1	
2	
3	
4	
5	IMMEDIATELY DANGEROUS TO LIFE OR HEALTH (IDLH) VALUE PROFILE
6	
7	
8	
9	FOR
10	
10	
12	
12	
13	
14	
15	
16	CHLOROACETONITRILE
17	
18	
19	
20	[CAS [®] NO. 107-14-2]
21 22	
23	
24	
25 26	
∠0 27	Department of Health and Human Services
28	Centers for Disease Control and Prevention
29	National Institute for Occupational Safety and Health
30	
31	

This information is distributed solely for the purpose of pre dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

i

- 1 This document is in the public domain and may be freely copied or reprinted.
- 2

3 **DISCLAIMER**

- 4 Mention of any company or product does not constitute endorsement by the National Institute for Occupational
- 5 Safety and Health (NIOSH). In addition, citations of Web sites external to NIOSH do not constitute NIOSH
- 6 endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not
- 7 responsible for the content of these Web sites.
- 8
- 9
- 10

11 **ORDERING INFORMATION**

- 12 To receive NIOSH documents or other information about occupational safety and health topics, contact NIOSH:
- 13 Telephone: 1-800-CDC-INFO (1-800-232-4636)
- 14 TTY: 1-888-232-6348
- 15 E-mail: <u>cdcinfo@cdc.gov</u>
- 16 or visit the NIOSH Website at: www.cdc.gov/niosh
- 17 For a monthly update on news at NIOSH, subscribe to *NIOSH eNews* by visiting www.cdc.gov/niosh/eNews.
- 18
- 19
- 20

21 SUGGESTED CITATION

- 22
- 23 NIOSH [2017]. Immediately dangerous to life or health (IDLH) value profile: Chloroacetonitrile. By Dotson GS,
- 24 Maier A, Parker A, Haber L. Cincinnati, OH: US Department of Health and Human Services, Centers for Disease
- 25 Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication
- 26 2017—XXX.
- 27
- 28 DHHS (NIOSH) Publication No. 2017—XXX
- 29 XXX 2017

1 Foreword

Chemicals are a ubiquitous component of the modern workplace. Occupational exposures to chemicals have the 2 potential to adversely affect the health and lives of workers. Acute or short-term exposures to high concentrations 3 of some airborne chemicals have the ability to quickly overwhelm workers, resulting in a spectrum of undesirable 4 health outcomes that may inhibit the ability to escape from the exposure environment (e.g., irritation of the eyes 5 6 and respiratory tract or cognitive impairment), cause severe irreversible effects (e.g., damage to the respiratory 7 tract or reproductive toxicity), and in extreme cases, cause death. Airborne concentrations of chemicals capable of 8 causing such adverse health effects or of impeding escape from high-risk conditions may arise from a variety of nonroutine workplace situations, including special work procedures (e.g., in confined spaces), industrial 9 10 accidents (e.g., chemical spills or explosions), and chemical releases into the community (e.g., during 11 transportation incidents or other uncontrolled-release scenarios). 12 13 The immediately dangerous to life or health (IDLH) air concentration values developed by the National Institute for Occupational Safety and Health (NIOSH) characterize these high-risk exposure concentrations and conditions 14 [NIOSH 2013]. IDLH values are based on a 30-minute exposure duration and have traditionally served as a key 15 component of the decision logic for the selection of respiratory protection devices [NIOSH 2004]. 16 17

Occupational health professionals have employed these values beyond their initial purpose as a component of the
 NIOSH Respirator Selection Logic to assist in developing risk management plans for non-routine work practices
 governing operations in high-risk environments (e.g., confined spaces) and the development of emergency
 preparedness plans.

22

23 The approach used to derive IDLH values for high priority chemicals is outlined in the *NIOSH Current*

24 Intelligence Bulletin (CIB) 66: Derivation of Immediately Dangerous to Life or Health Values [NIOSH 2013].

CIB 66 provides (1) an update on the scientific basis and risk assessment methodology used to derive IDLH
 values, (2) the rationale and derivation process for IDLH values, and (3) a demonstration of the derivation of
 scientifically credible IDLH values using available data resources.

28

The purpose of this technical report is to present the IDLH value for chloroacetonitrile (CAS[®] No. 10714-2). The scientific basis, toxicologic data, and risk assessment approach used to derive the IDLH value are
summarized to ensure transparency and scientific credibility.

