 DR. BISTLINE: This is Bistline
- 17 speaking, and I just want to throw one little
- 18 tidbit in.
- 19 And that is one has to be very
- 20 careful in going too far with the issue of
- 21 heating up this material and driving off the
- 22 tritium.

1	The worst tritium release that we
2	had at the Rocky Flats was exactly that very
3	thing there was heated up and the tritium
4	supposedly was driven off by the people at
5	Livermore and then shipped to Rocky Flats as
6	being a clean piece of material, and it
7	wasn't.
8	That doesn't drive just heating
9	it up doesn't drive off all the tritium
LO	usually.
L1	CHAIR BEACH: Thanks, Bob.
L2	MEMBER SCHOFIELD: Let me ask you
L3	something quick, Brant, or maybe Joe or one of
L4	you could answer. I've got to be careful how
L5	I word this.
L6	You have X amount coming in and you
L7	have X amount minus one at the other end. If
L8	we have an idea of that hold-up in that
L9	process, it seems like we should be able to
20	get a rough number.
21	MR. FITZGERALD: You mean materials
22	balance?

1	MEMBER SCHOFIELD: Yes, the material
2	balance.
3	Did you see any numbers like that?
4	No?
5	MR. FITZGERALD: Even if we did, we
6	couldn't
7	MEMBER SCHOFIELD: That I know, but
8	it would just give you a rough idea to think
9	in your mind, you know.
10	CHAIR BEACH: So, I'd like to wrap
11	this up unless there's just some burning
12	questions or issues that
13	MEMBER SCHOFIELD: I was walking on
14	eggshells.
15	MR. FITZGERALD: Not with a ten-foot
16	pole.
17	(Laughter.)
18	DR. MAURO: Is it plausible that
19	there are other people that you don't know
20	about that might have been exposed to hafnium
21	tritide?
22	I'm not saying how much. Is it

2	the nature that Phil asked about that might be
3	exposed to hafnium tritide?
4	I think the answer has to be yes,
5	from what I'm listening to.
6	DR. ULSH: Well, if you don't put
7	any conditions on it.
8	DR. MAURO: I'm not putting I'm
9	just saying that and now my second question
10	is, is it plausible that those people could
11	have experienced hafnium tritide intakes that
12	were greater than the ones that you do know
13	about?
14	I mean that's the essence of where
15	we're headed with this thing. And that's
16	going to be a judgment call.
17	And I guess your judgment is I'm
18	almost going to sort of say that I could see
19	where you're going.
20	Where you're going is that perhaps
21	it is plausible that there are other people of
22	the nature that might have been exposed who

plausible that there might be other people of

1 you don't no one kno

- 2 And the second -- but the other one
- 3 I'm pretty sure you arque, however, their
- 4 potential for inhaling hafnium tritide was
- 5 much lower than the potential for the people
- 6 you do know about.
- 7 Would that be a true statement of
- 8 your position?
- 9 DR. ULSH: Pretty close. I would go
- 10 a little bit further in some respects.
- 11 You asked first of all is it
- 12 plausible that someone could have been exposed
- 13 to hafnium tritide other than the ones that --
- 14 I'll editorial it -- other than the ones that
- we've named.
- DR. MAURO: Yes.
- DR. ULSH: Is it plausible? Yes.
- 18 I would guarantee it.
- 19 If I go to the Mound site today,
- 20 there is a non-zero probability that I will
- 21 encounter an atom of hafnium tritide. So,
- 22 sure.

1	The problem is you have to consider
2	whether or not if plausible, that they were
3	exposed to hafnium tritide of dosimetric
4	significance.
5	And my answer is emphatically it's
6	not plausible.
7	MR. FITZGERALD: And that's where we
8	disagree, because I think the position that we
9	would take and what we have reviewed is that
10	these were not negligible exposure potentials.
11	DR. ULSH: You're right. We
12	disagree.
13	MR. FITZGERALD: Yes, we disagree.
14	And that's just central. And that doesn't
15	have anything to do with how much, which is
16	what Stu's point was.
17	We just don't agree that there was
18	no non-negligible is that two negatives
19	non-negligible exposures beyond the ten.
20	Based on what we have gleaned from the
21	interviews and the document reviews, that
22	there are more than ten.

1	In fact, we started collecting
2	names during the interviews, of individuals
3	who clearly were in the facility and rad techs
4	and what have you that clearly would have been
5	doing a lot of operational-type activities in
6	addition to the maintenance people.
7	So, you know, the question is, is
8	it ten? No, we believe it's not just ten.
9	DR. ULSH: Well, I agree with you
10	there. We were provided a couple of
11	additional names.
12	MR. FITZGERALD: But, you know, we
13	could have kept going. The question that we
14	were grappling with was, okay, the ten are
15	clearly the ones involved and everybody agrees
16	they were the operators.
17	What about Joe Schmo the rad tech?
18	And then we went through an exercise with the
19	operator saying, yes, okay. Yes, that guy
20	supported me, that person supported me. They
21	were in the room, they were rad techs. Okay.
22	So, we started collecting those names.

1	Then we started talking about,
2	okay, what's the other folks that were, you
3	know, and the list got longer and longer.
4	So, you know, the point is where do
5	you draw the line as to where it became
6	trivial?
7	And I'm not sure you can draw a
8	line very easily as to what worker who was in
9	that room would have had a trivial exposure
10	potential.
11	DR. NETON: What about contamination
12	after 1980 though. It seems to me that the
13	source-term had been put away by then. That's
14	what I've heard.
15	So, now we're speculating that
16	there were massive amounts, potentially large
17	amounts of contamination left that exposed a
18	large amount of
19	MR. FITZGERALD: Yes, but, Jim, let
20	me just stop you there. I agree. There's
21	sort of recent events have bifurcated this
22	issue to

1	DR. NETON: But that's what we
2	MR. FITZGERALD: I know. I know,
3	but we
4	DR. NETON: Well, let's not go back
5	to the operations
6	MR. FITZGERALD: No, but the premise
7	that was put on the table at the last Work
8	Group meeting was this discrete operation
9	involved ten workers of
10	DR. NETON: What I'm suggesting
11	though is that's no longer really a central
12	issue.
13	MR. FITZGERALD: Well, but I'm just
14	saying that for now
15	DR. NETON: Unless you want to make
16	a Class for an SEC prior to 1980 for tritides,
17	and you're certainly welcome to do that.
18	MR. FITZGERALD: Now, you know, it's
19	a two-part issue. We can agree really on that
20	potential, but now we have the second part
21	which is, okay, you know, with the assumption,
22	and we didn't hear anything different that

1	there	weren't	any	active	handling	operations,
---	-------	---------	-----	--------	----------	-------------

- that doesn't deal with recycling, that's just
- on the production side, but no production-type
- 4 activities after 1980.
- 5 We still have recycling, which we
- 6 looked at and felt was pretty tight. And then
- 7 we get to the cleanup on both recycling and on
- 8 the front end and saying who are those workers
- 9 and was the potential there not trivial.
- DR. NETON: Well, we have surveys
- 11 for that.
- 12 CHAIR BEACH: Possibly.
- MR. FITZGERALD: Possibly.
- 14 DR. NETON: Brant said there were
- 15 surveys taken for the D&D operation. That's
- 16 my point.
- 17 MR. FITZGERALD: For tritides?
- DR. NETON: Yes.
- MR. FITZGERALD: Okay.
- 20 DR. NETON: It's going to be a
- 21 combination, but --
- MR. FITZGERALD: Well, I think

1	that's certainly in question whether or not
2	the surveys were done, were they positive or
3	not, negative, you know.
4	DR. NETON: Well, that's my position
5	here though is that one needs to determine
6	was there significant residual contamination
7	left over from operations that could have
8	contaminated the operators and all these
9	ancillary support personnel that was
LO	significant to worry about dose impact.
11	That's where we are. And I don't
L2	know if anybody knows the answer to that right
L3	now. Everything is speculation that I've
L4	heard.
L5	There could have been massive
L6	amounts of contamination in this containment
L7	during operation. When they went in to clean
L8	it up, exposed a lot of people presumably in
L9	bubble suits at that point. I don't know.
20	CHAIR BEACH: The only thing I heard
21	on bubble suits was when they changed the oil.
22	That was reported, and I went to look for it

_	-			
7	and	didn't	200	¬ +
	anu	ULLUII L	200	

- DR. NETON: And this is late enough
- 3 in the game that in that time frame one would
- 4 suspect that there's probably RWPs that cover
- 5 this operation.
- 6 I mean I think the answer is that
- 7 the focus has changed to this D&D operation
- 8 now in my opinion.
- 9 MR. FITZGERALD: Well, I think that
- 10 NIOSH is prepared to put that position on the
- table that, you know, we'll agree to disagree.
- But in its essence it's made moot
- 13 by the actions of the Board on the previous
- 14 SEC.
- DR. NETON: Well, I'm not sure of
- 16 that. I mean one has to evaluate all the
- 17 merits of an SEC or now --
- MR. FITZGERALD: No, I --
- DR. NETON: That's why I put it up
- 20 front that it's sort of --
- MR. FITZGERALD: Right.
- DR. NETON: Up to the Working Group

2	that.
3	MR. FITZGERALD: What I'm hearing is
4	that we agree on the first part. We agree to
5	disagree on the negligibility of the exposures
6	outside of the ten.
7	So, rather than beating this to
8	death, I think we agree to disagree based on
9	what we've reviewed as to what that estimate
10	is.
11	Now, on that note
12	DR. NETON: Is it fruitful to keep -
13	_
14	MR. FITZGERALD: Right. And the
15	Work Group Members were party to all this
16	discussion. So, I'm not sure it does warrant
17	much more discussion. They were there and
18	they can make their own judgments based on
19	what they heard firsthand, you know. We've
20	kind of said everything.
21	The second part, we don't have the
22	survey data in our hands to validate on the

1 to make a decision whether they want to pursue

1	D&D	side.	As	Brant	said,	we	didn't	really
---	-----	-------	----	-------	-------	----	--------	--------

- 2 look at D&D in that context.
- DR. ULSH: It's in the SRDB. The
- 4 swipe data from R and SW Building is in the
- 5 SRDB. I have not picked it up and looked at
- 6 it in any systematic way.
- 7 MR. FITZGERALD: In the context of
- 8 this --
- 9 DR. ULSH: Right.
- DR. NETON: And here's the -- well,
- I don't know that SC&A made an issue out of
- 12 D&D other than to mention it and say it's a
- 13 possibility, but I've seen no convincing
- 14 evidence on my part that the D&D operators
- 15 were significantly at risk for --
- MR. FITZGERALD: Well, I think we
- 17 did. We broached the issue of more operations
- 18 that were implicated with hafnium tritide
- 19 beyond the discrete one that was identified in
- 20 the White Paper, and we included D&D as one of
- those.
- 22 And we've had a dialogue, we

1	brought that up in interviews, we were focused
2	on D&D. And the feedback we got was, I think
3	as Brant we had mentioned that, yes, the
4	operators were told I'm not sure I have the
5	date on that, Brant, whether the operators
6	cleaned up right after the end of that
7	campaign or whether they did it right before
8	D&D started, you know. It's unclear.
9	But, you know, I think, yes, we did
LO	spend a lot of time trying to at least unpack
11	the implications on D&D. And at one point,
L2	one individual down at the recycling facility
L3	acknowledged that, yes, that would have been a
L4	cleanup issue.
L5	And given the history, it's
L6	understandable it would have been a cleanup
L7	issue.
L8	So, that's about where we are or
L9	the D&D.
20	CHAIR BEACH: So, let's take a poll
21	amongst the Working Group.

First of all we were looking at

1	whether meaningful exposure pathways existed
2	for hafnium tritide exposure, whether the
3	small cohort of workers are involved and can
4	be named.
5	Okay. So, we talked about that and
6	whether exposures in the 1980s could have
7	occurred.
8	I believe that these have all been
9	proven based on our interviews. Then you add
10	the other end of it, the diffusion issue,
11	reactivity, the recycle operations.
12	I think that during our worker
13	interviews held last April, it became obvious
14	to me at least that NIOSH is unable to know
15	who may have been exposed excuse me who
16	may have had exposure potential over time to
17	the hafnium tritides.
18	And of course this has been
19	mentioned several times today that it's
20	already gone beyond the original ten that was
21	mentioned.

And again three out of the five

1	Work Group Members were present during those
2	discussions for the classified discussions on
3	the 6th and 7th, and should be able to draw
4	their own conclusions.
5	Cleared Members have all had the
6	opportunity to examine firsthand the
7	classified site information based on existing
8	evidence.
9	There has existed a probable
10	exposure potential for workers to highly
11	insoluble metal tritides at Mound, and it
12	remains infeasible for NIOSH to estimate doses
13	with sufficient accuracy due to the lack of
14	monitoring data.
15	Now, this is the first I've heard -
16	- I knew that Brant was going to go in and
17	look for swipe data, but never did hear any
18	more about that.
19	So, originally when I wrote this
20	yesterday, I was including reliable air
21	sampling data, and it hasn't been proven that
22	there is reliable sampling air data today.

