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FOREWORD 

The analysis of data collected by the National Center for Health Statistics 
presents difficult problems because the classical tests of statistical hypotheses 
are often based on assumptions that are not satisfied when applied to data based 
on complex sample surveys. Consequently the Center sponsored a contract with 
the Statistics Department, Hebrew University in Israel, to develop tests of hypoth
eses suitable for the analysis of data collected in the Center’s sample surveys. 
The contract produced several interesting and useful reports, including this one 
by Dr. Gad Nathan of the Hebrew University and the Israel Central Bureau of 
Statistics. The report was completed by Dr. Nathan while on leave of absence 
at the Department of Biostatistics, University of North Carolina at Chapel Hill. 

Dr. Bernard Greenberg, Dean, School of Public Health, University of North 
Carolina, served as project officer, and Dr. Reuben Gabriel, Chairman, Depart
ment of Statistics, Hebrew University, was the project director for this contract. 
Dr. Gary Koch, Department of Biostatistics, University of North Carolina, and Dr. 
Paul Levy, Office of Statistical Methods, National Center for Health Statistics, 
reviewed drafts of Dr. Nathan’s manuscript and made helpful suggestions. Dr. 
Levy also assumed responsibility for working with the editorial staff in preparing 
this report for publication. 

MONROEG. SIRKEN 

iii 



.Foreword . . . . . .. . . . .. . . . . . .. . . . . .. . . . . .. . . . . . .. . . . .. . . . . . . .. . . . . .. . . . . . .. . . . . .. . . . . . .. . . . . . .. . 

1. Introduction and Summary . .. . . . .. . . . . . .. . . . . . .. . . . . . . .. . . . . .. . . . . . . .. . . . . . .. . . . . . . . .


2. The Model and Notation . . . . .. . . . . .. . . . . .. . . . . . . .. . . . . . .. . . . . . .. . . . . .. . . . .. . . . . .. . . . . .


3. Approximations of the Covatiances . . .. . . . . . .. . . . . . . . . .. . . .. . . . . .. . . . . . . . .. . . . . . .. .


4. Tests of the Hypothesis . . . . . .. . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . . .. . . . . .. . . . . . .. . . . .. . . .


5. Numerical Examples . . . .. . . . . . .. . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . .. . . . . . . .. . . . . . .. . . . .. .


6. The Case )f a2 X2 Table . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . .. . . . . .. . . . . . .. .. . . . .. . . . . ..


References .. . . . . . .. . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . .. . . . . . .. . . . . .. .. . . . . .. . . .. . . . . .. . . . .. . . . . ..


Appendix L Proofs of (3.1) and (3.5) . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Page... 
m 

1 

1 

2 

4 

6 

9 

10 

11 



APPROXIMATE TESTS OF INDEPENDENCE IN


CONTINGENCY TABLES FROM COMPLEX


STRATIFIED CLUSTERSAMPLES


Gad Nathan, Hebrew Umversity and Central Bureau of Statistics, Jerusalem 

1. Introduction and Summary 

For simple random sampling within strata, 
approximate methods for testing overall inde
pendence in a contingency table have been proposed 
by Bhapkarl and by Garza-Hernandez.2 In this case, 
the maximum likelihood ratio can be approximated 
as closely as required, as shown by Nathan.3 This 
is not so when the contingency table is obtained 
from a complex stratified cluster sample. Chapman4 
and McCarthy5 have proposed using statistics 
based on the replicated balanced half-sample 
method of McCarthy,6 published in Vital and Health 
Statzkics, Series 2, No. 14. These statistics are the 
differences between cell estimates obtained from 
one half sample and the product of the relevant 
marginal estimates obtained from the comple
mentary half sample. Chapman’s test procedure, 
based on the signs of these statistics, relies on 
assumptions of (1) zero expectations of the sta
tistics under the null hypothesis-, (2) independence 
between statistics from different sets of half 
samples, and (3) freed covanances between sta
tistics from the same pair of half samples. As will 
be shown, an exact evaluation of the relevant ex
pectations and covariances of Chapman’s statistics 
indicates that these assumptions are not always 
tenable. 

Instead we propose here to use half-sample 
estimates to obtain some modified statistics, which 
have exactly expectation zero under the null 
hypothesis and for which the relevant covariances 
can be evaluated approximately. Test procedures— 
some based on the large sample statistics and others 
on Hotelling’s T2 - are then obtained on the basis 

of sample estimates of the covariance approxima
tions. 