32

1 2 3 4	John Howard, M.D. Director National Institute for Occupational Safety and Health Centers for Disease Control and Prevention
5	
6	
/	
8	
9 10	
10	
11	
12	
14	
15	
16	
17	
18	
19	This page intentionally left blank.
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 11	
4⊥ ∕\2	
42 13	
 ΔΔ	

This information is distributed solely for the purpose of pre dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

iv

Table of Contents

5	FORE	WORD	I
6	ABBR	EVIATIONS V	1
7	GLOS	SARY VI	I
8	ACKN	OWLEDGMENTSX	1
9	1.0	INTRODUCTION	1
10 11 12	1.1 1.2 1.3	OVERVIEW OF THE IDLH VALUE FOR CHLOROACETONITRILE	L 1 1
13	2.0	ANIMAL TOXICITY DATA	3
14	3.0	HUMAN DATA	5
15	4.0	SUMMARY	5
16	REFE	RENCES	7
17			
18			

1 Abbreviations

2		
3	ACGIH®	American Conference of Governmental Industrial Hygienists
4	AEGLs	Acute Exposure Guideline Levels
5	AIHA®	American Industrial Hygiene Association
6	BMC	benchmark concentration
7	BMD	benchmark dose
8	BMCL	benchmark concentration lower confidence limit
9	С	ceiling value
10	°C	degrees Celsius
11	CAS®	Chemical Abstracts Service, a division of the American Chemical Society
12	ERPGs [™]	Emergency Response Planning Guidelines
13	°F	degrees Fahrenheit
14	IDLH	immediately dangerous to life or health
15	IFA	Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (Institute for
16		Occupational Safety and Health of the German Social Accident Insurance)
17	LC	lethal concentration
18	LC 50	median lethal concentration
19	LCLO	lowest concentration that caused death in humans or animals
20	LEL	lower explosive limit
21	LOAEL	lowest observed adverse effect level
22	mg/m ³	milligram(s) per cubic meter
23	min	minutes
24	mmHg	millimeter(s) of mercury
25	NAC	National Advisory Committee
26	NAS	National Academy of Sciences
27	NIOSH	National Institute for Occupational Safety and Health
28	NLM	National Library of Medicine
29	NOAEL	no observed adverse effect level
30	NOEL	no observed effect level
31	NR	not recommended
32	OSHA	Occupational Safety and Health Administration
33	PEL	permissible exposure limit
34	ppm	parts per million
35	RD ₅₀	concentration of a chemical in the air that is estimated to cause a 50% decrease in the respiratory
36		rate
37	REL	recommended exposure limit
38	SCP	Standards Completion Program (joint effort of NIOSH and OSHA)
39	STEL	short-term exposure limit
40	$\mathrm{TLV}^{\mathbb{R}}$	Threshold Limit Value
41	TWA	time-weighted average
42	UEL	upper explosive limit
43	WEELs®	Workplace Environmental Exposure Levels
44	µg/kg	microgram(s) per kilogram of body weight
45		
46		

This information is distributed solely for the purpose of pre dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

vi

1 Glossary

2

4

5

6

7

8

9

10

11 12

36

- **3** Acute exposure: Exposure by the oral, dermal, or inhalation route for 24 hours or less.
 - Acute Exposure Guideline Levels (AEGLs): Threshold exposure limits for the general public, applicable to emergency exposure periods ranging from 10 minutes to 8 hours. AEGL-1, AEGL 2, and AEGL-3 are developed for five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects, ranging from transient, reversible effects to life-threatening effects [NAS 2001]. AEGLs are intended to be guideline levels used during rare events or single once-in-a-lifetime exposures to airborne concentrations of acutely toxic, high-priority chemicals [NAS 2001]. The threshold exposure limits are designed to protect the general population, including the elderly, children, and other potentially sensitive groups that are generally not considered in the development of workplace exposure recommendations (additional information available at http://www.epa.gov/oppt/aegl/).
- Acute reference concentration (Acute RfC): An estimate (with uncertainty spanning perhaps an order of
 magnitude) of a continuous inhalation exposure for an acute duration (24 hours or less) of the human
 population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious
 effects during a lifetime. It can be derived from a NOAEL, LOAEL, or benchmark concentration, with
 uncertainty factors (UFs) generally applied to reflect limitations of the data used. Generally used in U.S. EPA
- 18 noncancer health assessments [U.S. EPA 2016].
- Acute toxicity: Any poisonous effect produced within a short period of time following an exposure, usually 24 to
 96 hours [U.S. EPA 2016].
- Adverse effect: A substance-related biochemical change, functional impairment, or pathologic lesion that affects
 the performance of an organ or system or alters the ability to respond to additional environmental challenges.
- Benchmark dose/concentration (BMD/BMC): A dose or concentration that produces a predetermined change in response rate of an effect (called the benchmark response, or BMR) compared to background [U.S. EPA 2016] (additional information available at http://www.epa.gov/ncea/bmds/).
- Benchmark response (BMR): A predetermined change in response rate of an effect. Common defaults for the
 BMR are 10% or 5%, reflecting study design, data variability, and sensitivity limits used.
- 28 BMCL: A statistical lower confidence limit on the concentration at the BMC [U.S. EPA 2016].
- 29 Bolus exposure: A single, relatively large dose.
- 30 Ceiling value ("C"): U.S. term in occupational exposure indicating the airborne concentration of a potentially
 31 toxic substance that should never be exceeded in a worker's breathing zone.
- 32 Chronic exposure: Repeated exposure for an extended period of time. Typically exposures are more than
 33 approximately 10% of life span for humans and >90 days to 2 years for laboratory species.
- 34 Critical study: The study that contributes most significantly to the qualitative and quantitative assessment of risk
 35 [U.S. EPA 2016].
- 37 Dose: The amount of a substance available for interactions with metabolic processes or biologically significant
 38 receptors after crossing the outer boundary of an organism [U.S. EPA 2016].