1	And to identify they are not
2	able to identify these workers who may have
3	had potential exposures.
4	So, I guess I'm going to ask the
5	Work Group if we were to bring this up for
6	recommendation, I would recommend an SEC from
7	1980 through D&D.
8	What do you guys think?
9	Where are we at?
LO	So, Brad?
L1	MEMBER CLAWSON: I feel the same
L2	thing. That's what I've been trying to say.
L3	We've got too many loose ends.
L4	CHAIR BEACH: Okay. So, yes, we
L5	should bring that up as a recommendation to
L6	the full Board in August.
L7	Bob?
L8	MEMBER PRESLEY: No.
L9	CHAIR BEACH: No. Okay.
20	Phil?
21	MEMBER SCHOFIELD: Yes.
22	CHAIR BEACH: Paul, what do you say?

1	MEMBER ZIEMER: Well, I'm an
2	alternate on this so I don't know if I get a
3	vote on that.
4	CHAIR BEACH: You do.
5	MEMBER ZIEMER: I'm not prepared to
6	recommend an SEC based on what we've heard.
7	I agree with partially the idea
8	that there might have been some exposures, but
9	there's we haven't I mean part of this
10	has just arisen today and
11	CHAIR BEACH: Yes, I agree.
12	MEMBER ZIEMER: I think it's
13	immature for us to make a recommendation based
14	on what we've heard.
15	We don't really know what those
16	smears and air samples look like. We do know
17	as I understand it, that we have urinalysis
18	for all of these people so that if there were
19	exposures, doses could be reconstructed.
20	Am I right that we have the urine
21	samples for all these people?
22	MR. FITZGERALD: Yes.

1	MEMBER ZIEMER: Even if we don't go
2	there.
3	MR. FITZGERALD: But again we have
4	to know we have to peg the workers, D&D
5	workers, I'm just saying, to the operation
6	they were working. You wouldn't at all
7	discriminate the tritium, right?
8	CHAIR BEACH: All the workers.
9	MR. FITZGERALD: Yes.
10	MEMBER ZIEMER: Well, I don't know.
11	I mean do we know who did D&D?
12	DR. ULSH: The people who worked
13	okay.
14	The people who worked
15	MEMBER ZIEMER: After `80.
16	DR. ULSH: The people who worked D&D
17	in the R and SW Buildings were tritium was
18	included in the bioassay program that they
19	were supposed to be on.
20	Does that answer your question?
21	MEMBER ZIEMER: Yes, I think that
22	tells me we can reconstruct dose if they had

Т	tritium uptakes.
2	MR. FITZGERALD: Well, how would you
3	know who was exposed to hafnium potentially
4	though?
5	CHAIR BEACH: That's the problem.
6	MEMBER ZIEMER: Well, it's just an
7	issue of bounding it. I guess you would
8	DR. NETON: Well, this was a
9	previous issue that you end up with very large
10	tritium excretions. And if you use a Type S
11	model for that, you end up with some fairly
12	large lung dose and you have to swipe all
13	workers.
14	And the question is, is that
15	reasonable to do?
16	DR. MAURO: When I asked this
17	question about these other people that we
18	don't know who they are, and I said is it
19	plausible that they could have experienced
20	exposures higher than the people that we do
21	know had some exposure, that in my mind got to

the heart of the issue because what this means

1	is, if somehow we could convince ourselves
2	that these other people though they might have
3	the potential for exposure, it's inconceivable
4	that it could have been greater than the
5	exposures experienced by the people that we do
6	know had a real potential for exposure.
7	Now, how does that help us?
8	Let's say we get to that point
9	somehow where everyone agrees, yes, there are
10	other people, we don't know who they are, that
11	have the potential for exposure.
12	And we could identify a whole bunch
13	of scenarios under which theoretically that
14	could have occurred at some time and some
15	place. We still know who they are.
16	What we can say based on, let's
17	say, the swipe samples or whatever the weight
18	of the data are, that the potentials are
19	unlikely to be greater, you know, than the
20	people that we know were exposed.
21	Now, what I just heard is the
22	highest exposure that has occurred in any

1	given	year	was	about	three	rem.	All	right.

- 2 So, I'm looking at -- I'm playing this out in
- 3 my mind right now, so stay with me.
- So, what you're saying now is if
- 5 you would buy that second part that is it's
- 6 really not plausible that all these other
- 7 people -- well, then you assign all those
- 8 other people the highest dose because it is
- 9 plausible and you've bound for it.
- 10 If you can't say that -- you see
- 11 what I'm getting at is if you can't say that,
- that is wait, no, no, the nature of the
- 13 operations and the cleanup that Phil was
- 14 talking about are such that we really can't
- 15 say with a degree of certainty that those
- 16 exposures were less than or had a potential to
- be less than the people that we do know.
- 18 If we can't say that, then where
- 19 you are is where Jim is. That means we have
- 20 no choice but to assign everybody in the plant
- 21 assuming that every tritium analysis in the
- 22 urine collected was due to the inhalation of

1	hafnium tritide, which of course is completely
2	implausible.
3	But if you can say it, and I'm just
4	trying to be helpful here, but if you can say
5	the weight of the evidence is clear, it's
6	inconceivable that these other people who
7	might have been exposed that we don't know who
8	they are, could never have inhaled amounts
9	that were comparable to these other people,
10	you've bounded it.
11	It can't be higher than that.
12	You've bounded it and then what are you going
13	to do?
14	You're going to give everybody else
15	in the plant that dose. I mean there is no
16	MR. FITZGERALD: This is getting
17	back to a thought earlier this morning where
18	we were talking about the empirical basis for
19	N/P ratio.
20	You're saying the empirical highest
21	potential was this individual
22	DR. MAURO: If that's true. I'm not

1	saying it	is.					
2		MR.	FITZGERA	ALD: I	mean	I'm sa	aying
3	if that's	the	postula	tion,	then (empiri	cally
4	that would	be o	verbound	•			
5		DR.	MAURO:	Yes,	that's	what	I'm
6	putting on	the	table,	yes, as	s a po	ssible	e way
7	of wrestlin	ng th	is				
8		MR.	FITZGERA	LD: But	t then	you :	still
9	have the p	roble	m I'l	l go ba	ack to	, you l	know,
10	who are the	ose -	_				
11		DR.	MAURO: E	verybod	ly.		
12		MR.	FITZGERA	.LD: Wh	no woul	ld be -	
13		DR.	MAURO: E	verybod	ly.		
14		MR.	FITZ	GERALD:	: 1	Potent	ially
15	exposed?						
16		DR.	MAURO: E	veryboo	dy. E	veryboo	dy in
17	the plant	is	going t	o get	that	dose	from

- MR. FITZGERALD: Is that plausible?
- DR. MAURO: Well, I don't know.
- 21 (Laughter.)

hafnium tritide.

22 (Simultaneous speaking.)

NEAL R. GROSS

1 DR. MAURO:	Well,	no,	no.	I'm
--------------	-------	-----	-----	-----

- 2 sorry. I'm trying to --
- 3 MR. FITZGERALD: I'm just trying to
- 4 figure out --
- 5 DR. MAURO: I will say everybody in
- 6 the plant --
- 7 MR. FITZGERALD: Right.
- B DR. MAURO: That possibly --
- 9 MR. FITZGERALD: Right.
- DR. MAURO: Could have been involved
- in an operation, and that may turn out to be
- 12 everybody in the plant. I don't know if
- 13 that's true.
- 14 Certainly that would be -- I mean
- right now we don't know who these other people
- 16 are.
- 17 MR. FITZGERALD: Well, I'll
- 18 disagree. You either can define them tightly
- or you end up sort of taking everybody.
- I mean it's difficult to go in
- 21 between. So --
- DR. MAURO: I mean there may be a

4	could have been exposed to hafnium tritide.
5	Well, okay, then they're ruled out.
6	But if anybody you could say that conceivably
7	might have been exposed, but one thing for
8	sure if they were, it wasn't greater than the
9	guys we know about, well, here's your
LO	boundary.
L1	MR. FITZGERALD: Well, yes. You
L2	only have the two choices.
L3	Either you draw the lines around
L4	the workers that were potentially exposed,
L5	assign them hafnium tritide, or you have to go
L6	the other route.
L7	DR. MAURO: Yes. And you see why
L8	what happens when you -
L9	CHAIR BEACH: And so
20	DR. MAURO: I'm sorry.
21	CHAIR BEACH: Excuse me. Is there
22	more work that can be done on the swipe
	NEAL R. GROSS

boundary to place and say of course these

people, they weren't exposed to any tritium at

all or there's no way inconceivable that they

1

2

1	samples?
2	

- Is there more work that can be
- 3 done, Brant, I'll ask NIOSH's -
- DR. NETON: Before Brant speaks,
- 5 which swipe samples are you referring to?
- 6 CHAIR BEACH: The tritium.
- 7 DR. NETON: Right, but I'd still
- 8 like to have this delineation because you're
- 9 talking about after 1980.
- 10 CHAIR BEACH: 1980 to --
- DR. NETON: So, really we're talking
- about the swipes from the D&D operation.
- MR. HINNEFELD: Well, no, there was
- the time period before D&D.
- DR. NETON: Before 1980?
- 16 MR. HINNEFELD: From 1980 until D&D
- 17 started. I mean D&D didn't start in 1980, did
- 18 it?
- 19 CHAIR BEACH: Well, it started
- 20 different times.
- DR. NETON: I guess it's not clear
- 22 to me after -- what happened after 1980 with -

1	- I	thought	that	the	hafn	ium	triti	lde	source
2	had	essentia	.11y	been	put	to	bed	and	l then

- 3 you've got this room that was used for hafnium
- 4 tritide.
- 5 And at some point there must be
- 6 smears inside that room after active operation
- 7 stopped. That's I guess what I'm referring
- 8 to. Maybe I wasn't clear. So, somewhere
- 9 there must be smears.
- 10 I don't know how widespread the
- 11 extent of the contamination inside that room
- 12 really was.
- We're speculating, well, they
- 14 worked with large amounts of hafnium tritide.
- So, clearly there must have been widespread
- 16 amounts of contamination in there.
- 17 MEMBER ZIEMER: Are we allowed to
- 18 know the size of the source-term activity wise
- 19 or is that classified?
- 20 CHAIR BEACH: Classified.
- 21 MEMBER ZIEMER: See, this is a real
- 22 problem.

_	CHAIR BEACH: 165, 10 15.
2	MR. ZIEMER: Here's the deal.
3	There's all kinds of experience that shows
4	sort of the upper limit of what a person can
5	inhale based on the size of the source-term.
6	I've had firsthand experience with it.
7	And it's where the million-to-one
8	or the ten to the
9	DR. ULSH: Ten to the minus six.
LO	MEMBER ZIEMER: Every kind of
11	incident which shows that a person
L2	DR. ULSH: The magic numbers.
L3	MEMBER ZIEMER: Cannot take in more
L4	than about ten to minus six of a source-term
L5	that's dispersed right in their face.
L6	Now, if the source-term has been
L7	removed and you have some and it's your
L8	magic number. Maybe it's some amount that's
L9	left and it's a little bit and you postulate,
20	you can bound. You can say there's no way if
21	somebody is and that's already dispersed in
22	the system.

2	we're not allowed to know the source-term,
3	then I think half of our Board Members are at
4	a disadvantage.
5	DR. NETON: But I think, Paul, if
6	you know if you have surveys and smears, you
7	know what the resuspendable source-term is if
8	the source has been removed.
9	I have a 10,000 DPM
LO	MEMBER ZIEMER: Right. And that
11	will help if we have the urine samples.
L2	DR. NETON: A millionth of that or
L3	ten to the minus four of that becomes airborne
L4	
L5	MEMBER ZIEMER: Right.
L6	DR. NETON: You can come up with a
L7	plausible upper bound scenario for exposure to
L8	anyone who entered that room.
L9	You could assume they inhaled that
20	24/7. I mean
21	MEMBER ZIEMER: Well, I mean you may
22	have to take into consideration Phil's point

So, you could bound it. But if

1	that that air sample may not represent the
2	whole room, but
3	DR. NETON: No, I'm speaking once
4	the active hafnium
5	MEMBER ZIEMER: Right. Yes.
6	DR. NETON: Now, any smears that you
7	have even if it's a combination of other
8	materials, you smear it, you can then have a
9	contamination source-term that can be used to
10	generate an airborne
11	MEMBER ZIEMER: Right.
12	DR. NETON: Given even very invasive
13	activities like grinding, cutting, welding
14	MEMBER ZIEMER: Right.
15	DR. NETON: And come up with an
16	inhalation source-term that I believe would be
17	credible and probably
18	MEMBER SCHOFIELD: Do we have these
19	excuse me. Do we have these rad surveys?
20	I mean is there a daily, weekly report?
21	MEMBER ZIEMER: I don't know. I
22	just heard about them.