For a numerical example it is shown that the 
effect of the various assumptions and approxima
tions made on the values of the statistics is very 
small. 

2, The Model and Notation 

In each of L strata two primary sampling units 
(PSU’S) are selected with equal probabilities and 
withgut replacement. Second-stage sampling .(within 
PSU’S) can be by any method which ensures the 
following two conditions: 

(a) If Pijh is the probability of being classi
fied in cell (i, j) of the contingency table 
(~=1, . . . . c j=l, . . . . c), conditional on 
being in stratum ~ (h= 1, . . ., L), then an 
unbiased estimate, Pijh(l, of f’ijh is available from 
each of t~e selecte~ PSU’S (a= 1, 2). 

(b) l’ijh I and f’ijh’2 are independent within 
stratum h. 

Weights ~h (~== 1,..., L)– the probability 
of inclusion in stratum h —are assumed as known; 

L 

and it fo~ows that Pij = ~ Whpijh is the overall 
h=l 

unconditional probability of being in cell (i, j). 

Let Pi. = ~ Pij and P.j = ~. Pij be the mar-
j= 1 i=] 

ginal unconditional probabilities. Then the null 
hypothesis to be tested is that of overall inde
pendence, i.e., 

HO:Pij=Pi.P.j(i=l, . . .,~ j=l, . . .,c). 
(2.1) 
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In order to obtain statistics for which variances 
and covariances can be estimated to test this hy
pothesis, a set of K-balanced half samples is defined 
by McCarthy’s technique.6 Each of these half sam
ples consists of a selection of one of the PSU’S orig
inally selected in each stratum. Therefore each half 
sample and its complement are simple stratified 
samples with one PSU per stratum. In addition, the 
estimates based on any half sample and its comple
ment are independent. The half-sample selection 
defines indicator functions as follows: 

1 if PSU 1 is selected in the hth stratum for 

# = the kth half sample 

{ O otherwise 

(h=l, . . ., L;k=l, . . ., K). (2.2) 

The two unbiased estimates of the probability Pv 
based on the kth half sample and its complement are 
then defined, respectively, by 

p(() = ~ 
h=l 

and 

}$) =	 j ~h[ (1 – Ct~@~M + C#@fjh2] 

h=l 

(i=l, . . . . r~j=l, . . .,c; k=l, . . ., L). 
(2.3) 

Let ~), fi.~) and ~i~), @f~ be the corresponding un

biased estimates of the marginal probabilities from 
thekth~alf s}mple and~its complement, respecti~ely. 

Then P!k\ ~~), and M*$) are independent of Pi). 
fi~), ant ~~). 

Thus tie random variables 

(i=l, . . . . r–l; j=l, . . . . c–1; /i=l, . .	 .,K) 
(2.4) 

have expectation zero under the null hypothesis 
(2.1). 

Alternative statistics based on differences 
between cross products (rather than on differences 
between cell probability estimates and products 
of marginal probabilities) can be used, as proposed, 
e.g., by Bhapkar and Koch.7 If we set 

(i=l, . ... r–l; j=l, . . .,c–l; k=l, . .. K), 

(2,5) 

. 
then the random variables U~~ also have expecta

tion zero under the null hypothesis. 
The muhivariate random vectors 

X(w= (x:!), . . .. w] ,-1 ). (2.6) 

and 
W)= (q),. ... u;*21c_, I ). (2.7) 

are each distributed asymptotically normal, with 
mean vector O under HO for each k= 1, . . ., K. 
Neither the vectors X(A) nor the vectors U(k) are, 
however, independent, so their covariances must 
be evaluated in order to use them in test statistics. 

3.	 Approximations of the Covariances 

In the appendix it is shown that 

L 

COV(X}), X~~))= 2 ~ W: [She
{ h=l 

— Pi.s(j)(fg)h — ~.js(i.)(fg)h 

– Pf.s(i,j)(.g)h – P.gs(ij)(f.)h 

+ Pi.pfis(j)(.g)h + Pi.p.gs(.j)(f.)h 

+ P.JPf.S(j.)(.g)/,+ P.jp.gs(i.)(f.)h] 

where the parameters 

s(~)(fg)h = COV (~ijha, ~fgha) 

,. 

