HEXACHLORO-1,3-CYCLOPENTADIENE

2518

	$C_5 Cl_6$	MW: 272.77	CAS: 77-47-4	RTECS: GY1225000
МЕТНО	D: 2518, Issue 2		EVALUATION: FULL	Issue 1: 15 May 1985 Issue 2: 15 August 1994
OSHA : NIOSH: ACGIH:	no PEL 0.01 ppm; Group I 0.01 ppm (1 ppm = 11.15 m	II Pesticide g/m³ @ NTP)	PROPERTIES:	liquid; MP 10 °C; BP 239 °C; d 1.714 g/mL @ 15.5 °C; VP 13 Pa (0.1 mm Hg; 132 ppm) @ 25 °C

SYNONYMS: perchlorocyclopentadiene.

-

SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY. ⁶³	Ni ECD
(2 tubes Porapak T 75 mg and 25 mg)	
ANALYTE: hexachloro-1,3-cyclopentadiene	e
FLOW RATE: 0.01 to 0.2 L/min DESORPTION: 1 mL hexane: ultrasonic bath 1	h
VOL-MIN: 0.25 L @ 0.01 ppm	
-MAX: 90 L INJECTION VOLUME: 5 uL	
SHIPMENT: separate tubes, seal, ship @ 25 °C; store @ 0 °C in the dark TEMPERATURE-INJECTION: 150 °C	
-DETECTOR: 250 °C -COLUMN: 135 °C	
STABILITY: ≥7 days @ 25 °C; ≥28 days @ 0 °C [1]	
CARRIER GAS: 5% CH₄/95% Ar, 30 mL/min	
BLANKS: 2 to 10 held blanks per set COLUMN: glass, 2 m x 4-mm ID; 3% 100/120 Gas Chrom Q	OV-1 on
ACCURACY CALIBRATION: hexachloro-1,3-cyclopentadiene	e
RANGE STUDIED: 13 to 873 μg/m³ [1] (3-L samples) RANGE: 25 to 140 ng per sample	
BIAS: - 0.3%	
OVERALL PRECISION (Ŝ _{rT}): 0.082 [2]	
ACCURACY: ± 16.4% PRECISION (\$,): 0.030 [1]	

APPLICABILITY: The working range is 0.005 to 0.2 ppm (5 to 2400 mg/m³) for a 5-L air sample. Area samples from a municipal wastewater treatment plant were analyzed by a variation of this method [2].

INTERFERENCES: None identified.

OTHER METHODS: This revises P&CAM 308 [3] which was evaluated with a reference method which involved sampling with impingers of hexane and gas chromatography with electron capture detection [1].

REAGENTS:

- 1. Porapak T (optional if commercial tubes are used), 80/100 mesh (Waters Associates, Inc.), cleaned as follows:
 - a. Soxhlet extract 4 h with 80/20 acetone/methanol (v/v).
 - b. Soxhlet extract 4 h with hexane.
 - c. Dry in vacuo 12 h at 50 to 75 °C.
- 2. Hexane, spectral quality.*
- 3. Hexachloro-1,3-cyclopentadiene, 98% or purer.
- 4. Acetone, spectral quality.*
- 5. Methanol, spectral quality.*
- 6. Stock solution, 20 mg/mL. Dissolve 2.00 g hexachloro-1,3-cyclopentadiene in hexane to make 100 mL solution. Store at 0 °C, protect from light and discard after 60 days.
- 7. Calibration stock solution, 10 µg/mL. Dilute 50 µL stock solution with hexane to make 100 mL solution. Store at 0 °C, protect from light and discard after 14 days.
- 8. Mixture of 5% methane and 95% argon.
 - See SPECIAL PRECAUTIONS.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- 2. Attach sampler to personal sampling pump with flexible tubing.

SPECIAL PRECAUTIONS: Hexane, acetone and methanol are flammable.

Hexachloro-1,3-cyclopentadiene is highly toxic and can be absorbed through the skin. Wear gloves, avoid inhalation of vapors and protect solvents from sparks and flames.

- 3. Sample at an accurately known flow rate between 0.01 and 0.2 L/min for a total sample size of 0.25 to 90 L. Do not sample for longer than 8 h.
- 4. Separate the two tubes of the sampler. Cap the ends of each tube with PTFE tape and plastic caps. Pack securely for shipment.

SAMPLE PREPARATION:

NOTE: If the tubes have been refrigerated, allow the tubes to stand at room temperature before removal of the caps and tape to prevent condensation of water on the sorbent.

- Place the front and back sorbent sections with their respective glass wool plugs, in separate vials. 5.
- Add 1.0 mL hexane to each vial. Attach cap to each vial. 6.
- 7. Allow to stand 60 min in an ultrasonic bath.

CALIBRATION AND QUALITY CONTROL:

8. Calibrate daily with at least six working standards over the range 5 to 140 ng hexachloro-1,3-cyclopentadiene per sample.