- ECt₅₀: A combination of the effective concentration of a substance in the air and the exposure duration that is
 predicted to cause an effect in 50% (one half) of the experimental test subjects.
- Emergency Response Planning Guidelines (ERPGsTM): Maximum airborne concentrations below which nearly
 all individuals can be exposed without experiencing health effects for 1-hour exposure. ERPGs are presented
 in a tiered fashion, with health effects ranging from mild or transient to serious, irreversible, or life
 threatening (depending on the tier). ERPGs are developed by the American Industrial Hygiene Association
- 7 [AIHA 2006].

30

- 8 Endpoint: An observable or measurable biological event or sign of toxicity, ranging from biomarkers of initial
 9 response to gross manifestations of clinical toxicity.
- Exposure: Contact made between a chemical, physical, or biological agent and the outer boundary of an
 organism. Exposure is quantified as the amount of an agent available at the exchange boundaries of the
 organism (e.g., skin, lungs, gut).
- Extrapolation: An estimate of the response at a point outside the range of the experimental data, generally
 through the use of a mathematical model, although qualitative extrapolation may also be conducted. The
 model may then be used to extrapolate to response levels that cannot be directly observed.
- Hazard: A potential source of harm. Hazard is distinguished from risk, which is the probability of harm under
 specific exposure conditions.
- 18 Immediately dangerous to life or health (IDLH) condition: A condition that poses a threat of exposure to
 19 airborne contaminants when that exposure is likely to cause death or immediate or delayed permanent adverse
 20 health effects or prevent escape from such an environment [NIOSH 2004, 2013].
- IDLH value: A maximum (airborne concentration) level above which only a highly reliable breathing apparatus
 providing maximum worker protection is permitted [NIOSH 2004, 2013]. IDLH values are based on a 30 minute exposure duration.
- LC₀₁: The statistically determined concentration of a substance in the air that is estimated to cause death in 1% of
 the test animals.
- LC₅₀: The statistically determined concentration of a substance in the air that is estimated to cause death in 50%
 (one half) of the test animals; median lethal concentration.
- 28 LC_{LO}: The lowest lethal concentration of a substance in the air reported to cause death, usually for a small percentage of the test animals.
- LD₅₀: The statistically determined lethal dose of a substance that is estimated to cause death in 50% (one half) of
 the test animals; median lethal concentration.
- **33 LD**_{LO}: The lowest dose of a substance that causes death, usually for a small percentage of the test animals.
- LEL: The minimum concentration of a gas or vapor in air, below which propagation of a flame does not occur in
 the presence of an ignition source.
- Lethality: Pertaining to or causing death; fatal; referring to the deaths resulting from acute toxicity studies. May
 also be used in lethality threshold to describe the point of sufficient substance concentration to begin to cause
 death.