1	DR. ULSH: All I can tell you, Phil,
2	is that we captured several boxes of survey
3	data from the buildings in question.
4	I have not gone in and examined
5	them in any systematic way, so I can't tell
6	you if it was daily, weekly or whatever. I
7	don't know until I look at it.
8	DR. NETON: But I think we're
9	talking specifically though about the
10	operation, the glovebox operation that was
11	MEMBER SCHOFIELD: Once that
12	suspended and here's my ignorance. I'm
13	sorry, but it seems like we could take a
14	sample of those smears after they suspended
15	using it, and that would give us an idea of
16	quantities or at least potential quantities
17	that are still left behind.
18	DR. NETON: That was my point, you
19	know. Until we know that, we don't, you know.
20	DR. ULSH: So, if I could get some
21	clarity on exactly what the Work Group is
22	requesting that we do?

1	CHAIR BEACH: Well, there's two
2	paths. One, we make a recommendation to the
3	full Board in August or two, we determine if
4	there's more work that needs to be done and we
5	agree to whatever that work is.
6	And that's kind of where we're at,
7	I believe.
8	DR. ULSH: Well, I agree. And I
9	would ask you to consider before you decide
10	which option to take, if I come back to you
11	with the information that you're requesting,
12	the smear data and say here's what the level
13	is, here's the contamination levels, what are
14	we going to do with that?
15	I mean is that going to convince
16	you that
17	DR. MAURO: What has to be done is
18	to show that it's inconceivable that with that
19	level of contamination his exposures could be
20	higher than the people that were involved in
21	exposures.

See, to me that is your boundary.

1	MEMBER ZIEMER: If you use it as Jim
2	described it, it's not bound or
3	DR. NETON: Yes, it's not different
4	than a contamination model that we do for many
5	sites.
6	We have a service contamination
7	level and we generate an inhalation source-
8	term based on that and certain
9	DR. ULSH: But is the Working Group
10	going to accept that approach, is what I'm
11	asking?
12	MR. FITZGERALD: Well, it seems like
13	you're going to come up with tritium, you
14	know, smear measurements in a particular, say,
15	R-108 for the recycle and for this particular
16	two-room lab. And those values will be looked
17	at. You will do a calibration of how much of
18	that tritium would have been in the air and
19	then what but I still don't quite see to
20	what extent you're going to know that the
21	tritide, you know, the tritide
22	DR. NETON: Well, take an example

2	MR. FITZGERALD: Right.
3	DR. NETON: And probably almost all
4	tritium as HTO.
5	MR. FITZGERALD: Right.
6	DR. NETON: But if you take a
7	resuspension factor, ten to the minus fifth or
8	something, you still are only generating into
9	the air 10, 20, 30 DPM per cubic feet.
LO	You generate a fairly low air
L1	concentration that can give you a bounding
L2	estimate of what the tritium tritide
L3	exposures could have been even assuming that
L4	all that sort of contamination was related to
L5	pure tritides.
L6	And we do this all the time for
L7	MR. FITZGERALD: Jim, I'm just
L8	trying to I don't disagree with that, but
L9	I'm trying to figure out if it's been done to
20	come up with an apportionment for the tritide.
21	DR. NETON: Well, not apportionment.
22	We're assuming it's all a hundred percent

20,000 DPM of a hundred square centimeters.

Τ	MR. FIIZGERALD: A nundred percent
2	tritide.
3	DR. NETON Because you can't
4	possibly get all of that in the air
5	instantaneously. So, you can assume very
6	conservatively that only pick your number,
7	ten to the minus six, ten to the minus fifth,
8	of that becomes airborne, and you're left with
9	very low potential levels of inhalation. Very
LO	low.
L1	I mean it exists because of what
L2	Dr. Ziemer said. Not much gets airborne even
L3	if they are doing mechanical things with it
L4	not even entailing the entire contaminated
L5	source-term.
L6	And that source-term is much, much
L7	lower than what they're working with when the
L8	source was in active operation.
L9	DR. MAURO: So, let's say you have
20	an abundant amount of swipe data. Okay.
21	That's collected before, during, after any
22	kind of D&D operation, maintenance operation

1	at	all	different	locations	throughout	the
---	----	-----	-----------	-----------	------------	-----

- 2 facility as part of the health physics
- 3 coverage.
- DR. NETON: Well, I'm not saying
- 5 throughout the facility. I'm specifically
- 6 thinking about the hafnium area where --
- 7 DR. MAURO: Okay. Okay.
- DR. NETON: Where hafnium work was
- 9 performed.
- DR. MAURO: Okay. And let's say we
- 11 have that data and everyone agrees, yes, you
- do have a lot of data, swipe samples in the
- 13 areas that conceivably could have been
- 14 contaminated with residual levels of hafnium.
- DR. NETON: Correct.
- DR. MAURO: And the very fact that
- 17 it's swiped, means a certain -- it's not
- 18 tritium gas. I mean it's --
- DR. NETON: Well, could be HTO.
- DR. MAURO: It could be HTO or it
- 21 could be one of the lesser solubles or it
- 22 could be --

1	DR. NETON: Could be anything.
2	DR. MAURO: And now you've got a
3	number and okay. Now, I'm just trying
4	all right.
5	Now, the simple question is not try
6	to quantify, because trying to quantify what
7	the inhalation dose is under those
8	circumstances is a tough one, you know.
9	But what you might be able to do is
10	to say that under any of those circumstances
11	could a setting like that give rise to doses
12	greater than this value. It just is not
13	conceivable.
14	And that value is less than the
15	highest value that we know of.
16	DR. NETON: Well, one could easily -
17	- I have to be careful.
18	It wouldn't be very difficult to
19	demonstrate that the three rem that you talked
20	about earlier how much of that material
21	would have to become airborne in order to
22	generate a three rem?

1	DR. MAURO: See, I'm looking for a
2	plausible upper bound. But if it turns out
3	that the process we go through shows that,
4	geez, it's possible that these people could
5	have been exposed, could have experienced
6	hafnium tritide exposures that are well above
7	the exposures experienced by others, I think
8	is a problem.
9	MEMBER ZIEMER: Well, it would be
10	useful to know that.
11	DR. NETON: I'm not sure why you
12	feel it's difficult to convert surface
13	contamination levels into some airborne value.
14	We do it all the time.
15	There are certain resuspension
16	factors that are used per square meter and you
17	get per cubic meter values out of that.
18	And I think what you end up showing
19	is, you know, resuspension factors that are
20	very level, as we know they are, especially
21	for particulate like that it's very difficult.
22	I mean if it's a million DPM for a

2	everything I just said.
3	But if I suspect that it's spotty,
4	20,000, 50,000 DPM per a hundred square
5	centimeter value, it would be hard to get much
6	internal dose beyond this three rem for sure.
7	And I think that's where the focus
8	has shifted since the operation stage before
9	1980 to the sort of what I consider to be a
10	residual contamination phase.
11	DR. MAURO: Okay. So you
12	DR. NETON: See, I think that's a
13	fairly boundable problem. That's my opinion.
14	DR. MAURO: So, the key to whether
15	or not we've got a potential SEC problem here
16	is if you've got lots of good data on swipe
17	samples that were collected under a broad
18	range of circumstances that you feel confident
19	catches, I don't know if that data exists or
20	doesn't. And I mean that's the arguments
21	being made here.

hundred square centimeters, I'll withdraw

I mean what I'm hearing is if I've

22

2	who know the site and the nature of the D&D
3	operations, the recycling, you folks know
4	behind closed doors what those operations are
5	and you look at all the data and say, wow, we
6	have data here's the data, swipe samples
7	collected, at that point a case has to be made
8	that we could place an upper bound on what the
9	exposures might have been to the highest
10	exposures could have been for people involved.
11	We don't know who those people are,
12	but the people involved in working in those
13	capacities. We don't know who they are, and
14	there's your upper bound.
15	That's the argument that you're
16	making, and that's what I'm hearing is being
17	proposed.
18	MEMBER ZIEMER: Well, I know, Josie,
19	you're wanting to close this and I think we
20	should.
21	I would hope, I would propose you
22	are in favor of recommending SEC would at

got all that data, that swipe data, and you

1	least allow a look at this before final
2	recommendation.
3	CHAIR BEACH: Well, Paul, I think
4	it's important that we do look at it. We've
5	had much discussion today on it and I don't
6	think anybody would be comfortable
7	MEMBER ZIEMER: But it's kind of a
8	new
9	DR. MAURO: This is new.
LO	(Simultaneous speaking.)
L1	CHAIR BEACH: I don't think anybody
L2	here would be completely comfortable if we
L3	didn't explore this. So, I agree. I
L4	personally do.
L5	MR. KATZ: May I just add something,
L6	too, because it's been pointed to a couple of
L7	times in the conversation. It makes me
L8	uncomfortable every time it gets pointed to.
L9	Several Board Members have been
20	behind the screen, if you want to just call it
21	that, and have other knowledge, and obviously
22	staff members have been behind the screen and

2	has to rely on what's on the record.
3	And really what you know yourself
4	personally doesn't help the rest of the Board.
5	It has to rely on reviewing what's been said
6	in the Work Group and what gets said in front
7	of the Board.
8	So, I'm just a little uncomfortable
9	when people reflect back, well, you can make
10	your judgments based on what you know behind
11	the screen. But, yes, you individually can,
12	Josie, but the Board can't.
13	CHAIR BEACH: But you have to rely
14	on that if your if you have a disagreement
15	with NIOSH, I don't agree with what NIOSH
16	heard in the interview, then how else do you
17	disseminate that except by what you heard and
18	what you believe.
19	MR. KATZ: What I'm just saying is
20	that that's fine for you personally, Josie, to
21	rely on what you know behind the screen, but
22	it doesn't help the rest of the Board, because

have other knowledge, but the Board as a whole

1	the rest of the Board is limited to the
2	knowledge, the information that's been
3	disseminated in the Work Group physically and
4	in front of the Board.
5	And so I mean, for example, when
6	you sort of read your sort of like a motion as
7	to recommend forward, you went through that
8	very quickly and I'm not sure who well
9	understood all of what you said quickly before
LO	you went before recommendation, but that's the
11	sort of information that the Board is going to
L2	be limited to when they make judgments, not
L3	your specialized knowledge or Joe's or Brant's
L4	or
L5	MR. FITZGERALD: Yes, the ability
L6	for us to translate this into a form that the
L7	Board
L8	MR. KATZ: Right.
L9	MR. FITZGERALD: I mean so far we
20	haven't identified a showstopper where it's
21	crucial and it's behind the screen.
22	MEMBER ZIEMER: And I think for

1	example, if we didn't have the monitoring data
2	and we could only do bounding with source-term
3	information, then I then we're at the place
4	where we were on Ames.
5	And, remember, Larry had guaranteed
6	we'd never in the future have to make a
7	decision based on lack of classified
8	information or something to that effect.
9	MR. HINNEFELD: He did what?
10	(Simultaneous speaking.)
11	MEMBER ZIEMER: We would make our
12	decision based on what the we would only
13	make our decisions based on what could openly
14	be discussed.
15	MEMBER SCHOFIELD: But I think like
16	you and everybody else here, you know,
17	whichever part of the table they're sitting on
18	brings forth their experience, their knowledge
19	so that well, you know, I mean given your
20	background you guys know things that are so
21	far above me I can't even see that point, but
22	on the other hand I bring stuff, you know,

1	from working in the trenches and this is how
2	we learn from each other.
3	MEMBER ZIEMER: That's right.

- 4 MEMBER CLAWSON: And this is also
- 5 why the Board was set up the way that it was.
- 6 There's four people from here, four people
- 7 from that. Now, it's a little bit more.
- 8 And I would also -- and this really
- 9 comes down to Ted and everybody else. This is
- just warm up for the one that I plan.
- 11 MR. KATZ: That's absolutely true.
- 12 MEMBER CLAWSON: And I'll tell you
- what from day 1, and I've said it, because it
- makes me real nervous, because there is very,
- 15 very little that I --
- 16 MEMBER ZIEMER: That's going to be a
- 17 problem.
- 18 MEMBER SCHOFIELD: Yes, it's going
- 19 to be a huge problem.
- 20 MEMBER CLAWSON: But I guess, Josie,
- 21 I guess I'm looking at what our path forward
- here is. Because if we're going to the point

1	where Brant says, you know, with the swipes
2	and everything else like that, there's a
3	little bit more to it than that, and that's to
4	also see what came into that plant.
5	Because you know as well as I do
6	that we've had other players that have come
7	into the game between the 1980s and `90s that
8	is going to be that's going to play into
9	it.
10	CHAIR BEACH: I think that's a
11	really good thought.
12	Should we go ahead and take a
13	break?
14	MR. KATZ: Sure.
15	CHAIR BEACH: I think everybody
16	really needs one. We'll definitely come back
17	onto this topic.
18	MR. KATZ: A ten-minute break or
19	CHAIR BEACH: Yes, ten minutes.
20	MR. KATZ: Okay. So, about five
21	after 3:00.

