1	
2	
3	
4	
5	
6	
7	IMMEDIATELY DANGEROUS TO LIFE OR HEALTH (IDLH) VALUE PROFILE
8	
9	
10	
11	FOR
12	
13	
14	
15	BUTANE
16	
17	
18	
19	[CAS No. 106-97-8]
20	
21	\sim
22	
23	
24	
25	
26	Department of Health and Human Services
27 28	Centers for Disease Control and Prevention National Institute for Occupational Safety and Health
28 29	Wational institute for Occupational Safety and Health
30	

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

i

1 Disclaimer

2 3

Mention of any company or product does not constitute endorsement by the National Institute for Occupational

4 Safety and Health (NIOSH). In addition, citations to Web sites external to NIOSH do not constitute NIOSH

endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not
responsible for the content of these Web sites.

8 Ordering Information

9

7

10 To receive this document or information about other occupational safety and health topics, contact NIOSH:

11

12 Telephone: 1-800-CDC-INFO (1-800-232-4636)

- **13** TTY: 1-888-232-6348
- 14 E-mail: cdcinfo@cdc.gov
- 15 Or visit the NIOSH Web site: www.cdc.gov/niosh

17 For a monthly update on news at NIOSH, subscribe to *NIOSH eNews* by visiting www.cdc.gov/niosh/eNews.

- 1819 DHHS (NIOSH) Publication No. XXX
- 20 21

16

1 Foreword

2 Chemicals are a ubiquitous component of the modern workplace. Occupational exposures to chemicals have the 3 potential to adversely affect the health and lives of workers. Acute or short-term exposures to high concentrations of some airborne chemicals have the ability to quickly overwhelm workers, resulting in a spectrum of undesirable 4 5 health outcomes that may inhibit the ability to escape from the exposure environment (e.g., irritation of the eyes 6 and respiratory tract or cognitive impairment), cause severe irreversible effects (e.g., damage to the respiratory 7 tract or reproductive toxicity), and in extreme cases, cause death. Airborne concentrations of chemicals capable 8 of causing such adverse health effects or of impeding escape from high-risk conditions may arise from a variety of 9 non-routine workplace situations, including special work procedures (e.g., in confined spaces), industrial accidents (e.g., chemical spills or explosions), and chemical releases into the community (e.g., during 10 transportation incidents or other uncontrolled-release scenarios). 11 12 13 The "immediately dangerous to life or health air concentration values (IDLH values)" developed by the National 14 Institute for Occupational Safety and Health (NIOSH) characterize these high-risk exposure concentrations and 15 conditions [NIOSH 2013]. IDLH values are based on a 30-minute exposure duration and have traditionally 16 served as a key component of the decision logic for the selection of respiratory protection devices [NIOSH 2004]. Occupational health professionals have employed these values beyond their initial purpose as a component of the 17 NIOSH Respirator Selection Logic to assist in developing Risk Management Plans for non-routine work practices 18 19 governing operations in high-risk environments (e.g., confined spaces) and the development of Emergency

- 20 Preparedness Plans.
- 21
- 22 The approach used to derive IDLH values for high priority chemicals is outlined in the NIOSH Current
- 23 Intelligence Bulletin (CIB) 66: Derivation of Immediately Dangerous to Life or Health Values [NIOSH 2013].
- 24 CIB 66 provides 1) an update on the scientific basis and risk assessment methodology used to derive IDLH
- values, 2) the rationale and derivation process for IDLH values, and 3) a demonstration of the derivation of
- 26 scientifically credible IDLH values using available data resources.
- 27
- The purpose of this technical report is to present the IDLH value for butane (CAS # 106-97-8). The scientific
 basis, toxicologic data and risk assessment approach used to derive the IDLH value are summarized to ensure
 transparency and scientific credibility.
- 31
- 32 John Howard, M.D.
- 33 Director
- 34 National Institute for Occupational Safety and Health

1 Centers for Disease Control and Prevention

1 Table of Contents

2	FORE	WORD	III
3	ABBR	EVIATIONS	VI
4	GLOS	SARY	VII
5	ACKN	NOWLEDGMENTS	x
6	1.0	INTRODUCTION	
7 8 9	1.1 1.2 1.3	PURPOSE General Substance Information	1 1 1
10	2.0	ANIMAL TOXICITY DATA	
11	3.0		
12	4.0	SUMMARY	7
13	5.0 RE	FERENCES	
14			