This information is distributed solely for the purpose of pre dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

viii

- Lowest observed adverse effect level (LOAEL): The lowest tested dose or concentration of a substance that has
 been reported to cause harmful (adverse) health effects in people or animals.
- Mode of action: The sequence of significant events and processes that describes how a substance causes a toxic
 outcome. By contrast, the term *mechanism of action* implies a more detailed understanding on a molecular
 level.
- No observed adverse effect level (NOAEL): The highest tested dose or concentration of a substance that has
 been reported to cause no harmful (adverse) health effects in people or animals.
- 8 Occupational exposure limit (OEL): Workplace exposure recommendations developed by governmental
- 9 agencies and nongovernmental organizations. OELs are intended to represent the maximum airborne
 10 concentrations of a chemical substance below which workplace exposures should not cause adverse health
 11 offects. OELs may apply to calling limits. STELs, or TWA limits
- 11 effects. OELs may apply to ceiling limits, STELs, or TWA limits.
- 12 Peak concentration: Highest concentration of a substance recorded during a certain period of observation.
- Permissible exposure limits (PELs): Occupational exposure limits developed by OSHA (29 CFR 1910.1000) or
 MSHA (30 CFR 57.5001) for allowable occupational airborne exposure concentrations. PELs are legally
 enforceable and may be designated as ceiling limits, STELs, or TWA limits.
- Point of departure (POD): The point on the dose-response curve from which dose extrapolation is initiated. This
 point can be the lower bound on dose for an estimated incidence or a change in response level from a
 concentration-response model (BMC), or it can be a NOAEL or LOAEL for an observed effect selected from
 a dose evaluated in a health offsets or toxicology study.
- a dose evaluated in a health effects or toxicology study.
- RD₅₀: The statistically determined concentration of a substance in the air that is estimated to cause a 50% (one half) decrease in the respiratory rate.
- Recommended exposure limit (REL): Recommended maximum exposure limit to prevent adverse health
 effects, based on human and animal studies and established for occupational (up to 10-hour shift, 40-hour
 week) inhalation exposure by NIOSH. RELs may be designated as ceiling limits, STELs, or TWA limits.
- Short-term exposure limit (STEL): A worker's 15-minute time-weighted average exposure concentration that
 shall not be exceeded at any time during a work day.
- 28 Target organ: Organ in which the toxic injury manifests in terms of dysfunction or overt disease.
- 29 Threshold Limit Values (TLVs[®]): Recommended guidelines for occupational exposure to airborne
- 30 contaminants, published by the American Conference of Governmental Industrial Hygienists (ACGIH[®]).
- 31 TLVs refer to airborne concentrations of chemical substances and represent conditions under which it is
- believed that nearly all workers may be repeatedly exposed, day after day, over a working lifetime, without
- adverse effects. TLVs may be designated as ceiling limits, STELs, or 8-hr TWA limits.
- Time-weighted average (TWA): A worker's 8-hour (or up to 10-hour) time-weighted average exposure
 concentration that shall not be exceeded during an 8-hour (or up to 10-hour) work shift of a 40-hour week.
- 36 The average concentration is weighted to take into account the duration of different exposure concentrations.
- **Toxicity**: The degree to which a substance is able to cause an adverse effect on an exposed organism.
- 38

- Uncertainty factors (UFs): Mathematical adjustments applied to the POD when developing IDLH values. The
 UFs for IDLH value derivation are determined by considering the study and effect used for the POD, with
 further modification based on the overall database.
- Workplace Environmental Exposure Levels (WEELs®): Exposure levels developed by the American Industrial
 Hygiene Association (AIHA®) that provide guidance for protecting most workers from adverse health
 effects related to occupational chemical exposures, expressed as TWA or ceiling limits.
- 7

Acknowledgments 1 2 3 This document was developed by the Education and Information Division, Paul Schulte, Ph.D., Director. G. Scott 4 Dotson, Ph.D., was the project officer and lead NIOSH author. The basis for this document was a report 5 contracted by NIOSH and prepared by Andrew Maier, Ph.D., Ann Parker, and Lynn Haber, Ph.D. (Toxicology 6 Excellence for Risk Assessment [TERA]). 7 8 The following NIOSH staff are acknowledged for providing technical and editorial review of the report: 9 **Education and Information Division** Devin Baker, M.Ed. 10 Charles L. Geraci. Ph.D. 11 Thomas J. Lentz, Ph.D. 12 13 Richard W. Niemeier, Ph.D. (retired) Pranav Rane, M.P.H. 14 Chris Whittaker, Ph.D. 15 16 17 18 19 NIOSH acknowledges the following subject matter experts for their critical technical reviews: 20 Michael S. Bisesi, Ph.D., R.E.H.S., C.I.H., Senior Associate Dean for Academic Affairs; Director, Center 21 for Public Health Practice; Interim Chair & Associate Professor, Division of Environmental Health 22 23 Science, College of Public Health, Ohio State University, Columbus, OH 24 Richard B. Schlesinger, Ph.D., Fellow A.T.S., Senior Associate Dean for Academic Affairs and Research 25 and Professor of Biology, Dyson College of Arts and Sciences, Pace University, New York, NY 26