(Whereupon, the

22

above-entitled

1	matter went off the record at 2:54 p.m. and
2	resumed at 3:08 p.m.)
3	MR. KATZ: Ready to go back on.
4	CHAIR BEACH: Sure.
5	MR. KATZ: Okay. We're reconvening.
6	This is the Mound Work Group after a short
7	break.
8	CHAIR BEACH: Okay. And so at this
9	point we have decided that we are going to ask
10	NIOSH to do a little bit more work on swipe
11	data for the tritide issue. And I think we
12	can probably leave it at that and reconvene at
13	the next Work Group meeting once we have
14	determined what swipe data is available and
15	how robust it is.
16	MEMBER CLAWSON: Well, Josie, this
17	is Brad again. I want to kind of make sure
18	where NIOSH is going with this.
19	We're going into something else,
20	too, because we have seen we have had other

got

а

you've

items come into NIOSH and the same issue.

When

21

22

recycling

1	lacifity, other people want to be able to use
2	it too and we've seen this one from Pinellas.
3	I want to make sure that we have
4	looked at what has come into that. And I
5	guess also I would like to be able to Brant
6	has said that the bioassay data is
7	everybody was sampled for tritium and
8	everything else like that. And from our
9	interviews during that era, they weren't.
10	So, I just want to make sure that
11	bioassays also there, too. And I'm speaking
12	in later, later years.
13	I know after the project shut down,
14	I just wanted to make sure that we all know
15	which way they're going with it and what we're
16	going to look at.
17	CHAIR BEACH: So, you're talking
18	bioassay from 1980s on through D&D?
19	MEMBER CLAWSON: Yes.
20	CHAIR BEACH: Okay.
21	DR. ULSH: So, what exactly is it
22	you want?

1	What information do you want us to
2	bring you?
3	MEMBER CLAWSON: Well, this is what
4	I want to be able to find. You've made the
5	comment that the bioassay, that everybody was
6	sampled for tritium.
7	Is this correct or
8	DR. ULSH: Well, no. Not everybody
9	on site.
10	What I've said is that for people
11	who are working in areas where depending on
12	the time period you're talking about.
13	At least for part of the time
14	period if you had an exposure potential of
15	greater than 100 millirem per year, you were
16	required to be monitored.
17	So, for people who were working in
18	areas where there was tritium present that
19	could have presented a hundred millirem per
20	year, you were required to be on a bioassay
21	program. That's what I'm saying.
22	MEMBER CLAWSON: Okay And what I'm

1	saying is because we're looking clear into the
2	D&D period, that we need to understand if
3	these people that were going into these areas
4	if that was still standing, if that was still
5	a requirement.
6	Because after the process, there's
7	an interesting belief that once the process
8	stopped, everything has gone away.
9	And I beg to differ on that. I
10	believe that you still have the residual parts
11	and you still have items there.
12	Because what year was it that we
13	did the recycling?
14	Because the drums went out there
15	and they sat for a long time. And then they
16	built the recycling process.
17	DR. ULSH: What recycling?
18	Are we talking about the tritium
19	recycling facility?
20	MEMBER CLAWSON: Tritium. Right.
21	DR. ULSH: It operated for decades.
22	MEMBER CLAWSON: Okay. Well, I just

1	want to make sure because we also having a
2	tritium recycling facility, we already know
3	that there has been other product coming from
4	other areas.
5	I just want to make sure that the
6	bioassay is sound enough that it's going to
7	cover these eras and be able to tear these
8	facilities down.
9	DR. ULSH: So, if we were to
10	investigate and ask the appropriate people,
11	the people who were involved with this tritium
12	recycling facility, were you required to be on
13	tritium bioassay, and they'll either say yes
14	we were, or they'll say no we weren't, and I
15	brought that information back to you, is that
16	what you're looking for?
17	MEMBER CLAWSON: Are they the only
18	ones that went in there?
19	Because, yes, that individual says
20	that he was they were the only ones that
21	dealt with tritium until we started pulling
22	the string of, well, who did this, who did

2	people, that would have been these people.
3	And this is where we came out with
4	that there's a lot more people than just these
5	few.
6	And I want to make sure that we're
7	covered on this because we're saying that the
8	bioassay is going to cover these people in
9	these areas and so forth.
10	Especially the tritium recovery and
11	the other facilities where we had it. I just
12	want to make sure that the bioassay supports
13	what you're saying.
14	DR. ULSH: And I just want to make
15	sure I bring you the information that it
16	reflects.
17	MEMBER CLAWSON: Right.
18	DR. ULSH: And to do that I need to
19	understand pretty explicitly what it is you're
20	asking for.
21	So, for instance, we know the
22	tritium recycling facility was in the R and SW

this. Well, that would have been these

1	Build	ling.
_		· , •

- 2 So, if we brought you information
- 3 about whether people who worked in R and SW
- 4 Building were on tritium bioassay, is that --
- 5 MEMBER CLAWSON: Or we ask clear up
- 6 through the D&D of those facilities.
- 7 DR. ULSH: Okay.
- 8 CHAIR BEACH: So, I think there's
- 9 two parts to this. The first part is pre-
- 10 1980. The Work Group probably would recommend
- an SEC for tritides. But because of the radon
- issue, it became a moot point.
- 13 So, the second part of this is
- 14 looking at post-1980 through to the end of
- 15 D&D. And some of it in my mind is being a
- 16 little bit clouded because we do have a D&D
- 17 report that we haven't really even spent any
- 18 time on.
- 19 And I guess, Brant, I think what
- 20 we're going to be looking for is anything
- that's available; bioassay or swipes that were
- 22 mentioned earlier.

1	And I think we probably should
2	limit it to a small room as we talked about
3	earlier, the most likely areas, and then move
4	out from there depending on questions that
5	come up within the Working Group.
6	DR. ULSH: Okay. I will analyze the
7	collection of swipe data that we have
8	currently available to see and I know what
9	rooms we're talking about. See what data we
10	have for those particular rooms and
11	CHAIR BEACH: Locations and swipes
12	for
13	DR. ULSH: Yes, I'll characterize
14	it, what we've got, and then report that back
15	to the Working group.
16	In terms of well, you haven't
17	gotten to the bioassay yet. I'll wait for
18	your request there.
19	So, yes, that's what I`ll do. I'll
20	characterize what we've got in terms of swipe
21	data and then we'll see where we go from
22	there.

2	would be some scoping outside of this meeting
3	before that would be finalized, obviously, by
4	going back and forth, just to make sure that
5	it's explicit enough.
6	DR. ULSH: Oh, and do you want me
7	to address the bioassay part?
8	CHAIR BEACH: Sure.
9	DR. ULSH: I mean basically what I
10	plan to do is look and see what documentation
11	is available, look and see what communications
12	we have with workers who worked in R and SW
13	Building with regard to bioassay that was
14	required and was actually performed for people
15	who work in that building all the way up
16	through D&D period.
17	I think that's what you're asking
18	for, right?
19	MEMBER CLAWSON: Right.
20	DR. ULSH: Now, I mean I could
21	probably give you information about there are
22	this many thousand tritium bioassay samples in

MR. FITZGERALD: I would think there

1	MESH, but I don't know if that's what you're
2	looking for and I don't know if I could
3	specifically limit it down to those particular
4	buildings. So, I wasn't thinking of going
5	there unless you want it.
6	MEMBER CLAWSON: Well, we've just
7	got to be able to make sure because at the
8	very end there everybody was pretty well
9	everywhere. And I just want to make sure that
10	we have sufficient information to be able to
11	cover where they're at.
12	I know that it may not be possible,
13	but it would be interesting to find out, when
14	the tritium was processed, where it went to.
15	DR. ULSH: You mean the recycling?
16	MEMBER CLAWSON: No, the actual
17	glovebox and so forth.
18	DR. ULSH: Skeptical, but we could
19	try.
20	MEMBER CLAWSON: Well, just because
21	anyway, that would be interesting to see
22	where it went because they had some incidents

1	that	came	out	of	that.

- 2 MR. KATZ: Emily, can I ask you a
- 3 question?
- 4 CHAIR BEACH: For those on the
- 5 phone, we are just taking a few-minute break
- 6 while our Federal Official and lawyer stepped
- 7 out of the room.
- 8 So, we're still online.
- 9 (Whereupon, the above-entitled
- 10 matter went off the record at 3:18 p.m. and
- 11 resumed at 3:19 p.m.)
- 12 CHAIR BEACH: Okay. Any other
- tritide-related issues before we move on?
- 14 MEMBER CLAWSON: I quess something
- that I would ask is Paul not being involved in
- a lot of these, is there something more that
- 17 we could do to be able to assist to be able to
- 18 help you or understand the problems that are
- 19 facing us?
- 20 MEMBER ZIEMER: Well, I've raised my
- 21 questions as they've come and I understand
- 22 that not everything can be divulged, but I

1	think we have to think of the bigger picture
2	as to how these kind of things are going to
3	impact it's not going to be just me because
4	approximately half the Board Members are
5	currently uncleared. They're somewhere in
6	various stages of getting cleared.
7	But even if that occurs, we
8	understand that the claimants have also a
9	right to the information on which a decision
10	was based whether it's an SEC or an individual
11	dose reconstruction.
12	So, we have to be able to work
13	around the classified information and gather
14	what's needed in a forum that allows us to
15	make a decision.
16	And I think that's what the bottom
17	line is going to be.
18	MEMBER CLAWSON: Right. I
19	understand.
20	MEMBER ZIEMER: And you've all been
21	very helpful as far as this is concerned as
22	far as you're able to go.

1	And if this works out better than
2	what's been proposed, I think we're fine
3	because we don't need to get source-term
4	information.
5	I think to the extent that we're
6	able to we need to be able to get in and to
7	see some of these things, but the bottom line
8	is we need to get the basic unclassified
9	information that is usable to make informed
10	decisions on SECs or dose reconstructions.
11	And I think in most cases, we'll be
12	able to do that and work our way around these
13	things. At least I'm hopeful that's the case
14	because
15	CHAIR BEACH: Well, and I think it's
16	beneficial having you in the position of not
17	seeing all the documents because it does give
18	us other ideas and other avenues to move
19	forward.
20	MEMBER CLAWSON: It helps us to be
21	able to look at it because many times when we
22	discuss this in detail, you know, how do we

1	bring this forth to them, what questions do
2	you think that they're going to have on this.
3	This is why I was asking if there's
4	anything more that we can do because this is
5	kind of a test to see how we can do it.
6	CHAIR BEACH: Okay. So, let's move
7	on to radon. It's the next topic.
8	MR. FITZGERALD: Okay. Let me jump
9	in on that one.
LO	One thing that is figured with the
L1	radon issue is just a lack of a lot of data.
L2	I think from the very get-go there's been a
L3	couple of data points and that was the
L4	eventual premise behind our concern that there
L5	just wasn't enough data.
L6	And I think we did have a meeting
L7	of minds and that resulted in the SEC
L8	recommendation being voted in and everything.
L9	And what we're talking about now is
20	really what's the posture beyond the current
21	SEC which ends in `80. And I'm I was going
22	to say conflicted, but that sound that's

1 kind of a	loaded word.
2	I have mixed feelings. Thank you.
3 Mixed fe	eelings on this issue because on one
4 hand we	have a couple of clear data points
5 which is	the a little background. There
6 was some	radon measurements taken because of
7 an acknow	ledged increased radon escalation in
8 this room	, SW 19.
9	And that led to monitoring that was
10 done and	a validation that, yes, we've had a
11 source t	hat was coming in primarily with
12 negative	pressure or whatever it was coming
13 in.	
14	And a mitigating action being taken
15 which is	to vent an underlying tunnel to vent
16 the rado	n isotopes, and there were several
isotopes,	to the atmosphere.
18	And the individual involved did
19 some meas	urements after that was done and saw
20 levels	approaching background, if not
21 backgroun	d. So, you know, the determination

was that was a successful mitigation.