15

1 Abbreviations

-	11001010	
2		
3	ACGIH	American Conference of Governmental Industrial Hygienists
4	AEGL	Acute Exposure Guideline Levels
5	AIHA	American Industrial Hygiene Association
6	BMC	benchmark concentration
7	BMCL	benchmark concentration lower confidence limit
8	С	ceiling
9	CAS	chemical abstract service
10	ERPG	Emergency Response Planning Guidelines
11	IDLH	immediately dangerous to life or health
12	LC ₅₀	median lethal concentration
13	LC_{Lo}	lowest concentration of a chemical that caused death in humans or animals
14	LEL	lower explosive limit
15	LOAEL	lowest observed adverse effect level
16	mg/m ³	milligram(s) per cubic meter
17	NAC	National Advisory Committee
18	NAS	National Academy of Sciences
19	NIOSH	National Institute for Occupational Safety and Health
20	NOAEL	no observed adverse effect level
21	OSHA	Occupational Safety and Health Administration
22	PEL	permissible exposure limit
23	ppm	parts per million
24	RD_{50}	concentration of a chemical in the air that is estimated to cause a 50% decrease in the respiratory
25		rate
26	REL	recommended exposure limit
27	SCP	Standard Completion Program
28	STEL	short term exposure limit
29	TLV	threshold limit value
30	TWA	time weighted average
31	UEL	upper explosive limit
32	WEEL	workplace environmental exposure level

1 Glossary

2

36

3 Acute Exposure: Exposure by the oral, dermal, or inhalation route for 24 hours or less.

4 Acute Exposure Guideline Levels (AEGLs): Threshold exposure limits for the general public applicable to 5 emergency exposure periods ranging from 10 minutes to 8 hours. AEGL-1, AEGL 2, and AEGL-3 are 6 developed for five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8 hours) and are distinguished 7 by varying degrees of severity of toxic effects ranging from transient, reversible effects to life-threatening 8 effects [NAS 2001]. AEGLs are intended to be guideline levels used during rare events or single once-in-a-9 lifetime exposures to airborne concentrations of acutely toxic, high-priority chemicals [NAS 2001]. The threshold exposure limits are designed to protect the general population, including the elderly, children or 10 other potentially sensitive groups that are generally not considered in the development of workplace exposure 11 12 recommendations (additional information available at http://www.epa.gov/oppt/aegl/).

- Acute Reference Concentration (RfC): An estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure for an acute duration (24 hours or less) of the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. It can be derived from a NOAEL, LOAEL, or benchmark concentration, with uncertainty factors (UFs) generally applied to reflect limitations of the data used. Generally used in USEPA noncancer health assessments [USEPA 2014].
- Acute Toxicity: Any poisonous effect produced within a short period of time following an exposure, usually 24 to 96 hours.
- Adverse Effect: A substance-related biochemical change, functional impairment, or pathologic lesion that affects
 the performance of an organ or system or alters the ability to respond to additional environmental challenges.
- Benchmark Dose/Concentration (BMD/BMC): A dose or concentration that produces a predetermined change
 in response rate of an effect (called the benchmark response, or BMR) compared to background [USEPA
 2014] (additional information available at http://www.epa.gov/ncea/bmds/).
- Benchmark Response (BMR): A predetermined change in response rate of an effect. Common defaults for the
 BMR are 10% or 5%, reflecting study design, data variability, and sensitivity limits used.
- 28 BMCL: A statistical lower confidence limit on the concentration at the BMC [USEPA 2014].
- 29 Bolus Exposure: A single, relatively large dose.
- 30 Ceiling Value ("C"): U.S. term in occupational exposure indicating the airborne concentration of a potentially
 31 toxic substance that should never be exceeded in a worker's breathing zone.
- 32 Chronic Exposure: Repeated exposure for an extended period of time. Typically exposures are more than
 33 approximately 10% of life span for humans and >90 days to 2 years for laboratory species.
- 34 Critical Study: The study that contributes most significantly to the qualitative and quantitative assessment of risk
 35 [USEPA 2014].
- 37 Dose: The amount of a substance available for interactions with metabolic processes or biologically significant
 38 receptors after crossing the outer boundary of an organism [USEPA 2014].
- ECt₅₀: A combination of the effective concentration of a substance in the air and the exposure duration that is
 predicted to cause an effect in 50% (one half) of the experimental test subjects.