1 **1.0 Introduction**

- 2 1.1 Overview of the IDLH Value for Chloroacetonitrile
- 4 **IDLH Value:** 11 ppm (33 mg/m³)

5 Basis for IDLH Value: No inhalation exposure data were located for chloroacetonitrile. Therefore acetonitrile is 6 used as a surrogate, as the effects and mode of action are similar; however, acetonitrile is less potent. The mouse LC₅₀ value of 2,693 ppm for a 60 minute exposure to acetonitrile [Willhite 1981] is used as the basis for the 7 IDLH value. The duration adjusted LC_{50} value for a 30 minute exposure is 3,393 ppm. An uncertainty factor of 8 30 was applied to account for extrapolation from a concentration that is lethal to animals, animal to human 9 differences and human variability, resulting in an IDLH value of 113 ppm. Available data [Lewis 1996] indicate 10 that chloroacetonitrile is 10 times more toxic than acetonitrile. A modifying factor of 10 is applied to the IDLH 11 value to account for the greater potency of chloroacetonitrile compared to the potency of the surrogate, 12 13 acetonitrile, resulting in an IDLH value of 11 ppm.

14

16

30

3

15 **1.2 Purpose**

This IDLH Value Profile presents (1) a brief summary of technical data associated with acute inhalation 17 exposures to chloroacetonitrile and (2) the rationale behind the immediately dangerous to life or health (IDLH) 18 value for chloroacetonitrile. IDLH values are developed on the basis of scientific rationale and logic outlined in 19 the NIOSH Current Intelligence Bulletin (CIB) 66: Derivation of Immediately Dangerous to Life or Health 20 (IDLH) Values [NIOSH 2013]. As described in CIB 66, NIOSH performs in-depth literature searches to ensure 21 that all relevant data from human and animal studies with acute exposures to the substance are identified. 22 Information included in CIB 66 on the literature search includes pertinent databases, key terms, and guides for 23 evaluating data quality and relevance for the establishment of an IDLH value. The information that is identified in 24 25 the in-depth literature search is evaluated with general considerations that include description of studies (i.e., 26 species, study protocol, exposure concentration and duration), health endpoint evaluated, and critical effect levels (e.g., NOAELs, LOAELs, and LC_{50} values). For chloroacetonitrile, the in-depth literature search was conducted 27 28 through September 2016.

29 **1.3 General Substance Information**

31 **Chemical:** Chloroacetonitrile

- 1 CAS No: 107-14-2
- 2 Synonyms: 2-Chloroacetonitrile; alpha-Chloroacetonitrile; Monochloroacetonitrile; Monochloromethyl cyanide*
- 3 **Chemical category:** Nitriles; Organic chlorine compounds[†]
- 4 **References:** * NLM [2017], † IFA [2017]
- 5 Structural formula:

6	
7 8	
9	
10	Table 1 highlights selected physiochemical properties of chloroacetonitrile relevant to IDLH conditions. Table 2
11	provides alternative exposure guidelines for chloroacetonitrile. Table 3 summarizes the Acute Exposure
12	Guidelines Level (AEGL) values for chloroacetonitrile.
13	

14 Table 1: Physiochemical Properties of Chloroacetonitrile

- Value Property Molecular weight 75.50[‡] C_2H_2CIN Chemical formula Colorless liquid Description Odor Pungent Odor Threshold Not available UEL Not available LEL Not available Vapor pressure 15 mmHg at 30°C (86°F)[‡] Flash point 54°C (129.2°F)[†] Ignition temperature Not available Solubility Soluble in water[†] **References:** [‡] HSDB [2017]; [†] IFA [2017]
- 17 18

16

15

1 Table 2: Alternative Exposure Values for Chloroacetonitrile

2

Organization	Value	
NIOSH (1994) IDLH value*	None	
NIOSH REL†	None	
OSHA PEL^	None	
ACGIH TLV ^{®‡}	None	
AIHA ERPGs ^{TM+}	None	
AIHA WEELs ^{®+}	None	

References: *NIOSH [1994]; *NIOSH [2016]; ^OSHA [2017]; ‡ACGIH [2016]; *AIHA [2014]