1	The next documented measurement was
2	in 1990, I believe. And again this was a memo
3	by the same individual who was asked back
4	because the operators or the people that were
5	in charge of the area noted that levels were,
6	quote, approaching D-A-C, DAC levels in SW 19
7	and asked him to come back and take additional
8	measurements.
9	Now, as documented in the memo of
10	that time period, 1990, his measurements
11	showed levels very low levels, you know,
12	sort of a commensurate background, and that's
13	what we have essentially.
14	I haven't seen anything much beyond
15	that, but what gives me the mixed feelings is
16	that way back when we did the Site Profile
17	review, we interviewed rad techs that operated
18	in the SW/R complex and they told us that
19	and this is in our Site Profile review report,
20	that they would monitor with their monitors,
21	the cracks and fissures in R Building and
22	would see, you know, I think in their words,

3	the foundations. And that time frame was the
4	mid-`80s. `85, `86, whatever.
5	And that coupled with the fact that
6	the genesis of having this individual come
7	back in 1990 to do SW 19 was an observation of
8	levels approaching a DAC level, it gives me
9	mixed feelings. Because in a way, yes, the
10	mitigation based on those measurements that
11	were done by this one individual, as it turned
12	out, seemed to verify that, you know, the
13	mitigation was working.
14	On the other hand, you have this
15	now I'll call it anecdotal, because in a sense
16	we got this from people that knew what they
17	were doing, rad techs or whatever, but
18	obviously levels were or inhalation in
19	level increased levels were being seen in
20	those buildings.
21	Now, I'm not aware of any
22	additional information. And I went through
	NEAL D. CDOCC

their cameras would peg out and then attribute

that to the inhalation of radon coming in from

1

1	the pains of locating the individual who did
2	these measurements. And I invited Brant to
3	join Josie and I and just frankly talking with
4	him, just saying what do you remember?
5	Well, he did not recall much of
6	anything up to 1990. So, unfortunately didn't
7	learn much more about the genesis of why he
8	was brought back, what was the background.
9	All we have is a piece of paper
LO	that says the levels that were monitored were
11	low.
12	So, that's kind of where we are.
L3	Those are the facts. I mean, you know, just
L4	trying to resolve the question of having sort
15	of these contradictory pieces of information,
L6	I don't think that was successful.
L7	So, I guess part of my report for
L8	the Work Group and you were part of this
L9	discussion, is that what is documented, what
20	is actually in writing in terms of measured
21	levels is what this individual monitored in

1980 and in 1990, and I respect that.

1	And we did talk to him and he felt
2	that in general the mitigation was successful.
3	And I think we've got to take that at face
4	value since he was the one that was involved.
5	We do have this additional
6	information that was gleaned independent of
7	that from the rad techs in R Building and, you
8	know, and also the memo itself in 1990
9	acknowledged that the reason that he came back
10	was this increasing level of radon that was
11	being seen.
12	So, it certainly leaves me with the
13	mixed feeling that, yes, I guess, you know,
14	what we say, the weight of evidence, the
15	weight of evidence just should go with what's
16	been recorded in lieu of having any better
17	information.
18	And I think, Jim, you have stated
19	in the past, well, this is 83.14. That if
20	better information or additional information
21	comes to the floor, it doesn't preclude you
22	revisiting.

1	I guess that's kind of where I'm at
2	that really we haven't been able to find
3	anything better. It is what it is in terms of
4	the data available.
5	There is some contradiction, but
6	again what's written down and what's measured
7	is what this individual did and that's what we
8	have. That would be my perspective.
9	DR. NETON: Can I ask a couple
10	questions?
11	I'm not that familiar with the
12	radon the measurements that were made that
13	led them to believe that there was excess
14	radon, but were they actual radon
15	measurements, or were they just like beta-
16	gamma survey meters that picked up excess
17	MR. FITZGERALD: The
18	DR. NETON: See, I would be
19	surprised if they were radon measurements. If
20	they were doing that, then why would they call
21	Jenkins in?
22	And it wouldn't surprise me that

2	cracks where the radon had been sealed to
3	enter the building.
4	MR. FITZGERALD: Yes, and I guess in
5	my observation, it wasn't very clear.
6	DR. NETON: Right.
7	MR. FITZGERALD: We had this two-
8	page memo and it just acknowledged that was
9	the reason he was called in. Didn't go into a
10	lot of details and background.
11	And we were actually talking to him
12	because that was exactly what I wanted to
13	know, you know. What did they use, how did
14	they use it and is there any explanation for
15	why your measurements differed from theirs?
16	And he just couldn't remember.
17	So, it sort of leaves you with okay
18	
19	DR. NETON: It wouldn't surprise me
20	if beta-gamma survey measurement would show a
21	lot of activity with no radon. It's almost an
22	indication that it's being held up and the

you would have extra beta-gamma activity in

1	sealing is actually working.
2	MR. FITZGERALD: Yes.
3	DR. NETON: So, I'm not sure those
4	two pieces of
5	MR. FITZGERALD: Short of knowing
6	more about what led to their calling him back,
7	all I can say is that this is all we know and
8	it's not enough in my mind to go any further.
9	But if anything else surfaces
10	and we beat this one. We haven't found any
11	there was surprisingly little amount of
12	documentation on these kinds of measurements
13	and we have essentially just these two time
14	frames.
15	But it bothers me that we did talk
16	to rad techs and got this kind of feedback
17	from the `80s.
18	And knowing how sometimes you're
19	operating a plant in negative pressure, you
20	know, the question is, is the negative
21	pressure defeating this vent that's way over
22	here?

Τ	I don't know. And there's no way of
2	knowing that clearly, so I just wanted to sort
3	of this is what I think where we were left.
4	And it's not the best place, but it's the best
5	we could do at this stage.
6	CHAIR BEACH: Well, being that it is
7	an 83.14 and can be reopened if any other
8	documentation comes to life, I would almost
9	think that as a Work Group we don't really
10	have much choice except to close the rador
11	issue at this point, the post-1980.
12	I was really hoping that the
13	interview we had would he clearly did not
14	remember anything and really he wasn't very
15	clear that the venting worked, but he didn't
16	remember it not working. So, I'm
17	MR. FITZGERALD: And to be fair,
18	that is 20, 30 years. I mean
19	CHAIR BEACH: Yes.
20	MR. FITZGERALD: It was a challenge,
21	but that's the best we could do.
22	CHAIR BEACH: So, what do you say,

1 Work Gro	up?
------------	-----

- 2 Close it, leave it open, is there
- 3 more work that needs to be done?
- 4 MEMBER CLAWSON: I don't know much
- 5 more that we can, because we have very little
- 6 data on the radon issue anyway, you know.
- 7 This was, I believe, two samples or whatever
- 8 else like that.
- 9 The only part that worries me about
- it, I feel that we can close or whatever, but
- 11 you said it was an 84 --
- 12 CHAIR BEACH: 83.14.
- MEMBER CLAWSON: 83.14. The only
- thing is, is when we usually pull away from
- 15 these unless something comes up, you know,
- that pops up, I realize that we can bring that
- 17 back up, but, you know, we kind of stop
- 18 looking too. That's my issue.
- 19 MR. FITZGERALD: And it appears
- 20 that, you know, these sort of very specific
- 21 measurements that were done before the early -
- 22 the early `90s they started doing baselines

2	included.
3	But before then it was, you know,
4	it was driven by concern for vents and there
5	just doesn't seem to be a whole lot of data
6	points.
7	DR. ULSH: Well, all right. I've
8	been biting my tongue because I don't want to
9	disagree, specific disagreement, because 1
10	think our conclusions are going to be the
11	same, but we do have a few more things than
12	we've been discussing.
13	In 1980, we have the measurements
14	that were taken immediately after the
15	installation of the turbine, the stack. And
16	those showed reduction in radon levels. We
17	have that.
18	MR. FITZGERALD: We said that.
19	DR. ULSH: The person that we
20	interviewed is a well-known expert on rador
21	certainly at Mound, and really was involved in
2.2	the efforts to characterize radon across the

of radon across the complex, and Mound was

Τ	complex.
2	And what he said in his interview
3	when we asked specifically about this
4	situation was, Joe is right, he didn't recall
5	the 1990 measurements, but he said I truly
6	believe that SW 19 was down to background
7	after 1980 and continued to be so.
8	And he periodically sampled from
9	the stack for purposes of mishaps, and he is
LO	comfortable that the system was functioning
11	and the situation at SW 19 was solid. That's
L2	what he said.
L3	We also have where he described
L4	periodic situations particularly in the month
L5	of August where they would see increases in
L6	radon due to whatever the weather conditions
L7	were at the time.
L8	And he said it was kind of weird
L9	because we saw it pretty much every year.
20	They knew when August came, they were going to
0.1	he seeing that

DR. MAURO: Where?

1	In the same room?
2	DR. ULSH: Oh, no, no, no. Just in
3	general.
4	DR. MAURO: The whole facility.
5	DR. ULSH: Yes.
6	DR. MAURO: And what levels are we
7	talking about where he sees these changes?
8	DR. ULSH: He wasn't specific.
9	Although, he did talk about in the same
10	context, he talked about workers that were
11	counted.
12	And when they came into work, they
13	were counted in the morning and they showed a
14	high level. And when they were counted after
15	lunch, no more high levels.
16	And so they characterized that as,
17	okay, they were getting it at home and
18	bringing it with them to work.
19	So, there was some natural
20	fluctuation there, but clearly this is a guy
21	who had an interest in this topic and he just
22	was not aware of a continuing radon problem

1	And, furthermore, I'm not aware of							
2	another radon source in that building other							
3	than what we're talking about here, the							
4	tunnel, that was clearly re-mediated.							
5	So, I guess I would agree with Joe							
6	that it's not an ironclad case, but there is a							
7	reasonable weight of the evidence here, I							
8	think.							
9	MR. FITZGERALD: I think we're on							
10	the same page rather than							
11	CHAIR BEACH: Yes. And I did forget							
12	your data points from the presentation at the							
13	last Work Group meeting where you did show a							
14	few samples. So, I neglected that.							
15	So, do you want to leave this open,							
16	close it?							
17	I think that NIOSH, you correct me							
18	if I'm wrong, you have an obligation that if							
19	new information comes in, you go back in and							
20	look at what it effects.							
21	DR. ULSH: Absolutely. Yes,							
22	absolutely. If anything comes to light that							

_	we le awale of i mean chât we see, we will
2	certainly
3	CHAIR BEACH: Right. Right.
4	DR. ULSH: And that's the whole
5	purpose of an 83.14.
6	MR. KATZ: Yes, with a new 83.14 is
7	what you're talking about?
8	DR. ULSH: Right. Yes.
9	CHAIR BEACH: Yes.
LO	MR. KATZ: Do you understand that,
L1	Josie?
L2	CHAIR BEACH: Yes.
L3	MR. KATZ: That would be a new
L4	83.14, right?
L5	CHAIR BEACH: Right. Okay.
L6	So, all in favor of closing the
L7	radon post-1980, Brad?
L8	MEMBER CLAWSON: Yes.
L9	CHAIR BEACH: Paul, Phil?
20	MEMBER SCHOFIELD: Yes.
21	CHAIR BEACH: Paul?
22	MEMBER ZIEMER: Yes.

1		CHAIR	BEACH:	Okay.	Th	nen	we'll
2	consider	that	closed	based	on	pr	evious

- 3 information.
- 4 MR. KATZ: We got through that issue
- 5 in blazing speed.
- 6 CHAIR BEACH: Yes. Now, we're going
- 7 to go ahead and just -- we're going to juggle.
- 8 I know Brant needs to leave at 4:30 today, so
- 9 there's a couple of things we should be able
- 10 to close quickly also.
- 11 Let's move down to high-fired Pu-
- 12 238. And that should be a relatively, should
- be a relatively simple discussion.
- I know that, Jim, you were going to
- 15 look at some information from our last meeting
- on the modeling. I believe that was the
- issue, was the modeling.
- 18 MR. FITZGERALD: I believe it was
- 19 competing models for Mound's bioassay.
- 20 CHAIR BEACH: Yes.
- DR. NETON: Yes, I don't -- I mean
- 22 we did have an internal discussion about the

1	models. And where we ended up with, we
2	believe that the models that we have are
3	adequate in our reconstruction. However, you
4	know, there may be tweaks that could be
5	involved in looking at additional cases if
6	need be.
7	But it's a Site Profile issue in
8	our opinion, not an SEC. We have sufficient
9	data to we developed a model for doing
10	sufficiently accurate. I believe SC&A's
11	position is that we have not examined the
12	universe of all possible models.
13	We're saying we could do that, we
14	don't think we need to, but at any rate that
15	would be a Site Profile issue.
16	MR. FITZGERALD: I don't think we
17	were proposing the universe. I think we had a
18	specific we called it J or K. I can't
19	remember which is which, but one was we
20	felt was more conservative.
21	And I don't disagree that we're
22	into TBD space, but I think the loose end was

1	that	I	think	NIOSH	was	going	to	examine	the
---	------	---	-------	-------	-----	-------	----	---------	-----

- 2 two and come back with some feedback to the
- Work Group.
- I mean that was, you know, nothing
- 5 any more than that.
- 6 DR. ULSH: Well, I think that
- 7 perhaps a could provide a little bit more
- 8 information.
- 9 What we're talking about here for
- 10 plutonium-239 at Rocky Flats when this came
- 11 up, we were talking about high-fired
- 12 plutonium. And basically this is plutonium
- that has been exposed to high temperatures and
- 14 that would make it refractory. In other
- 15 words, insoluble.
- So, it's got some parallels to the
- 17 tritide issue. Although, I don't want to go
- 18 there.
- 19 So, that's plutonium-239. And what
- 20 we're talking about here is the analogous
- 21 position or the analogous issue with
- 22 plutonium-238.