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

vii

- Emergency Response Planning Guidelines (ERPGs): Maximum airborne concentrations below which nearly all
 individuals can be exposed without experiencing health effects for 1-hour exposure. ERPGs are presented in a
 tiered fashion with health effects ranging from mild or transient to serious, irreversible, or life threatening
- 4 (depending on the tier). ERPGs are developed by the American Industrial Hygiene Association [AIHA 2006].
- 5 Endpoint: An observable or measurable biological event or sign of toxicity ranging from biomarkers of initial
 6 response to gross manifestations of clinical toxicity.
- 7 Exposure: Contact made between a chemical, physical, or biological agent and the outer boundary of an
 8 organism. Exposure is quantified as the amount of an agent available at the exchange boundaries of the
 9 organism (e.g., skin, lungs, gut).
- Extrapolation: An estimate of the response at a point outside the range of the experimental data, generally
 through the use of a mathematical model, although qualitative extrapolation may also be conducted. The
 model may then be used to extrapolate to response levels that cannot be directly observed.
- Hazard: A potential source of harm. Hazard is distinguished from risk, which is the probability of harm under
 specific exposure conditions.
- Immediately Dangerous to Life or Health (IDLH) condition: A situation that poses a threat of exposure to airborne contaminants when that exposure is likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment [NIOSH 2004, 2013].
- 18 IDLH value: A maximum (airborne concentration) level above which only a highly reliable breathing apparatus
 19 providing maximum worker protection is permitted [NIOSH 2004, 2013]. IDLH values are based on a 30 20 minute exposure duration.
- LC₀₁: The statistically determined concentration of a substance in the air that is estimated to cause death in 1% of
 the test animals.
- LC₅₀: The statistically determined concentration of a substance in the air that is estimated to cause death in 50%
 (one half) of the test animals; median lethal concentration.
- LC_{LO}: The lowest lethal concentration of a substance in the air reported to cause death, usually for a small percentage of the test animals.
- LD₅₀: The statistically determined lethal dose of a substance that is estimated to cause death in 50% (one half) of
 the test animals; median lethal concentration.
- 30 LD_{LO}: The lowest dose of a substance that causes death, usually for a small percentage of the test animals.

27

- LEL: The minimum concentration of a gas or vapor in air, below which propagation of a flame does not occur in
 the presence of an ignition source.
- Lethality: Pertaining to or causing death; fatal; referring to the deaths resulting from acute toxicity studies. May
 also be used in lethality threshold to describe the point of sufficient substance concentration to begin to cause
 death.
- 36 Lowest Observed Adverse Effect Level (LOAEL): The lowest tested dose or concentration of a substance that
 37 has been reported to cause harmful (adverse) health effects in people or animals.

- Mode of Action: The sequence of significant events and processes that describes how a substance causes a toxic
 outcome. Mode of action is distinguished from the more detailed mechanism of action, which implies a more
 detailed understanding on a molecular level.
- 4 No Observed Adverse Effect Level (NOAEL): The highest tested dose or concentration of a substance that has
 5 been reported to cause no harmful (adverse) health effects in people or animals.
- Occupational Exposure Limit (OEL): Workplace exposure recommendations developed by governmental agencies and non-governmental organizations. OELs are intended to represent the maximum airborne concentrations of a chemical substance below which workplace exposures should not cause adverse health effects. OELs may apply to ceiling, short-term (STELs), or time-weighted average (TWA) limits.
- 10 **Peak Concentration**: Highest concentration of a substance recorded during a certain period of observation.