Table 3: AEGL Values for Chloroacetonitrile

	_
L	-
ι	1
	-

9

Classification	10-min	30-min	1-hour	4-hour	8-hour	End Point [reference]
AEGL-1	NR	NR	NR	NR	NR	Insufficient Data
AEGL-2	8.0 ppm	8.0 ppm	5.0 ppm	2.1 ppm	1.4 ppm	Based on AEGL-2 values
	25 mg/m ³	25 mg/m ³	15 mg/m^3	6.5 mg/m^3	4.3 mg/m ³	for acetonitrile
						[NAS 2014]
AEGL-3	24 ppm	24 ppm	15 ppm	6.4 ppm	4.2 ppm	Based on AEGL-3 values
	74 mg/m ³	74 mg/m ³	46 mg/m^3	20 mg/m^3	13mg/m^3	for acetonitrile
	1.41					

7 Reference: NAS [2014].

8 2.0 Animal Toxicity Data

Aliphatic nitriles, such as chloroacetonitrile, are readily absorbed from the lung [NAS 2014]. The systemic
toxicity of these compounds is due to the metabolism of the parent compound to cyanide by extrahepatic
cytochrome P450 [NAS 2014]. Clinical signs of toxicity are reported to include: weakness, headache, dizziness,
confusion, nausea, vomiting, convulsions, dilated pupils, weak pulse, tachypnea, dyspnea, and cyanosis [NAS
2014]. Inhalation exposure data for chloroacetonitrile was not located; therefore acetonitrile, which has a similar
mode of action and effects, is used as a surrogate. Mouse intraperitoneal (i.p.) lethality studies reported an LD₅₀

value of 100 mg/kg and 521 mg/kg [Lewis 1996] for chloroacetonitrile and acetonitrile, respectively. These LD₅₀

17 data suggest that, on a molar basis, chloroacetonitrile is approximately 10 times more toxic than acetonitrile

- 18 [Lewis 1996].
- 19

LC 50 data and information on nonlethal effects of acetonitrile are available in multiple species, with pulmonary
effects increasing with progression to lethality as the exposure concentration increased [Monsanto 1986; Pozzani
et al. 1959; Willhite 1981]. A study performed in rats reported a LOAEL of 10,100 ppm and a LC 50 value of
19,950 ppm for a 4-hour exposure, suggesting a potentially steep dose-response curve following inhalation of
acetonitrile [Monsanto 1986]. Pozzani et al. [1959] investigated the effects of inhalation exposures to acetonitrile

This information is distributed solely for the purpose of pre dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

3

³ 4 5

in multiple species, including rats, dogs, and guinea pigs. Male and female rats were exposed to concentrations 1 ranging from 1,000 to 32,000 ppm for either 1 or 2 hours. The 4-hour LC₅₀ value for both sexes was calculated at 2 16,000 ppm [NAS 2014]. The 8-hour LC₅₀ values for male and female rats were 7,551 and 12,435 ppm, 3 respectively [NAS 2014]. In another experiment, dogs were treated for 4 hours at concentrations ranging from 4 2,000-32,000 ppm. No LC₅₀ value was calculated, but Pozzani et al. [1959] reported that all animals treated at 5 16,000 and 32,000 ppm died. Pozzani et al. [1959] exposed guinea pigs to acetonitrile at concentrations ranging 6 7 from 4,000-16,000 ppm for 4 hours. The 4-hour LC_{50} value was calculated at 5,655 ppm [NAS 2014]. 8 Pathological investigations revealed that exposed animals experienced prostration, convulsive seizures, and death 9 with pathological examination revealing pulmonary effects including congestion and hemorrhaging. Willhite [1981] investigated the relative toxicity of the following aliphatic nitrile compounds: acetonitrile, propionitrile, 10 and n-butyronitrile. Mice were exposed to 1 of 5 or 6 (unspecified) concentrations of the test compound for 60 11 minutes. Following cessation of exposure, all animals which died occurred within 3 days. Animals that survived 12 past 3 days were observed for 14 days with gross pathology conducted following termination. Willhite [1981] 13 14 stated that all animals experienced similar signs regardless of the aliphatic nitrile compound to which they had 15 been exposed. These signs included dyspnea, tachypnea, gasping, tremors, and convulsions. For acetonitrile, the 16 concentration ranged from 500-5000 ppm. Willhite [1981] reported a 60-minute LC₅₀ value of 2,693 ppm (95% 17 CI 1,955-4,272) for acetonitrile. 18

Table 4 summarizes the lethal concentration (LC) data identified in animal studies and provides 30-minute equivalent derived values for acetonitrile, which is used as a surrogate for chloroacetonitrile. Information in this table includes species of test animals, toxicological metrics (i.e., LC, BMCL, NOAEL, LOAEL), adjusted 30minute concentration, and the justification for the composite uncertainty factors applied to calculate the derived values.

