	Ва	MW: 137.34	CAS: 7440-39-3	RTECS: CQ8370000	
METHO	D: 7056, Is	sue 2	EVALUATION: FULL	Issue 1: 15 August 1987 Issue 2: 15 August 1994	_
OSHA : NIOSH: ACGIH:	0.5 mg/m ³ 0.5 mg/m ³ 0.5 mg/m ³		PROPERTIES	S: solubility @ 100 °C: BaCO ₃ : 0.006 g/100 g H ₂ O; BaCI ₂ : 59 g/100 g H ₂ O; Ba(NO ₃) ₂ : 34 g/100 g H ₂ O; BaO: 91 g/100 g H ₂ O	

SYNONYMS: vary depending upon compound

SAMPLING		MEASUREMENT	
SAMPLER:	FILTER (0.8-µm cellulose ester membrane)	TECHNIQUE:	ATOMIC ABSORPTION, FLAME
FLOW RATE: VOL-MIN: -MAX: SHIPMENT: SAMPLE STABILITY: FIELD BLANKS:	1 to 4 L/min 50 L @ 0.5 mg/m ³ 2000 L routine stable 2 to 10 field blanks per set	ANALYTE: EXTRACTION: FINAL SOLUTION: FLAME: WAVELENGTH:	barium ion (Ba ²⁺) hot water leach, 10 mL, 10 min, twice; conc. HCl, 3 drops; evaporate to dryness 5% HCl/1.1 mg/mL Na ⁺ , 5 mL nitrous oxide-acetylene reducing 553.6 nm
		CALIBRATION:	standard solutions of Ba ²⁺ in 5% HCl/1.1 mg/mL Na ⁺
	ACCURACY	RANGE:	25 to 200 µg per sample [1]
RANGE STUDIED:	0.28 to 1.08 mg/m ³ [1] (168-L samples)	ESTIMATED LOD: PRECISION (Š _r):	2 µg per sample [1] 0.025 @ 43 to 180 µg per sample [1]
BIAS:	- 0.55%		
OVERALL PRECISION	Ι (Ŝ _{rT}): 0.054 [1]		
ACCURACY:	± 10.81%		

APPLICABILITY: The working range is 0.13 to 10 mg/m 3 for a 200-L air sample. This method determines Ba $^{2+}$ in water-soluble barium compounds. Insoluble barium compounds (e.g., BaSO $_4$) require an ashing procedure.

INTERFERENCES: Ionization of barium in the flame is controlled by addition of sodium chloride to samples and standards. Calcium, at >0.1%, gives a positive interference unless background correction is used.

OTHER METHODS: This revises Method S198 [2].

REAGENTS:

- 1. Water, distilled or deionized.
- 2. Nitric acid (HNO 3), conc.*
- 3. Hydrochloric acid (HCI), conc.*
- 4. Sodium chloride (NaCl).
- 5. 5% HCl (v/v)/1.1 mg/mL Na ⁺: Dilute 5 mL conc. HCl and 0.28 g NaCl to 100 mL with deionized water.
- Calibration stock solution, 1000 μg Ba/mL. Commercially available or dissolve 1.437 g BaCO₃ in minimum volume of (1+1) HCl and dilute to 1 L with 1% (v/v) HCl.
- 7. Nitrous oxide, 98%.
- 8. Acetylene, 99.6%.
 - * See SPECIAL PRECAUTIONS

EQUIPMENT:

- 1. Sampler: cellulose ester membrane filter, 0.8-µm pore size, 37-mm diameter, in cassette filter holder.
- 2. Personal sampling pump, 1 to 4 L/min, with flexible connecting tubing.
- 3. Atomic absorption spectrophotometer with nitrous oxide-acetylene burner head and barium hollow cathode lamp.
 - NOTE: Background correction (e.g., D $_2$ or H $_2$ lamp) needed for samples with >0.1% (w/v) Ca²⁺.
- 4. Regulators, two-stage, for nitrous oxide and acetylene.
- 5. Beakers, Phillips, 125-mL, or Griffin, 50-mL, with watchglass covers.*
- 6. Volumetric flasks, 10- and 100-mL.*
- 7. Pipets, 4- to 400-µL, and 5-mL.
- 8. Hotplate, surface temperature 140 °C.
- 9. Forceps or tweezers, plastic-tipped.
- 10. Centrifuge, and centrifuge tubes, 50-mL.
 - Clean with conc. HNO 3 and rinse thoroughly with distilled or deionized water before use.