1	There were processes at Mound that
2	would certainly subject plutonium-238 to high
3	temperatures and make it high-fired.
4	So, you know, the question
5	naturally came up would this lead to similar
6	problems?
7	Now, even though they're both
8	plutonium, there's a big difference between
9	plutonium-238 and plutonium-239.
10	Mainly, the specific activity is
11	much, much higher for plutonium-238. So, it
12	tends to break down by itself just due to the
13	faster radioactive decay. And that leads to
14	some differences between high-fired plutonium-
15	238 and high-fired plutonium-239.
16	Now at Mound, the processes that
17	would have lead to high-fired plutonium-238 by
18	and large were the plutonium microsphere
19	project that they used for the space program
20	where they were generating power sources for
21	the space program.
22	And what you have there is

Τ	prutonium-238 microspheres dropped through a
2	plasma torch which of course high fires it,
3	and could have led to the formation of high-
4	fired plutonium-238.
5	Now, what I would bring to your
6	attention is that certainly the people who
7	were involved in the plutonium microsphere
8	project/program producing these microspheres,
9	would have been on a plutonium bioassay
LO	program. I hope that we can all agree on
11	that.
L2	So, the people that were actually
13	making these things, I would say by and large
L4	there's going to be a wealth of plutonium
L5	bioassay data.
L6	We have looked at a number of cases
L7	and we don't see anything that indicates to us
L8	the kind of behavior that was observed down at
L9	Los Alamos, which is kind of the genesis of
20	this issue.
21	However, I think we can say that if
22	we came across a claimant where their bioassay

1	data indicated that kind of behavior, sure, I
2	think we could consider that for that.
3	I hope that that's sufficient for
4	us to come to an agreement on this, but
5	MR. FITZGERALD: Well, I think
6	that's a reasonable approach if that can be
7	affirmed as something, you know, a commitment
8	to look at. It's Type L?
9	CHAIR BEACH: Well, Type L versus
10	Type J.
11	MR. FITZGERALD: That would be in
12	the arsenal of a dose reconstructor if they
13	saw something that did not track with the
14	usual model.
15	DR. NETON: I think there's beer
16	some confusion of how we approach dose
17	reconstructions.
18	I mean if the bioassay data were
19	there, we would not ignore it and just blindly
20	apply this more soluble form.

data for dose reconstruction. So, we would do

We would be obliged to use bioassay

21

1	that.
2	What we really were talking about
3	earlier was what the default would be if we
4	didn't know.
5	For those cases where they have an
6	occasional routine bioassay sample, you know,
7	our dose reconstructors need to have some
8	default to hang their hat on and that's where
9	we would use it.
10	Certainly not if there was evidence
11	to the contrary. We wouldn't use that
12	default.
13	DR. ULSH: And that was kind of my
14	purpose on bringing up this point about the
15	workers who were involved in the microsphere
16	program are going to be workers for whom, in
17	general, there is a wealth of bioassay data.
18	And if they exhibited this kind of
19	behavior, Type what did we call it? Type
20	L?
21	CHAIR BEACH: Type L versus Type J,
22	yes.

1	DR. ULSH: Okay. Whichever one it
2	is that's insoluble.
3	CHAIR BEACH: J.
4	DR. ULSH: If they exhibited that
5	kind of behavior, well, sure, we would use the
6	bioassay data that's there and model it that
7	way.
8	CHAIR BEACH: Well, and I guess what
9	the Work Group asked for and what you agreed
10	to was to bring to the worker what approach,
11	to look at both of them, and then to bring to
12	us the approach that you would actually take
13	for dose reconstruction.
14	So, that was the discussion that
15	had gone I mean we had just gotten to that
16	small point.
17	And to close it out after several
18	Work Groups, that was the end point to be able
19	to bring that to closure.
20	DR. ULSH: How about this?
21	We can, you know, at the conclusion
22	of this process there's going to be a pretty

1	large edit to the Mound TBD, Mound Site
2	Profile, and it's going to incorporate all of
3	the results from this process.
4	We could modify the internal TBD to
5	talk about this issue that the microsphere
6	program generated high-temperature plutonium
7	particles.
8	If a worker was involved in that
9	and had bioassay data that suggested this more
10	refractory form, that should be considered.
11	That could be the approach that we
12	would take for this issue.
13	DR. MAURO: I have just one
14	question.
15	The dose reconstructions that you
16	have done and the data that you haven't done,
17	is the retention function behaving in a way
18	that you weren't expecting to see.
19	In other words, does it look like
20	your L or does it look like your J?
21	DR. ULSH: Well, there was some
22	discussion about that.

1	DR. NETON: Nothing looked like J, -
2	I don't think.
3	MR. FITZGERALD: There were a couple
4	of instances that Joyce raised and
5	DR. NETON: I think there were
6	slightly
7	MR. FITZGERALD: Right.
8	DR. NETON: There were some cases
9	with slightly longer half-lives in the L model
10	that we developed, but nothing in my opinion
11	that resembled a very long build-up time that
12	you see with Type J at Los Alamos.
13	And I'm recalling now that I
14	committed to look at the difference between
15	those two and we had done some calculations
16	and the Type J model relies on such a large
17	extra dose that I don't think it's really
18	appropriate to be used.
19	Additional dose it's at is not
20	appropriate to be used at Mound based on the
21	data that we see.

MR.

FITZGERALD: Well, unless the

1	bioassay	
---	----------	--

- DR. NETON: Unless the bioassay, but
- 3 we have not seen anything remotely resembling
- 4 a Type J in my opinion at Mound.
- In fact, that Type J material was
- 6 generated under some very specific
- 7 experimental conditions at Los Alamos. Maybe
- 8 it was radioactive testing or something of
- 9 that nature.
- 10 MR. FITZGERALD: So, I think that
- 11 the proposal may be sort of a footnote that
- it's available in a TBD.
- DR. NETON: Yes, we certainly make
- 14 the dose reconstructors aware of the fact that
- 15 there may be other instances out there, be
- 16 careful when you're reviewing the bioassay
- data not to blindly apply the default.
- 18 And again most of the time this
- 19 would be where people had no positive
- 20 bioassay. I mean you have to have some
- 21 default.
- 22 For those who have positive

1	bioassays, usually there is a fairly rigorous
2	follow-up with multiple samples where one
3	could establish the clearest pattern.
4	That's what we would use, the
5	person's own individual clearance.
6	CHAIR BEACH: Okay. Anything else?
7	Then I would propose we close this
8	based on the discussion and the revision of
9	the TBD to make both available to fit the
10	circumstance.
11	Brad, do you agree with closing?
12	MEMBER CLAWSON: Yes.
13	CHAIR BEACH: Bob, Phil?
14	MEMBER SCHOFIELD: Yes.
15	CHAIR BEACH: Paul?
16	MEMBER ZIEMER: Yes.
17	CHAIR BEACH: Okay. So, we have
18	closed Issue 9. The next one is
19	adequacy/completeness of internal dose. I'm
20	actually going to tie that with the roadmap.
21	I had first thought I was going to
22	close the roadmap issue, but realized that

papers written for data

2	adequacy and completion.
3	So, there's actually four still or
4	the table. Some of the questions have been
5	answered and some of them have not.
6	The first three papers were the
7	answer was the roadmap for one, three, seven
8	and eight, I believe.
9	So, I've decided I'm not going to
10	close that until we have a written response
11	from NIOSH and making sure that all four
12	papers have all been all the issues have
13	been answered completely.
14	And with that, I'm going to turn it
15	over to SC&A.
16	MR. FITZGERALD: Yes, with a
17	clarifying comment that, you know, going back
18	to January 5th and 6th when we sort of waded
19	into all those papers and we made it clear
20	that we needed a way to expedite or facilitate
21	some agreement, and that's where the charge
22	from the Work Group came to SC&A to actually

there were

four

1	identify.
2	And we were talking about the
3	presence of these nuclides based on the King
4	report and other sources at Mound.
5	And I think Brant's response was
6	that doesn't connote necessarily exposure
7	potential. We went back and forth on that.
8	I think finally we just said, well,
9	what we can do to move this thing forward is
10	why don't we identify what we would say would
11	be the nuclides from which exposure potential
12	based on the operational information,
13	whatever, was significant enough that we would
14	identify that to NIOSH.
15	And I think the Work Group wanted
16	NIOSH to then respond as to why this would not
17	in fact be exposures to which bioassay would
18	be warranted or which we don't see any
19	evidence of actual bioassays being conducted.
20	And I think that doesn't supplant
21	some of the other issues that were raised in
22	this paper, but I think it was trying to get

1	to the heart of the question which is quite
2	apart from the presence necessarily the
3	roadmap was focused on the presence of the
4	potential presence of these nuclides, but I
5	think it was made clear it did not necessarily
6	mean there was an exposure pathway.
7	And what the Work Group wanted us
8	to do was, okay, let's get beyond the King
9	report and the roadmap and let's talk about
10	which nuclides would exemplify the potential
11	that we're talking about and to provide that
12	to NIOSH so they could respond as to why these
13	were not in fact valid examples of exposure
14	potential historically at Mound.
15	And that's where it was left. I
16	think that White Paper was generated and
17	I'm trying to recall. Maybe early May finally
18	it got out at DOE and got to the Work Group
19	and NIOSH sometime in May.
20	CHAIR BEACH: June.
21	MR. FITZGERALD: Was it June?
22	CHAIR BEACH: It was June.

1	MR. FITZGERALD: Oh, okay. So,
2	early June.
3	So, I'm not telling you that you
4	necessarily have had it long, but certainly
5	that's what the genesis of our identifying
6	those sources to you are. So, that's where it
7	stands right now.
8	Bob Bistline is on the phone to
9	if there's any clarifying questions or
10	whatever. But again we have not seen a
11	response, so we're pretty much where we were
12	in terms of putting this paper out.
13	CHAIR BEACH: Well, and I did ask
14	Bob Bistline to kind of go through the first
15	three papers that were out I believe 2009,
16	April of 2009 they came out to kind of give
17	us an idea of what still remained unanswered.
18	And, Bob, I don't know if you're
19	ready to do that yet. Bob, are you on the
20	phone? Bistline?
21	DR. BISTLINE: Yes, I am here.
22	CHAIR BEACH: Oh, great. Glad to

1	hear	it.

- DR. BISTLINE: Yes, I could try to
- 3 go through it some, but I guess the first
- 4 thing would be to look at the -- some of the
- issues that were brought up in those papers.
- 6 The one paper was the internal
- 7 dosimetry -- Mound internal dosimetry data
- 8 adequacy, and the other one was completeness,
- 9 Mound dosimetry completeness, and the other
- 10 was the Q&A that was produced back in April of
- 11 2009.
- 12 And some of the major issues that I
- think need to be brought up that never have
- 14 really been addressed to our satisfaction have
- to do with things such as the polonium low
- 16 recovery that the issue is dealt with in the
- 17 adequacy paper rather extensively. I think
- it's Pages 8 through 10 or 11.
- 19 And it has to do with the fact that
- 20 the polonium recovery in bioassay was ten
- 21 percent or less. And the issue was -- it gets
- 22 into that ten percent -- having been a DOE

1	program manager over internal dosimetry if I
2	had a bioassay saw bioassays coming in at
3	ten percent, even 25 percent, I would have
4	said that the program was pretty broken.
5	And I think that's pretty well
6	reiterated by the MARLAP statement, Multi-
7	Agency Radiological Laboratory Analytical
8	Protocol Manual of 2004 where it says low
9	yield, a very low yield usually indicates a
10	procedural failure caused by incomplete or
11	unsuccessful chemical separation, matrix
12	interference, missing reagents or the
13	inclusion of a key element in the sample
14	processing. And a low recovery of the direct
15	plating method indicates a failure in this
16	process.
17	It was not appropriate for
18	metabolized polonium, and this goes back to
19	some animal studies that were done where it
20	was recommended that because of the
21	uncertainties they found with the primates,
22	that recovery was ten percent or less.

1	So, our question has to do with the
2	efficiency here of polonium recovery. And we
3	don't feel that this has been fully answered.
4	Another issue is on other nuclides,
5	dealing with other nuclides. And this was
6	discussed fairly lengthy in the QA paper of
7	2009 along about Pages 15 and 16 where the MWJ
8	report indicated possible problems with
9	completeness of data and with quality or
10	usefulness of the data entered in the other
11	radionuclides.
12	This deals with things such as
13	cesium-137 bioassays until there were no
14	cesium-137 bioassays until 1993, but there was
15	work being done in 1968-1969 time frame.
16	And cobalt-60, NIOSH keeps
17	referring to them as trace quantities, but you
18	have to with cobalt-60, for instance, there
19	was research and production. And it shows up
20	in soils later on and is brought out in the
21	adequacy and completeness paper that was
22	published in June, the fact that cobalt-60 was

1	found in soil. So, this raises a very serious
2	issue with regard to other radionuclides.
3	There's the issue of radium,
4	actinium radium, thorium and actinium also
5	as a third issue that the data adequacy paper
6	addresses.
7	And this gets into the fact that
8	there's a real question about equilibrium with
9	the using the radium extraction and
LO	differential counting process that was used
L1	for to measure the radium daughters of
L2	thorium.
L3	And the fact that there is question
L4	as to whether the equilibrium was established
L5	and whether all of the alpha emitters were
L6	captured with the same efficiency. And we do
L7	not feel that this has been adequately
L8	addressed as yet.
L9	And this brings up another issue,
20	and that is that there were 238 samples of Pu-
21	238 during the SEC time frame. And 48 samples
22	during 1960 to 1967, which is after that.