24

Table 4: Lethal Concentration Data for Acetonitrile

Reference	Species	LC 50 (ppm)	LC _{L0} (ppm)	Time (min)	Adjusted 30-min Concentration [*] (ppm)	Composite Uncertainty Factor	30-min Equivalent Derived Value (ppm) [†]	Final Value (ppm) [€]
Pozzani et al. [1959]	Guinea Pig	5,655		240	11,310	30 [‡]	377	377
Pozzani et al. [1959]	Monkey	2,510		420	6,049	30 [‡]	201.6	202
Pozzani et al. [1959]	Rats	7,551		480	19,027	30‡	634.2	634
Pozzani et al. [1959]	Rabbit	2,828		240	5,656	30 [‡]	188.5	189
Willhite [1981]	Mouse	2,693		60	3,393	30 [‡]	113.1	113

* For exposures other than 30 minutes the ten Berge et al. [1986] relationship is used for duration adjustment ($C^n x t = k$); no empirically estimated n values were available, therefore the

default values were used, n = 3 for exposures greater than 30 minutes and n = 1 for exposures less than 30 minutes. Additional information on the calculation of duration-adjusted concentrations can be found in NIOSH [2013].

[†] The derived value is the result of the adjusted 30-minute LC value divided by the composite uncertainty factor. The composite uncertainty factor used varies for each study on the basis of

the nature and severity of the endpoint observed.

9 Values rounded to the appropriate significant figure.

[‡]Composite uncertainty factor to account for adjustment of LC₅₀ values to LC₀₁ values, use of lethal concentration threshold in animals, interspecies differences and human variability.

1 3.0 Human Data

2

10

No information was located regarding human inhalation exposure to chloroacetonitrile. However for the surrogate, acetonitrile, three study participants were exposed to 40-160 ppm for 4 hours [Pozzani et al. 1959]. One study participant reported slight chest tightness and cooling sensation in the lung following the 40 ppm exposure, other participants did not report symptoms at this concentration. At the 160 ppm exposure, one of the previously unaffected subjects reported slight transitory flushing of face after 2 hours and slight bronchial tightness 5 hours later that resolved overnight.

9 4.0 Summary

No inhalation exposure data were located for chloroacetonitrile. Therefore acetonitrile is used as a surrogate, as 11 the effects and mode of action are similar, however acetonitrile is less potent. A modifying factor of 10 is added 12 to account for potency differences between acetonitrile and chloroacetonitrile. Nonlethal effects of acetonitrile 13 were identified in a study using rats, rabbits, guinea pigs, dogs and monkeys [Pozzani et al. 1959], however it is 14 15 unclear whether using these effects are sufficiently health protective since mice appear to be more sensitive to 16 acetonitrile exposure. However, the mouse LC_{50} of 2,693 ppm for a 60 minute exposure to acetonitrile [Willhite 1981] is used as the basis for the IDLH value. The duration adjusted LC_{50} for a 30 minute exposure is 3,393 ppm. 17 An uncertainty factor of 30 was applied to account for extrapolation from a concentration that is lethal to animals, 18 animal to human differences and human variability. This results in a potential IDLH value of 113 ppm. Available 19 data [Lewis 1996] indicate that chloroacetonitrile is 10 times more toxic than acetonitrile. A modifying factor of 20 10 is applied to the IDLH value to account for the greater potency of chloroacetonitrile compared to the potency 21 of the surrogate, acetonitrile, resulting in an IDLH value of 11 ppm. 22