14

- Permissible Exposure Limit (PEL): Occupational exposure limits developed by OSHA (29 CFR 1910.1000) or
 MSHA (30 CFR 57.5001) for allowable occupational airborne exposure concentrations. PELs are legally
 enforceable and may be designated as ceiling, STEL, or TWA limits.
- Point of Departure (POD): The point on the dose–response curve from which dose extrapolation is initiated.
 This point can be the lower bound on dose for an estimated incidence or a change in response level from a concentration-response model (BMC), or it can be a NOAEL or LOAEL for an observed effect selected from a dose evaluated in a health effects or toxicology study.
- **RD**₅₀: The statistically determined concentration of a substance in the air that is estimated to cause a 50% (one half) decrease in the respiratory rate.
- Recommended Exposure Limit (REL): Recommended maximum exposure limit to prevent adverse health
 effects based on human and animal studies and established for occupational (up to 10-hour shift, 40-hour
 week) inhalation exposure by NIOSH. RELs may be designated as ceiling, STEL, or TWA limits.
- Short-Term Exposure Limit (STEL): A worker's 15-minute time-weighted average exposure concentration that
 shall not be exceeded at any time during a work day.
- 26 Target Organ: Organ in which the toxic injury manifests in terms of dysfunction or overt disease.
- Threshold Limit Values (TLVs®): Recommended guidelines for occupational exposure to airborne contaminants, published by the American Conference of Governmental Industrial Hygienists (ACGIH). TLVs
 refer to airborne concentrations of chemical substances and represent conditions under which it is believed that nearly all workers may be repeatedly exposed, day after day, over a working lifetime, without adverse effects. TLVs may be designated as ceiling, short-term (STELs), or 8-hr TWA limits.
- Time-Weighted Average (TWA): A worker's 8-hour (or up to 10-hour) time-weighted average exposure
 concentration that shall not be exceeded during an 8-hour (or up to 10-hour) work shift of a 40-hour week.
 The average concentration is weighted to take into account the duration of different exposure concentrations.
- 35 Toxicity: The degree to which a substance is able to cause an adverse effect on an exposed organism.
- 36
 37 Uncertainty Factors (UFs): Mathematical adjustments applied to the POD when developing IDLH values. The
 38 UFs for IDLH value derivation are determined by considering the study and effect used for the POD, with
 39 further modification based on the overall database.

- Workplace Environmental Exposure Levels (WEELs): Exposure levels developed by the American Industrial
 Hygiene Association (AIHA) that provide guidance for protecting most workers from adverse health effects
 related to occupational chemical exposures expressed as a TWA or ceiling limit.
- 4
- 5
- 6 7

8 Acknowledgments

- 9
- 10 This document was developed by the Education and Information Division (Paul Schulte, Ph.D., Director). G.
- 11 Scott Dotson, Ph.D., was the project officer and lead NIOSH author for this technical report. The basis for this
- 12 document was a report contracted by NIOSH and prepared by Andrew Maier, Ph.D., Ann Parker, and Lynn
- 13 Haber, Ph.D. (Toxicology Excellence for Risk Assessment [TERA]).
- 14

15 Education and Information Division

- 16 Devin Baker, M.Ed.
- 17 Charles L. Geraci, Ph.D.
- 18 Thomas J. Lentz, Ph.D.
- 19 Richard Niemeier, Ph.D.
- 20 Chris Sofge, Ph.D.
- 21
- NIOSH would like to acknowledge the contribution of the following subject matter experts for their critical
 technical review of this report.
- 24

31

- Mary A. Fox, Ph.D., Assistant Professor; Co-Director, Risk Sciences and Public Policy Institute;
 Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins
 University
- 28
 29 Richard B. Schlesinger, Ph.D., Fellow A.T.S., Senior Associate Dean for Academic Affairs and Research
 30 Professor of Biology, Dyson College of Arts and Sciences, Pace University

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

1 1.0 Introduction

3

4 5

12

2 1.1 Overview of the IDLH Value for Butane

IDLH Value: 1,400 ppm (>10% LEL)

Basis for IDLH Value: Despite the availability of toxicity data capable of being used to calculate health-based
estimates for butane (see Tables 4 and 5), these estimates are all greater than 10% of the lower explosive limit
(>10% LEL). NIOSH has adopted a threshold of 10% LEL as a default basis for the IDLH value based on
explosivity concerns [NIOSH 2014]. Safety considerations related to the potential hazard of explosion must be
taken into account and the IDLH value is set at the 10% LEL for butane of 1,400 ppm.