1	So, you're still there were more
2	samples actually for Pu-232 during the time of
3	the SEC than there were during the time of
4	1960 to `67, which was after that and wasn't
5	included in the SEC.
6	And the same is true for thorium-
7	230. During the SEC there were 180 samples,
8	and there are no samples during 1960 to 1970
9	when thorium-230 shows up in production
10	processes.
11	So, these are some highlights of
12	some of the issues. We get into the issue of
13	inconsistency. We have a real problem with
14	the inconsistency that's shown here.
15	The Dayton labs, MCC, were granted
16	an SEC for their polonium process. And yet
17	during the this was transferred over to
18	this process was transferred over to Mound and
19	used basically identical processing. And yet
20	there's no there's push not to treat it in
21	the same manner as it was treated at the
22	Dayton labs.

1	Then I also have noted here that
2	the protactinium-231 and thorium-232, that in
3	1956 through 1956 through 1959 there were
4	bioassays. And in 1970 but there was also
5	processing and the use of this Pa-231 during
6	1970 to 1979, and there is no bioassay data
7	from 1959 through 1993 although there was
8	indication that it was being used at the site.
9	And thorium-232, over 117 leaky drums outside
10	the Building 21 as late as 1973.
11	So, these are all issues that I see
12	as concerns on our part and I just a second
13	here. Let me get my paperwork in order.
14	From our perspective, SC&A's
15	perspective technical review involves a
16	critical investigation of the programs
17	effective based on available documentation.
18	And we feel that the treatment of
19	the King report is something that these
20	materials were not just episodic.
21	SC&A sees that there is no reason
22	to waste further time and resources searching

1	for documentation to substantiate this, that
2	episodic use could certainly explain
3	fluctuations in the number of bioassay samples
4	for particular radionuclide from month to
5	month or year to year or even decades without
6	specific bioassay data, but there's available
7	evidence indicating active use of these
8	isotopes was taking place.
9	So, I think that kind of covers the
10	majority of the issues that are brought up.
11	And sort of in summary, we feel that the
12	dosimetric significance in terms of the
13	compensation program is not defined by the
14	Energy Employees Occupational Illness
15	Compensation Act or the associated rules.
16	There is no de minimis dose
17	specified. And the dosimetric significance
18	was therefore determined based on the
19	requirements of bioassay sampling at 100
20	millirem CED that the radionuclides defined as
21	the nuclides of dosimetric significance during
22	the pre-1989 dose assessment project at Mound

1	and	the	sensitivity	of	Probability	of
---	-----	-----	-------------	----	-------------	----

- 2 Causation codes.
- 3 Clearly, alpha emitters emitting
- 4 radionuclides such as radium-226, actinium-
- 5 227, thorium-228, thorium-230, Pa-231,
- 6 thorium-232, uranium-233, uranium-234, 235,
- 7 238, americium-241, curium-244 are of
- 8 dosimetric significance in compensation.
- 9 And so we feel that this -- the
- 10 lack of monitoring information and a way in
- 11 which the proposed method of trying to treat
- these by issues such as gross alpha, which has
- 13 -- we feel has real limitations and as
- described in the paper, has real concerns.
- 15 And there are examples in the June
- 16 paper. And I'm not going to get into all
- 17 those examples that are cited in our June
- 18 paper, but there are examples of potential
- 19 exposures that occurred. And these examples
- 20 are engineering controls, work practice
- 21 controls, safety filter and explosions and
- 22 fires broken into four sections.

1	And these I might just point out
2	that one of the questions statements by
3	NIOSH has been that these many of these
4	were episodic, they were small samples, they
5	were encapsulated samples or they were sealed
6	sources.
7	A couple of these examples actually
8	point out that there were encapsulation
9	sources and sealed sources that actually
10	leaked and there were exposures to individuals
11	even with those.
12	And so we feel that there really
13	needs to be a closer look at consideration of
14	these possible exposure potentials that
15	existed and were examples of accidents
16	occurring took place that haven't that
17	were being questioned on the part of SC&A's
18	considerations.
19	So anyway, I think that kind of
20	covers it at this point.
21	CHAIR BEACH: Thanks, Bob.
22	Hurry up.

1	DR. ULSH: My turn?
2	CHAIR BEACH: You have
3	DR. ULSH: All right. Yes, it might
4	take me 20 minutes.
5	To go back and kind of give you a
6	history of this whole issue, data adequacy,
7	data completeness, data integrity, Bob
8	mentioned that there were three papers issued.
9	I believe that those are the
10	original three SC&A papers that were issued on
11	those topics.
12	We've responded to each of those
13	papers. We have written response to each of
14	those three.
15	In fact, by my count we are now in
16	the eighth iteration on this issue depending
17	on how you count an iteration. That's how I
18	count it.
19	And then after we responded to
20	those three, SC&A issued a report this past
21	I guess it was released in June. That's the
22	date that Joe gave. That sounds right to me.

1	And so I came today prepared to
2	talk about that June paper since that's the
3	latest one. We've already responded to the
4	earlier ones, although it sounds like we may
5	need to do that again if there are outstanding
6	issues.
7	So if you look at this June report,
8	Joe mentioned in his discussion and it's also
9	mentioned explicitly in SC&A's June report,
10	that the Working Group tasked SC&A to come up
11	with examples of situations and I think
12	that this was specifically tied towards the
13	issue of these exotic radionuclides where
14	there were scenarios where SC&A felt that
15	there was an exposure potential, but then that
16	there was no bioassay to correspond to that
17	situation.
18	That's the way I read it. That's
19	the way it even says it in the report. So, I
20	think there's a couple of problems here with
21	this report. And I'm only going to, in the
22	interest of time, have time to talk about a

- 2 The fundamental problem is the
- 3 continuing interpretation of the King report.
- 4 And Bob mentioned it.
- 5 We have said before and we'll say
- 6 it again, it doesn't reflect the episodic
- 7 nature of the programs that occurred at
- 8 Mound. It was made for D&D. It was made to
- 9 give people during D&D, an idea of what to
- include in their RWPs. When they say you must
- 11 sample for these radionuclides, here's the
- 12 universe that you must sample for.
- 13 Yes, it does show what
- 14 radionuclides were present in these rooms, but
- it doesn't in and of itself establish an
- 16 actual exposure potential. You have to
- 17 consider what was actually done in these
- 18 programs.
- 19 And let me give you an example that
- 20 Bob already talked about, and that's the
- 21 Cotter concentrate program where they were
- trying to isolate protactinium and ionium from

1	what was called Cotter concentrate.
2	And based on the King report and
3	the roadmap, SC&A lists a gap in bioassay from
4	1970 through `79.
5	So, I guess what you're saying is
6	there should be some bioassay for each year or
7	each period there in 1970 to `79.
8	Now, we interviewed the principal
9	that was involved in this Cotter concentrate
10	program. And he states that they only did
11	work with this material in the mid-1970s. The
12	mid-1970s, not 1970. The material came on
13	site and sat in drums until the mid-1970s.
14	So, from 1970 up through when they
15	started working with this material, I wouldn't
16	expect bioassay, but it's listed as a gap in
17	SC&A's report. And I present this only as one
18	example.
19	Now, given the way things have
20	moved today where we have some follow-up
21	items, I came in thinking that we've got to
22	wrap up everything by the August Board

1	meeting, but it sounds like we need to prepare
2	a written response to this report.
3	So, we will do that. We will talk
4	about this example and many others in here,
5	but that's just one example to show you what
6	I'm talking about.
7	Now, in terms of specific examples
8	that were cited in SC&A's June report, I'd
9	like to walk through a couple of them and
10	point out a few things just as examples again.
11	On Page 13 of their report they
12	talk about a document authored by someone I
13	can't really correctly pronounce his name, but
14	that's in SC&A's report.
15	And they talk about on October
16	17th, 1977, safety was notified by engineering
17	of their discovery that an exhaust duct from
18	two fume hoods located in E-107 was tied into
19	the building's general re-circulating room air
20	system. This could be a risk of potential
21	exposure to building occupants.

There's a little bit more here in

Τ	the quote. I would refer you to SC&A's report
2	to get the complete part, but now let me point
3	out something that SC&A did not mention in
4	their report.
5	There were no radioactive materials
6	in E-107. So, I fail to see how this is an
7	example of an unmonitored exposure potential.
8	Similarly, if you go down to
9	another example on the same page, they
10	CHAIR BEACH: Are you on Page 14?
11	DR. ULSH: I am on Page 13.
12	CHAIR BEACH: 13. Okay.
13	DR. ULSH: They also talk about a
14	reference from a report authored by someone
15	named Butz in 1963.
16	And I pulled up this incident
17	report and here's what I found that's not
18	mentioned in SC&A's report: No property
19	damage, lost time or personnel exposure
20	resulted from the incident.
21	So, again I would ask how is this
22	an example of an unmonitored exposure

1 potential?	?
--------------	---

- 2 Let's see. So, I quess I'm a
- little confused by that. Now, on Page 14 they
- 4 mention a Bigler report from 1960. And the
- 5 quote that SC&A gives, it was obvious from
- 6 this investigation that the facilities for
- 7 performing the work done in R-149 are
- 8 inadequate. Contamination levels have been
- 9 high in this lab at various times since this
- 10 program began.
- 11 Then they give a little bit more.
- 12 And I pulled up the incident report, and
- 13 here's the part that was not quoted: The
- 14 incident did not result in any injuries,
- 15 radiation exposures to personnel or loss of
- 16 equipment.
- 17 This is in the very documents that
- 18 SC&A is citing in support to show examples of
- 19 unmonitored exposure potential.
- 20 Madding and Carfagno on the same
- 21 page, Page 14, they talk about a dry box
- 22 incident and they give a quote: There's a

1	striking similarity between this incident and
2	the one that occurred in R-127, 149, and they
3	give a date. I refer you to them for the
4	quote.
5	Here's the part that was not
6	quoted: No significant personnel exposure and
7	no injury occurred.
8	So, again, how is this an example
9	of an unmonitored exposure? It's not.
10	Now, when we go back and write our
11	response to this, we're going to pull up every
12	citation and we are going to pull out and
13	determine whether or not this was an example
14	of an unmonitored exposure potential.
15	I've already started this. I
16	pulled out all the incident reports and I
17	looked at a list of personnel involved.
18	And so I asked someone to go into
19	the MESH database and determine whether or not
20	bioassay is present.
21	The first thing to note is that
22	almost all of them again, this is a very

1	anni alz	firat	n
	quick	first	pass.

- 2 Almost all of them involved
- 3 plutonium-238. They do not involve these
- 4 exotic radionuclides. That's one thing.
- 5 The next thing to note is that in
- 6 almost all of them there were bioassay data
- 7 within days of the incident in question.
- 8 So, again I would ask how is this
- 9 an example of an unmonitored exposure
- 10 potential? It's not.
- So, this is just a preview of how
- we're going to respond to this report. There
- are a number of programs that are listed later
- in SC&A's report. Bob mentioned a few of
- 15 them.
- This is just going off the fly from
- 17 what Bob was talking about, because again I
- wasn't coming here with the idea of responding
- 19 to those earlier reports because we already
- 20 have.
- But just off the top of my head,
- 22 you know, Bob mentioned some problems with

Т	radium, accimium and thorrum. That was the
2	basis for the SEC being designated 1950 to
3	`59.
4	Now, early on the Working Group had
5	a question about was there an exposure
6	potential to these radionuclides after that?
7	And we have already covered this,
8	too, but, yes, in the early years of the
9	1960s, I don't remember the exact year, maybe
10	`62, `63, I don't remember exactly, they
11	opened up a capsule of this material. And I
12	can't remember exactly what they did with it,
13	but we interviewed the guy who did it.
14	It was done inside a hot cell.
15	There was no exposure potential. It was a
16	completely isolated environment. So, this
17	radium, actinium, thorium question has already
18	been covered.
19	Bob also mentioned inconsistency
20	between Monsanto Chemical Company where he
21	designated a polonium SEC and Mound Lab where
22	we didn't.