1 **References**

2	
3 4	ACGIH [2016]. Annual TLVs [®] (Threshold Limit Values) and BEIs [®] (Biological Exposure Indices) booklet. Cincinnati, OH: ACGIH Signature Publications.
5	
6 7	AIHA [2006]. AIHA Emergency Response Planning (ERP) Committee procedures and responsibilities. Fairfax, VA: American Industrial Hygiene Association, https://www.aiha.org/get-
2 8	involved/AIHAGuidelineFoundation/EmergencyResponsePlanningGuidelines/Documents/ERP-SOPs2006 ndf
0	involved/initia Sourcement oundation/ Emergency/responser familingOurcements/ Documents/ ENI -501 52000.pdf.
10	AILA [2014] Emergency response planning guidelines (EPPC) and workplace environmental exposure levels
11	(WEEL) handbook. Egirfox, VA: A morison Industrial Hugiana Association Dross, https://www.giba.org/gat
11	(wEEL) handbook. Fairbax, vA. American industrial Hygiene Association Fless, https://www.ama.org/get-
12	alves rdf
14	alues.pul.
14 1 E	UCDD [2017] Harandaya Substances Data Bark, Dathards, MD: National Library of Madiaina
15	HSDB [2017]. Hazardous Substances Data Bank. Betnesda, MD: National Library of Medicine,
16	http://toxnet.nim.nin.gov/cgi-bin/sis/ntmigen?HSDB.
1/	
18	IFA (Institut fur Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) [2017]. GESTIS: database on
19	hazardous substances, http://www.dguv.de/ifa/Gefahrstoffdatenbanken/GESTIS-Stoffdatenbank/index-2.jsp.
20	
21	Lewis RJ [1996]. Sax's Dangerous Properties of Industrial Materials. 9th ed. New York: Van Nostrand Reinhold.
22	
23	Monsanto [1986]. A study of the acute inhalation toxicity (4-hour LC_{50}) of acetonitrile in rats. EPA O1S0510333.
24	
25	NAS [2001]. Standing operating procedures for developing Acute Exposure Guidelines Levels for hazardous
26	chemicals. National Academy of Sciences, National Research Council (NRC), Committee on Toxicology,
27	Subcommittee on Acute Exposure Guideline Levels. Washington, DC: National Academy Press, IBSN: 0-309-
28	07553-X, http://www.epa.gov/sites/production/files/2015-
29	09/documents/sop_final_standing_operating_procedures_2001.pdf.
30	
31	NAS [2014]. Acute Exposure Guideline Levels (AEGLs) for selected airborne chemicals. Vol. 16.
32	chloroacetonitrile (CAS Reg. No. 107-14-2). National Academy of Sciences, National Research Council,
33	Committee on Toxicology, Subcommittee on Acute Exposure Guideline Levels. Washington, DC: National
34	Academy Press, https://www.epa.gov/sites/production/files/2014-
35	10/documents/aliphatic_nitriles_final_volume_16_2014_3.pdf.
36	
37	NIOSH [1994]. Documentation for immediately dangerous to life or health concentrations (IDLHs). Cincinnati,
38	OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National
39	Institute for Occupational Safety and Health, http://www.cdc.gov/niosh/idlh/intridl4.html.
40	
41	NIOSH [2004]. NIOSH respirator selection logic. Cincinnati, OH: U.S. Department of Health and Human
42	Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health,
43	DHHS (NIOSH) Publication No. 2005-100, http://www.cdc.gov/niosh/docs/2005-100/pdfs/2005-100.pdf.
44	
45	NIOSH [2013]. NIOSH Current Intelligence Bulletin 66: derivation of immediately dangerous to life or health
46	(IDLH) values. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and
47	Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2014-100,
	ر
	/

1 http://www.cdc.gov/niosh/docs/2014-100/pdfs/2014-100.pdf.

NIOSH [2017]. NIOSH pocket guide to chemical hazards. Cincinnati, OH: U.S. Department of Health and

4 Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and

5 Health, DHHS (NIOSH) Publication No. 2005-149, http://www.cdc.gov/niosh/npg/.

NLM [2016]. ChemIDplus lite. Washington, DC: National Library of Medicine,

8 http://chem.sis.nlm.nih.gov/chemidplus/.9

10 OSHA [2017]. Chemical sampling information,

11 https://www.osha.gov/dts/chemicalsampling/toc/toc_chemsamp.html.

Pozzani UC, Carpenter CP, Palm PC, Weil CS, Nair JH [1959]. An investigation of the mammalian toxicity of
 acetonitrile. J. Occup. Med. 1:634–642.

ten Berge WF, Zwart A, Appelman LM [1986]. Concentration-time mortality response relationship of irritant and
 systematically acting vapors and gases. J Haz Mat *13*:301–309.

U.S. EPA [2016]. Integrated Risk Information System (IRIS). Washington, DC: U.S. Environmental Protection
 Agency, http://www.epa.gov/iris/.

22 Willhite CC [1981]. Inhalation toxicity of acute exposure to aliphatic nitriles. Clin. Toxicol. *18*: 991–1003.

23

12

15

18