11 1.2 Purpose

This IDLH Value Profile presents (1) a brief summary of technical data associated with acute inhalation 13 exposures to butane and (2) the rationale behind the Immediately Dangerous to Life or Health (IDLH) value for 14 butane. IDLH values are developed based on the scientific rationale and logic outlined in the NIOSH Current 15 Intelligence Bulletin (CIB) 66: Derivation of Immediately Dangerous to Life or Health (IDLH) Values [NIOSH 16 2013]. As described in CIB 66, NIOSH performs in-depth literature searches to ensure that all relevant data from 17 human and animal studies with acute exposures to the substance are identified. Information included in CIB 66 on 18 19 the literature search includes pertinent databases, key terms, and guides for evaluating data quality and relevance 20 for the establishment of an IDLH value. The information that is identified in the in-depth literature search is 21 evaluated with general considerations that include description of studies (i.e., species, study protocol, exposure concentration and duration), health endpoint evaluated, and critical effect levels (e.g., NOAELs, LOAELs, LC₅₀ 22 23 values). For butane, the in-depth literature search was conducted through February 2014.

24

26

25 1.3 General Substance Information

- 27 Chemical; Butane
- **28 CAS No:** 106-97-8

29 Synonyms: Butane, pure; n-Butane; Methylethylmethane; Diethyl; Liquefied petroleum gas (LPG); Butyl

- 30 hydride*
- 31 **Chemical category:** Aliphatic, saturated hydrocarbons; Organic gases[†]

Structural formula:								
	H ₃ C							
	сн3							
Table 1 bigblights calested abusi	a chamical and action of hotens aclosed to IDI II and drives. Table 2 and is							
Table 1 highlights selected physic	ochemical properties of butane relevant to IDLH conditions. Table 2 provid							
alternative exposure guidelines for	or butane. Table 3 summaries the Acute Exposure Guidelines Level (AEGL							
values for butane.								
Table 1: Physiochemical Property	rties of Butane							
Property	Value							
Molecular weight	58.12 [‡]							
Chemical formula	C_4H_{10}							
Description	Colorless gas							
Odor	Gasoline-like; Natural gas							
Odor Threshold	none [§]							
UEL	9.4%							
LEL	$1.4\%^\dagger$							
Vapor pressure	1820 mmHg at 25°C (77°F) [‡]							
Flash point	-60°C (-76°F) [‡]							
Ignition temperature	287.78°C (550°F) [‡]							
Solubility	Practically insoluble in water [†]							
	nheit; mmHg – millimeter mercury; LEL – lower explosive limit; UEL – upper explosive lim							
* AIHA [1989]	\sim							
[†] IFA [2013] [‡] HSDB [2013]								
· HSDB [2015]								
Cable 2: Alternative Exposure Guidelines for Butane								
Table 2: Alternative Exposure	Guidennes for Dutane							
Organization	Value							
Original (SCP) IDLH value	None							
NIOSH REL	800 ppm (1,900 mg/m ³), TWA							
OSHA PEL [2011]	800 ppm (1,900 mg/m ³), TWA							
ACGIH TLV [2014]	1,000 ppm (2,370 mg/m ³), STEL							
AIHA ERPG [2010]	Not available							
AIHA WEEL [2010]	Not available							

20 Abbreviation: ACGIH – American Conference of Governmental Industrial Hygienists; AIHA – American Industrial Hygiene

21 Association; ERPG – Emergency Response Preparedness Guidelines; IDLH – immediately dangerous to life or health; NIOSH – National

Institute for Occupational Safety and Health; OSHA – Occupational Safety and Health Administration; PEL – permissible exposure limit;
 REL – recommended exposure limit; SCP – Standards Completion Program; STEL - short term exposure limit; WEEL – workplace
 environmental exposure level

	10-min	30-min	1-hour	4-hour	8-hour	Endpoint [reference]
AEGL-1	*	$6,900 \text{ ppm}^{\dagger}$	5,500 ppm ^{\dagger}	5,500 ppm ^{\dagger}	5,500 ppm ^{\dagger}	Drowsiness in humans
		$16,000 \text{ mg/m}^3$	$13,000 \text{ mg/m}^3$	$13,000 \text{ mg/m}^3$	$13,000 \text{ mg/m}^3$	[Patty and Yant 1929]
AEGL-2	**	*	*	*	*	Dazed appearance in guinea pig
AEGL-3	**	**	**	**	**	[Nuckolls 1933] LC ₀₁ in mice
AEGL-3						[Shugaev 1969]
† =>10% LEL * =>50% LEL; ** =>3	100% LEL			26110		

1 2.0 Animal Toxicity Data

The available toxicokinetic data on butane [Gill et al. 1991] and propane [Stewart et al. 1977] indicate steadystate plasma concentrations for butane are achieved within 30 minutes of exposure. By analogy to other CNS depressants, concentration is expected to be the primary determinant of the observed effects, consistent with the choice of n = 3 for extrapolation from durations longer than 30 minutes.