SPECIAL PRECAUTIONS: Nitric and hydrochloric acids are corrosive liquids. Wear protective clothing and work in a fume head.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- Sample at an accurately known flow rate between 1 and 4 L/min for a sample size of 50 to 2000
 L. Do not exceed a filter loading of ca. 2 mg total dust.

SAMPLE PREPARATION:

- 3. Open cassette filter holders and transfer samples and blanks to clean beakers.
- 4. Add 10 mL boiling distilled water. Let stand 10 min with occasional swirling. Decant extract to a centrifuge tube.
- 5. Wash filter and beaker twice with ca. 2 mL hot distilled water and add to centrifuge tube.
- 6. Repeat extraction and washing (steps 4 and 5), adding the solutions to the centrifuge tube.
- 7. Remove filter with forceps and rinse with stream of hot distilled water into centrifuge tube.
- 8. Rinse original beaker three times with ca. 2 mL hot distilled water and add to centrifuge tube. Centrifuge and decant the solution to a second beaker.
- 9. Add three drops conc. HCl to sample and evaporate until ca. 0.5 mL liquid remains.
- 10. Cool each beaker. Pipet 5.0 mL 5% HCl/1.1 mg/mL Na ⁺ solution into each beaker. Swirl to dissolve residue.

CALIBRATION AND QUALITY CONTROL:

- 11. Add known amounts of calibration stock solution to 10-mL volumetric flasks and dilute to volume with 5% HCl/1.1 mg/mL Na ⁺ solution to produce Ba ²⁺ concentrations in the range 0.4 to 40 µg/mL (0.002 to 0.2 mg per sample). Prepare fresh daily.
- 12. Analyze working standards with the blanks and samples (steps 17 and 18).
- 13. Prepare calibration graph (absorbance vs. solution concentration, µg/mL).
- 14. Aspirate a standard for every ten samples to check instrument drift.
- 15. Check recoveries with at least one spiked media blank per ten samples.
- 16. Use method of standard additions occasionally to check for interferences.

MEASUREMENT:

- 17. Set spectrophotometer according to manufacturer's recommendations and to conditions on page 7056-1.
- 18. Aspirate standards and samples. Record absorbance readings.
 - NOTE: If absorbance values for samples are above the linear range of the standards, dilute with 5% HCl/1.1 mg/mL Na ⁺ solution, reanalyze, and apply the appropriate dilution factor in calculations.

CALCULATIONS:

- 19. Using the measured absorbances, calculate the corresponding concentrations (μ g/mL) of barium in the sample, C _s, and average media blank, C _b, from the calibration graph.
- 20. Using the solution volumes (mL) of the sample, V_{s} , and media blanks, V_{b} , calculate the concentration of barium, C (mg/m⁻³), in the volume of air sampled, V (L):

$$C = \frac{(C_sV_s - C_bV_b)}{V}, mg/m^3.$$

EVALUATION OF METHOD:

Method S198 was validated using atomized aqueous solutions of barium chloride to generate atmospheres at approximately 0.3 to 1.1 mg/m⁻³ [1]. Samples taken at 1.4 L/min showed 100% collection efficiency. Recovery of barium chloride standards spiked on filters was 102% with $\bar{S}_r = 1.4\%$ in the range 0.043 to 0.18 mg barium per sample.

REFERENCES:

- Documentation of the NIOSH Validation Tests, S198, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-185 (1977), available as Stock No. PB 274-248 from NTIS, Springfield, VA 22161.
- [2] NIOSH Manual of Analytical Methods, 2nd ed., Vol. 3, S198, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-C (1977).

METHOD REVISED BY:

Mary Ellen Cassinelli, NIOSH/DPSE.