1	Well, again I would say we've
2	already got an SEC from 1950 to `59. You're
3	arguing that we should take polonium doses
4	away from the non-presumptive cancers?
5	That doesn't make any sense.
6	That's not claimant favorable to do that.
7	Furthermore, the processes, the polonium
8	processes were not identical between Monsanto
9	Chemical and Mound Lab.
10	The very reason that they designed
11	the T Building I think it was the T
12	Building the way that they did, was because
13	at Monsanto they had a problem with beta and
14	gamma activity among the activation products
15	in the cans around the business slugs that
16	they used to generate this polonium.
17	Therefore, they made this a remote
18	operation and made it contained. So, right
19	there is a significant difference.
20	Let's see. I guess that's really
21	all I have right now to get ahead of the
22	Working Group because I know we're going to be

_						-
1	tacked	$\pm \circ$	w_1	a	response	here
-	$DD_{12}CQ$	\sim	WIICC	a	TCDPOILDC	11CT C •

- You've seen the way we do this.
- We're going to go through and we're going to
- 4 pull this report in and we're going to address
- 5 it point by point by point, but here's a
- 6 preview of what we're finding. These are not
- 7 examples of unmonitored exposure potentials.
- 8 MR. HINNEFELD: I want to make sure
- 9 that we're clear on everything here because
- 10 Bob started by saying several items from the
- 11 first three reports have not been addressed
- satisfactorily even though we've responded.
- So, is there a comprehensive list
- of those things other than what Bob gave on
- 15 the phone today?
- 16 CHAIR BEACH: So, let's go with the
- 17 latest report, the June report, 2010, answer
- those questions, and we'll see where we are
- 19 with the rest.
- 20 MR. HINNEFELD: So, we owe a
- 21 response on the June report.
- 22 CHAIR BEACH: Yes.

1	MR. HINNEFELD: But my question
2	still stands, is that in addition to the June
3	report Bob said there are these other issues
4	from these earlier reports that we don't feel
5	have been answered satisfactorily.
6	CHAIR BEACH: Right.
7	MR. HINNEFELD: Do we have that in
8	writing?
9	CHAIR BEACH: No. And what I was
10	going to say is I think SC&A owes that to
11	NIOSH, what's still outstanding.
12	MR. HINNEFELD: Okay.
13	CHAIR BEACH: But I think the June
14	report may take care of most of it, but it may
15	not.
16	MR. HINNEFELD: If they're lacking
17	on the June report, then we'll respond to the
18	June report.
19	CHAIR BEACH: Yes.
20	MR. HINNEFELD: And if there's
21	anything that's outstanding that's not
22	referenced in the June report, then we would

1	need	that	

- 2 MR. FITZGERALD: We need to
- 3 highlight those. So, I think there's a bit of
- 4 a parsing.
- 5 MR. HINNEFELD: Okay. That would
- 6 help. That would help if you'd write that.
- 7 MR. KATZ: Bob, do you have any -- I
- 8 don't want to cut you off.
- 9 Do you have any reaction to Brant's
- 10 comments?
- Bob, you might be on mute.
- MR. FITZGERALD: He just melted into
- 13 his chair.
- MR. KATZ: Bob, are you still with
- 15 us? Bob Bistline?
- DR. BISTLINE: Is it on now?
- MR. KATZ: Oh, yes. There you are.
- 18 Thank you.
- DR. BISTLINE: Oh, okay. I just
- 20 turned it off, I guess. Okay.
- Yes, I think that most of the
- 22 issues that I brought up in the earlier

2	another in the June report.
3	And so I think that if they cover
4	the June report, why that will probably take
5	care of most of the issues. Although, there's
6	more explanation in some of the earlier
7	reports of those issues.
8	One of the things that I would
9	point out is the quote from the King report as
10	to what the reason for and, Brant, you're
11	right, you know, it was done for purposes of
12	D&D, but it does state, and it stated in this
13	report, all dates represent the duration of
14	actual usage of radioisotopes in their
15	respective projects.
16	And it's clearly understood that
17	residual amounts of these probably still exist
18	in floors, walls and ceilings and should be
19	considered up to present in every case for
20	decontamination work.
21	So, you know, that's true. It was
22	mainly done for that, but it does state

reports are also reiterated at one point or

1	categorically that all dates represent the
2	duration of actual usage.
3	DR. ULSH: So, for example, I assume
4	the King report was Building 21 as the storage
5	location for the Cotter concentrate that came
6	on site I guess in about 1970. And they had
7	it there through about 1979.
8	DR. BISTLINE: Right.
9	DR. ULSH: So, was it there? Yes.
10	But again if the drums are sitting
11	there from 1970 up through the mid-1970s, and
12	in the mid-1970s they took, I think they said,
13	like maybe three drums out of the 1,000 to see
14	if they could work with it, there is no need
15	for bioassay from 1970 up until the date that
16	they took that drum and cracked it open and
17	started working with it.
18	And if you're expecting to find
19	based on the King report the period of active
20	usage, 1970 to `79, and you're expecting to
21	find bioassay in the first part of the `70s,
22	you're misinterpreting the King report.

1	You have to establish that there is
2	an exposure potential. And that's just one
3	example, by the way.
4	DR. BISTLINE: Okay. Well, I can
5	buy that point on that one particular issue.
6	MR. FITZGERALD: The only thing I
7	would add is that when you go through and go
8	through item by item, which is what was
9	intended by the Work Group, I would be careful
10	about, you know, the exposure was significant.
11	I think I heard you say that.
12	I think the question we posed on
13	this thing, was posed by the Work Group is, is
14	there nuclides for which there's an exposure
15	potential. And whether or not the resultant
16	exposure was significant or not is less
17	important as to whether it was an exposure
18	pathway which is manifest either in the event
19	that occurred or other instances that
20	suggested that, you know, even though it shows
21	up in the King report, here's an instance.
22	This is what we challenged, I

1	think, Bob with doing, is there an exposure
2	potential by virtue of the exposure that
3	occurred by an event, you know.
4	I'm just trying to shed some light
5	on the fact that there was an avenue by which
6	exposure took place.
7	I heard you say something, you
8	know, you came up with a quote from the report
9	and was a sort of a qualifying statement
LO	that however the exposure wasn't significant.
11	I think what we're after is that
L2	the fact there was in fact exposure quite
L3	apart from how significant it was.
L4	And I think when you go back and
L5	start itemizing this thing
L6	MR. HINNEFELD: I think just before
L7	we carry this much further, I think that it's
L8	a fact, Brant, that we need to be cautious
L9	about a site report, an incident report that
20	includes what essentially is a boilerplate
21	statement. No personal injuries, no property

damage, no significant exposure.

1	Because quite likely that was a
2	criterion that the site said, okay, we want to
3	know if there was property damage, we want to
4	know if there were personal injuries, we want
5	to know if there was significant exposure, and
6	they may define that in some fashion that's
7	absent to us.
8	And so I think we need to be
9	cautious about relying on that statement in an
LO	incident report.
L1	DR. ULSH: I think we need to
L2	MR. HINNEFELD: Okay. So, that's
L3	the only statement I want to make, and then
L4	we'll address the rest of it in our response.
L5	DR. BISTLINE: This is Bistline.
L6	And, again, what you guys are
L7	saying was something that I was also going to
L8	bring forward. And that is that, Brant, you
L9	were saying that there was no exposure, but
20	the point of those examples was whether there
21	was exposure potential and with these examples
22	that were given.

1	So, it's not necessarily that they
2	didn't have exposure, but that the potential
3	was brought out by these examples.
4	DR. ULSH: Okay. First of all I
5	will posit that there were incidents. We have
6	never said otherwise. There were hundreds if
7	not thousands of incidents, but these are
8	being presented as examples of situations
9	where there was an unmonitored exposure
10	potential.
11	Not only was it they don't fit
12	the bill on at least two counts. Number one,
13	they don't involve exotic radionuclides. And
14	in some cases, don't involve nuclides at all.
15	Number two, they're not unmonitored.
16	They've said right in the report in
17	many cases, we sent them for urinalysis, we
18	verified that in MESH or they took nasal
19	swabs.
20	So, just the fact that incidents
21	happen is not sufficient to demonstrate that
22	there was an unmonitored exposure potential.

1	And as Stu said, we will address
2	this in more detail in our written response.
3	DR. MAURO: You'll be in a position
4	to be quantitative. If someone makes a claim
5	that there was not a significant exposure, you
6	have the information available to you to say
7	what does that mean and why did they come to
8	that conclusion and that you agree that, yes,
9	based on these data where there is a bioassay
10	sample and there is a swab, swipe samples or
11	whatever, air samples, that would be, you
12	know, that would put the nail in.
13	MR. FITZGERALD: Let's just wait for
14	the written response.
15	CHAIR BEACH: Yes, and that was
16	going to be my suggestion. Also, I want to
17	just touch briefly on D&D.
18	So, D&D has been one of those that
19	we haven't spent a lot of time, Work Group
20	time on.
21	The last meeting on January 6, we
22	asked NIOSH to give us a report. And that

1	report was delivered on April 2010.
2	But to be fair, I don't think
3	anyone has really had a chance to review this.
4	And what I would like is to ask SC&A to look
5	at this report and give the Work Group a
6	recommendation on what's the path forward for
7	D&D.
8	We've already touched briefly or
9	tritium samples bioassay during the D&D time
10	frame. And I'm not expecting it at this
11	meeting, but I think that we do owe this paper
12	and a future report on D&D and what the Work
13	Group should do.
14	I'll just point out on Page 5 NIOSH
15	recommends that we close this issue. I don't
16	feel comfortable with that until I have
17	something from SC&A giving us an idea of if we
18	have anything on the D&D issue and the time
19	frame.
20	So, that's my recommendation unless
21	there are other comments. That's our last

item.

1	MR. KATZ: Do you want to talk about
2	what your plans are as to whether you want to
3	present anything at the upcoming Board
4	meeting?
5	CHAIR BEACH: Well, right now the
6	only thing that we can report on is I mean
7	I can give a report now
8	MR. KATZ: A status report.
9	CHAIR BEACH: A status report. And
10	then radon we close, but we don't really
11	MR. KATZ: So then, for example, we
12	like to keep the petitioners informed. We
13	should let them know this is not queuing up
14	for a vote at this Board meeting on Mound.
15	And we should let them know that so that
16	they're not expecting something different.
17	CHAIR BEACH: Right. Correct.
18	MR. KATZ: Okay. And then we
19	probably don't need quite as much time.
20	CHAIR BEACH: We have an hour.
21	MR. KATZ: We have set aside at
22	least an hour, and you may not even need all

1 of that	to report	out.
-----------	-----------	------

- 2 CHAIR BEACH: Probably not.
- 3 MR. HINNEFELD: Do you feel like
- 4 Brant's presence is needed to do the status
- 5 report?
- 6 Brant is making some rather heroic
- 7 travel arrangements to get there for this on
- 8 Thursday.
- 9 MR. KATZ: That's a good point.
- 10 I was going to say, Josie, if
- 11 you're comfortable reporting out and --
- MR. HINNEFELD: Jim and I were here.
- 13 MR. KATZ: Jim and you, I think that
- will cover it and you're off the hook.
- 15 CHAIR BEACH: Yes.
- MR. KATZ: And in fact we might even
- 17 be able to move -- well --
- 18 CHAIR BEACH: However you want to do
- 19 this, Ted.
- MR. KATZ: I don't know whether to
- 21 move Mound or not at this late date.
- 22 CHAIR BEACH: Well, you had

1	mentioned	that	based	on	

- 2 MR. KATZ: It depends on what
- 3 happens with --
- 4 CHAIR BEACH: So, I think we should
- 5 go ahead and close then unless there's any
- 6 other --
- 7 MR. KATZ: So, are we adjourned?
- 8 MS. HOWELL: I just was wondering if
- 9 we have any idea about timeline for future
- 10 meetings.
- 11 CHAIR BEACH: Future meetings.
- MR. KATZ: Thank you.
- 13 CHAIR BEACH: We've got -- I can
- just go quickly through we have action items
- 15 for NIOSH on --
- MR. KATZ: And SC&A.
- 17 CHAIR BEACH: Well, to start with on
- 18 neutrons -- actually, without going back all
- 19 through these, that just depends on where
- 20 NIOSH is and how long --
- 21 MR. HINNEFELD: I think we're hard
- 22 pressed to make some type of estimate. I

Т	chillik we le hard pressed to make one today.
2	MR. KATZ: Yes. What I was going to
3	suggest is at the Board meeting we're going to
4	be talking about scheduling things. And maybe
5	if NIOSH can give some thought to these Mound
6	issues and SC&A for their next deliverables to
7	be ready at the August Board meeting to
8	discuss where they might be ready, then when
9	we have a Mound discussion and we could also
10	talk about scheduling the next because
11	we'll have time to schedule Work Group
12	meetings at the August 3rd meeting.
13	CHAIR BEACH: Yes. And I'll be out
14	from September 6 to October 9. I'll be gone.
15	So, it won't be during that time.
16	MR. KATZ: So probably after, right?
17	CHAIR BEACH: After I
18	MEMBER ZIEMER: My calendar, too, is
19	pretty much shot.
20	CHAIR BEACH: So is Paul's.
21	MEMBER CLAWSON: When do we have to
22	have our travel and stuff in by then?

1	MR. KATZ: Well, that's the other
2	thing. First of all, we're adjourned, I
3	think.
4	CHAIR BEACH: Yes.
5	MR. KATZ: Okay. So, thank you
6	everyone that's hung in with us on the phone.
7	(Whereupon, the above-entitled
8	matter went off the record at 4:30 p.m.)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	