7

2

Lethal concentrations of butane were evaluated in rats and mice. Shugaev [1969] reported LC₅₀ values of 278,000
ppm in rats exposed to butane for 4 hours, and 287,000 ppm in mice exposed for 2 hours. No other signs of
toxicity were reported. Several studies evaluated acute toxicity under static conditions; these studies were not
considered appropriate for derivation of an IDLH value.

12

Non-lethal animal data of classical endpoints were limited to a single study. In guinea pigs, Nuckolls [1933] 13 observed irregular and rapid breathing in animals exposed to 21,000 ppm for 2 hours, which escalated to retching 14 and a dazed appearance at 50,000 ppm for 2 hours. Although the animals were able to walk, this exposure was 15 considered potentially escape-impairing. Furthermore, although this is an older study, exposure concentrations 16 were monitored and adjusted to maintain the nominal exposure levels. Other studies found that butane is a 17 cardiac sensitizer [Chenowith 1946; Krantz et al. 1948] and can cause hemodynamic effects (decreased cardiac 18 output, decreased ventricular or aortic pressure) [Zakhari 1977], but these studies were not considered appropriate 19 for IDLH value derivation due to the limited details and exposure under anesthesia. 20

21

27 28

Table 4 summarizes the LC data identified in animal studies and provides 30-minute equivalent derived values for
butane. Table 5 provides non-lethal data reported in animal studies with 30-minute equivalent derived values.
Information in these tables includes species of test animals, toxicological metrics (i.e., LC, BMCL, NOAEL,
LOAEL), adjusted 30-minute concentration, and the justification for the composite uncertainty factors applied to
calculate the derived values.

Sable 4: Lethal Conce	entration Data for						
Reference	Species (reference)	LC ₅₀ (ppm)	Other Lethality (ppm)	Time (min)	Adjusted 30-min Concentration* (ppm)	Composite UncertaintyDerived Value (ppm)†	
Shugaev [1969]	Mouse	287,000		120	382,667	30 12,755	
Shugaev [1969]	Mouse	278,000		240	741,333	30 24,711	

Abbreviation: LC – lethal concentration; LC_{50} – median lethal concentration; LC_{L0} – lowest concentration of a chemical that caused death in humans or animals; min – minute; ppm – parts per million

7 * For exposures other than 30 minutes the ten Berge et al. [1986] relationship is used for duration adjustment ($C^n x t = k$); no empirically estimated n values were

8 available, therefore the default values were used, n = 3 for exposures greater than 30 minutes and n = 1 for exposures less than 30 minutes.

9 [†]The derived value is the result of the adjusted 30-minute concentration divided by the composite uncertainty factor.

[±]Composite uncertainty factor to account for adjustment of LC_{50} values to LC_{01} values, use of lethal concentration threshold in animals, interspecies differences and human variability.

12 [^]Composite uncertainty factor to account for use of lethal concentration threshold in animals, interspecies differences and human variability.

13 14

1 2

3

4 5

6

Cable 5: Non-lethal Con	centration Data	a for Butan				
Reference	Species (reference)	NOAEL (ppm)	LOAEL (ppm)	Time (min)	Adjusted 30-min Concentration* (ppm)	CompositeDerivedUncertaintyValueFactor(ppm)†
Nuckolls [1933]	Guinea Pig		50,000	120	66,667	10 6,667
Patty and Yant [1929]	Human	10,000		10	3,333	1 3,333

Abbreviation: NOAEL - no observed adverse effect level; min - minute; LOAEL - lowest observed adverse effect level; ppm - parts per million

^{*} For exposures other than 30 minutes the ten Berge et al. [1986] relationship is used for duration adjustment ($C^n x t = k$); no empirically estimated n values were

6 available, therefore the default values were used, n = 3 for exposures greater than 30 minutes and n = 1 for exposures less than 30 minutes.

[†]The derived value is the result of the adjusted 30-minute concentration divided by the composite uncertainty factor.

8 [±] Composite uncertainty factor to account for interspecies differences and human variability.

1 2

3

4

9 [‡]Composite uncertainty factor to account for adjustment from a severe effect threshold in humans and human variability.