EQUIPMENT:

- 1. Sampler: two glass tubes connected in series with 1.8-cm piece of plastic tubing; each tube, 5 cm long, 6-mm OD, 4-mm ID, contains one section of 80/100 mesh Porapak T held in place with two plugs of silylated glass wool (front tube = 75 mg; back tube = 25 mg) with plastic caps. Pressure drop <2.3 kPa (<17 mm Hg) at flow rate of 0.2 L/min. Samplers are commercially available.
- 2. Personal sampling pump, 0.01 to 0.2 L/min, with flexible connecting tubing.
- 3. PTFE tape.
- 4. Gas chromatograph, ⁶³Ni ECD, integrator and column (page 2518-1).
- 5. Volumetric flasks, 10- and 100-mL.
- 6. Vials, 1-mL, with PTFE-lined caps.
- 7. Syringes, 10-µL, readable to 0.1 µL.
- 8. Syringes, 100-µL, readable to 1 µL.
- 9. Syringes, 1-mL, readable to 10 µL.
- 10. Pipet, 1-mL.
- 11. Ultrasonic bath.

- a. Add known amounts (5 to 140 μ L) of calibration stock solution to hexane in 10-mL volumetric flasks and dilute to the mark.
- b. Analyze together with samples and blanks (steps 11 and 12).
- c. Prepare calibration graph (peak area or height vs. ng hexachloro-1,3-cyclopentadiene).
- Determine desorption efficiency (DE) at least once for each lot of Porapak T used for sampling in the range 25 to 12,500 ng hexachloro-1,3-cyclopentadiene per sample. Prepare three tubes at each of five levels plus three media blanks.
 - a. Prepare five DE standard solutions in the range 5 to 2500 μ g/mL by diluting aliquots of 20 mg/mL stock solution with hexane.
 - b. Inject 5 µL of a DE standard solution directly into a media blank front sorbent section with a microliter syringe.
 - c. Cap the tube. Allow to stand 12 hrs at room temperature.
 - d. Desorb (steps 5 through 7) and analyze together with working standards (steps 11 and 12).
 - e. Prepare a graph of DE vs. ng hexachloro-1,3-cyclopentadiene recovered.
- 10. Analyze three quality control blind spikes and three analyst spikes to ensure that the calibration graph and DE graph are in control.

MEASUREMENT:

11. Set gas chromatograph according to manufacturer's recommendations and to conditions given on page 2518-1. Prior to analyzing samples, condition the column by making three 5- μ L injections of a 1- μ g/mL solution of hexachloro-1,3-cyclopentadiene in hexane. Inject sample aliquot manually using solvent flush technique or with autosampler. t $_{r} = 7$ min for these conditions.

NOTE: If peak area is above the useful range of the working standards, dilute with hexane, reanalyze and apply the appropriate dilution factor in calculations.

12. Measure peak area or height.

CALCULATIONS:

13. Determine the mass, ng (corrected for DE) of hexachloro-1,3-cyclopentadiene found in the sample front (W_{f}) and back (W_{b}) sorbent tubes, and in the average media blank front (B $_{f}$) and back (B_{b}) sorbent tubes.

NOTE: If $W_{b} > W_{f}/10$, report breakthrough and possible sample loss.

14. Calculate concentration, C, of hexachloro-1,3-cyclopentadiene in the air volume sampled, V (L):

$$C \frac{(W_{f} + W_{b} - B_{f} - B_{b})}{V}, \ \mu g/m^{3}.$$

EVALUATION OF METHOD:

A variation of this method employed single 100- or 50-mg sections of Porapak T per sampler. This variation was tested with controlled atmospheres and verified with impingers containing hexane and with gas chromatographic analysis for 13.1 to 873 µg/m ³ [1]. Overall precision (\hat{S}_{rT}) was 0.082 (18 samples, pooled) for 2.9-L samples; the temperature of each atmosphere was 25 to 28 °C, and the relative humidity was at least 90%. Mean recovery for three concentration levels was 99.7%. The average concentration found at each level was not significantly different from the corresponding reference concentration at 95% confidence level. Breakthrough (1 mg/m ³, 0.2 L/min, 27 °C, RH 90%) = 55 L for a 50-mg section of Porapak T. Values of DE from 50 mg of Porapak T with 1 mL of hexane were 1.01, 0.99, and 1.01 for 24.5, 352, and 3670 ng per sample, respectively; $\bar{S}_r = 0.030$ (18 samples, pooled). Hexachloro-1,3-cyclopentadiene (about 30 ng per sample) was stable for 28 days inside each tube which contained 100- and 50-mg sections of Porapak T (samples were stored at room temperature for the first seven days and at 0 °C for the next 21 days). However, hexachloro-1,3-cyclopentadiene did

migrate from front sections of sorbent to backup sections. Area samples from a municipal wastewater treatment plant were collected and analyzed by a variation of this method [2]. Differences in the method included sampling with 150 mg of 80/100 Chromosorb 102 and desorption with petroleum ether. Concentrations of hexachloro-1,3-cyclopentadiene ranged from 0.03 to 39 μ g/m⁻³.

REFERENCES:

- [1] Dillon, H. K. Research Report for Hexachlorocyclopentadiene, Southern Research Institute, Birmingham, AL, NIOSH Contract 210-78-0012 (1980).
- [2] Elia, V. J., C. S. Clark, V. A. Majeti, P. S. Gartside, T. MacDonald, N. Richdale, C. R. Meyer, G. L. Van Meer and K. Hunninen. <u>Environ</u>. <u>Res.</u>, <u>32</u>, 360-371 (1983).
- [3] NIOSH Manual of Analytical Methods, 2nd ed., Vol. 5, P&CAM 308, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 79-141 (1979).

METHOD REVISED BY:

Samuel P. Tucker, Ph.D., NIOSH/DPSE; P&CAM 308 originally validated under NIOSH Contract 210-78-0012.