1 3.0 Human Data

Although there are a number of case reports on lethality in humans from exposure to butane, none of the available
studies provided information on exposure levels. In the only human study reporting exposure concentrations,
Patty and Yant [1929] reported no symptoms except drowsiness in individuals that were exposed up to 1% butane
concentrations (10,000 ppm) for 10 minutes.

7 **4.0** Summary

9 Despite the availability of toxicity data capable of being used to calculate health-based estimates for butane (see
10 Tables 4 and 5), these estimates are all are greater than 10% of the lower explosive limit (>10% LEL). NIOSH
11 has adopted a threshold of 10% LEL as a default basis for the IDLH values based on explosivity concerns
12 [NIOSH 2014]. Safety considerations related to the potential hazard of explosion must be taken into account and
13 the IDLH value is set at the 10% LEL for butane of 1,400 ppm.

14

8

2

If the explosive hazards of butane are controlled or toxicity issues are the primary concern, a health-based IDLH 15 value could be derived from numerous datasets. The lowest LC₅₀ value identified was 287,000 ppm for 2 hours in 16 mice [Shugaev 1969]. The duration adjusted LC₅₀ value for a 30-minute exposure is 382,700 ppm. An 17 uncertainty factor of 30 would be applied to account for extrapolation from a concentration that is lethal to 18 animals, animal to human differences and human variability, resulting in a potential IDLH value of 13,000 ppm. 19 However, a more appropriate study from which to base the IDLH value is available. A LOAEL for signs of 20 disorientation and toxicity was identified in guinea pigs exposed to 50,000 ppm for 2 hours [Nuckolls 1933]. The 21 duration adjusted LOAEL for a 30-minute exposure is 66,700 ppm. An uncertainty factor of 10 is applied to 22 account for extrapolation from a concentration that causes escape impairing effects in animals, animal to human 23 24 differences and human variability, resulting in an IDLH value of 6,700 ppm. This value is supported by the 25 human data [Patty and Yant 1929], which indicated drowsiness following exposure to 10,000 ppm for 10 minutes, 26 although there were uncertainties with the study. The IDLH value is a health-based value and may not protect 27 from physical hazards associated with butane exposure. For example, safety concerns may result when butane exposures exceed 1,400 ppm, which is 10% of the LEL. 28

29

5.0 References 1

2

4

5

12

15

18

3 ACGIH (American Conference of Governmental Industrial Hygienists) [2014]. Annual TLVs® (Threshold Limit Values) and BEIs® (Biological Exposure Indices) booklet. Cincinnati, OH: ACGIH Signature Publications.

6 AIHA (American Industrial Hygiene Association) [2009]. AIHA Emergency Response Planning (ERP) 7 Committee procedures and responsibilities. Fairfax, VA: American Industrial Hygiene Association. 8

9 AIHA (American Industrial Hygiene Association) [2010]. Emergency response planning guidelines (ERPG) and 10 workplace environmental exposure levels (WEEL) handbook. Fairfax, VA: American Industrial Hygiene Association Press. 11

AIHA (American Industrial Hygiene Association) [1989]. Odor thresholds for chemicals with established 13 occupational health standards, Fairfax, VA: American Industrial Hygiene Association, p. 13. 14

16 Chenowetz MB [1946]. Ventricular fibrillation induced by hydrocarbons and epinephrine. J Ind Hyg Toxicol 17 28:151-158.

Gill R, Hatchett SE, Broster CG, Osselton MD, Ramsey JD, Wilson HK, Wilcox AH [1991]. The response of 19 evidential breath alcohol testing instruments with subjects exposed to organic solvents and gases. I. Toluene, 20 21 1.1.1-trichloroethylene and butane. Med Sci Law 31:187–200.

22 HSDB (Hazardous Substances Data Bank) [2014]. Butane (CAS No. 106-97-8). [http://toxnet.nlm.nih.gov/cgi-23 24 bin/sis/search2/f?./temp/~I0oOqb:1]. Date accessed: March 17, 2014.

25 IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) [2014]. GESTIS: database on 26 27 hazardous substances.

[http://gestis-en.itrust.de/nxt/gateway.dll?f=templates&fn=default.htm&vid=gestiseng:sdbeng]. Date accessed: 28 29 March 17, 2014. 30

Krantz JC Jr., Carr CJ, Vitcha JF [1948]. Anesthesia. XXXI. A study of cyclic and noncyclic hydrocarbons on 31 cardiac automaticity. J Pharmacol Exp Ther 94:315-318. 32

33 NAS (National Academy of Science) [2001]. Standing operating procedures for developing Acute Exposure 34

Guidelines Levels for hazardous chemicals. NAS, National Research Council (NRC), Committee on Toxicology, 35 36 Subcommittee on Acute Exposure Guideline Levels. National Academy Press: Washington, DC. IBSN: 0-309-

37 07553-X. [http://www.epa.gov/oppt/aegl/pubs/sop.pdf]. Date accessed: March 17, 2014.

38

NAS [2008]. Interim Acute Exposure Guideline Levels (AEGLs) for butane (CAS No. 106-97-8). NAS, National 39

40 Research Council (NRC), Committee on Toxicology, Subcommittee on Acute Exposure Guideline Levels.

- National Academy Press: Washington, DC. 41
- [http://www.epa.gov/opptintr/aegl/pubs/butane interim dec 2008 v1.pdf]. Date accessed: March 17, 2014. 42 43
- NIOSH (National Institute for Occupational Safety and Health) [1994]. Documentation for immediately 44
- dangerous to life or health concentrations (IDLHs) methyl isocyanate. Cincinnati, OH: U.S. Department of 45
- 46 Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational
- Safety and Health. [http://www.cdc.gov/niosh/idlh/106990.HTML]. Date accessed: March 17, 2014. 47

- 1 2 NIOSH [2004]. NIOSH respirator selection logic. Cincinnati, OH: U.S. Department of Health and Human 3 Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 4 DHHS (NIOSH) Publication No. 2005-100. [http://www.cdc.gov/niosh/docs/2005-100/pdfs/2005-100.pdf]. Date 5 accessed: March 17, 2014. 6 7 NIOSH [2013]. NIOSH Current Intelligence Bulletin 66: Derivation of Immediately Dangerous to Life or Health 8 (IDLH) Values. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control 9 and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2014-10 100. [http://www.cdc.gov/niosh/docs/2014-100/pdfs/2014-100.pdf]. Date accessed: March 17, 2014. 11 12 13 NIOSH [2014]. NIOSH pocket guide to chemical hazards. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and 14 Health, DHHS (NIOSH) Publication No. 2005-149. [http://www.cdc.gov/niosh/npg/]. Date accessed: March 17, 15 16 2014. 17 18 NLM (National Library of Medicine) [2014]. ChemIDplus lite [http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp]. Date accessed: March 17, 2014. 19 20 Nuckolls AH [1933]. The comparative life, fire, and explosion hazards of common refrigerants. Underwriter's 21 laboratory report, Miscellaneous hazards, No. 2375. 22 23 OSHA (Occupational Safety and Health Administration) [2014]. Occupational Safety and Health Standards. 29 24 CFR 1910. Subpart Z -- Toxic and Hazardous Substances. OSHA; Washington, DC 25 26 [http://www.osha.gov/pls/oshaweb/owadisp.show document?p table=standards&p id=9992]. Date accessed: 27 August 1, 2014. 28 Patty FA, Yant WP [1929]. Odor intensity and symptoms produced by commercial propane, butane, pentane, 29 hexane, and heptane vapor. Reports of investigations. U.S. Department of Commerce, Bureau of Mines. RI 2979. 30 31 Shugaev BB [1969]. Concentrations of hydrocarbons in tissues as a measure of toxicity. Arch Environ Health 32 33 18:878-882. 34 Stewart RD, Hermann AA, Baretta ED, Foster HV, Sikora JJ, Newton PE, Soto RJ [1977]. Acute and repetitive 35 36 human exposure to isobutane and propane. Springfield, VA: National Clearinghouse for Federal Scientific and Technical Information. Report no. CTFA-MCOW-ENVMBP-77-1. 37 38 ten Berge WF, Zwart A, Appelman LM [1986]. Concentration-time mortality response relationship of irritant and 39 systematically acting vapors and gases. J Haz Mat 13:301-309. 40 41 (US Environemtnal Protection Agency) [2014]. Integrated Risk Information System (IRIS). 42 USEPA [http://www.epa.gov/iris/]. Date accessed: March 17, 2014. 43 44
- Zakhari S [1977]. Butane. In: Goldberg L, ed. Non-fluorinated propellants and solvents for aerosols. Cleveland,
 OH: CRC Press, pp. 55–59.