She = COV (pi./,., ~ fgh. ) = ~ %j)(fu)h 
j=l 
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a(l)-(l))

and similarly, 

S(j) (fv)k.S(lj)(f.)k, S(ij )(.glk 

r r 

She = COV (ii.k,,$~J/Ia)= ~ ~ Ski 
j=l g=l 

and similarly, 

S(i.j(.g)h, S(j) (fi)k3S(j) (.g)k (3.2) 

are the covariances between the estimates of cell 
probabilities and marginal probabilities from the 
same PSU within the h’” stratum and the set Mk,l 
is defined by 

Mk,l={h:a(;)= cr(;)} c {1,. . ~,L}, (3.3) 

i.e., the set of strata in which the same PSU’S are 
selected for the W’ and the 1(”half sample. Similarly, 
it is easy to see that 

Cc)v( W;), Uy; ) = Cov (P$Wy:, P;;P(;:) 

-A k‘p\ck) J ~(O@) rg )— COV (p\j fc 

- k)-— COV (P\c‘~jk) 9‘fgprc 

+ Cov (F@$), F$@j) (3A) 

where, as is shown in the appendix, 

+ Pf.#Pr# ~ ‘~s(iu)uv)h+piupro, ~ 
h6Mk ,1 hcMk, [ 

W; S(W~)@V)~+ Prutpfv ~ ~~s(iu)(ru’)h 

hfMk,l 

for (u, u’) = (j, c), (c,j); (u, v’) = (g, c), (c, g). 

(3.5) 

In order to obtain simpler approximate expres
sions for the covariances, the following assumptions 
are made: 

(a) For each stratum, h, a value, nh, which 
depends only on the number of final units Der 
PS-U in stratum h, can be determined so-that ;he 
first two moments of the variables (nhpijha) are 
approximately those of the multinominal distribu
tion with parameters (nh, {Pijh} ). This holds, for 
instance, when the same number of final units 
are selected in both PSU’S of the same stratum 
(if sampling within PSU’S is simple random) or 
when the same effective sample sizes are attained 
within both PSU’S of the same stratum (if 
sampling within PSU’S is clustered and intraclass 
correlations within strata are independent of 
(i,j)). 

Under this assumption we obtain 

s(ij)ffg~ = ~ [8{8~pijh–pijhpfgh] (3.6) 

where ~ is a Kronecker delta (equals 1 if i =~ 
and O otherwise). The values of She, She> 

She! s(.j)(~) h, She> She She, ad 

S(.j)(-fg)hare obtained by summing (3.6) over the 
relevant indexes. 

(b) 

nh=~h/fO(h= l,. . .3L) (3.7) 

where ~0 is some constant. This implies that the 
number of final sample units per PSU in a stratum 
(for the case of simple random sampling within 
PSU’S) or the effective sample size (for the case of 
clustered sampling) is proportional to the weight 
of the stratum. 

(c) 

~ Whpijhpfgh = Wk, IPijl’fg (3.8) 
heMk, ~ 

This holds exactly if the cell probabilities are inde
pendent of the stratum. In particular, (3.6) implies 

~ Whpijhpfgh ‘p@fg (3.9) 
.h=l 
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Substituting the approximations (3.6), (3.7), and 
(3.8) and the hypothesis (2.1) in (3.1), we obtain 
under HO: 

Cov (x$), Xg) = 2f0{8pj’Pu — ypijl’.g 

– 8JPijPf . + PijPfg 

+.fo[wj,~+ (1 –?W,[)2] 
(&(Pi. -Pi. Pf. ) 

(~P.j – P.jP. g) } 

= 2fo{1+fo[ZU;, ~+ (l– ZUk,t)’]} 

(~Pi. – Pi .Pf. ) 

(~P.j – P.j P.g) . (3.10) 

Thus, for the X statistic, the ratio of the covariance 
between cell estimates from different half samples 
to that of estimates from the same half sample is 
independent of the specific cells. This ratio is 
defined by 

Px(k, O 

Cov(x$), Xyj ) 1 +fo [&k,~ + (1 – ~k,l)2]
= . 

= Cov(x$),xyy) 1 +fo 

(3.11) 
The selection of balanced half samples ensures 

that the number of strata with PSU’S common to 
two different half samples is approximately const ant 
over all possible pairs of different half samples. 
Thus the number of terms in the set Mk, 1 for 
k # 1 is approximately independent of k and 1. 
The further assumption will be made that the sum 
of the weights of the strata with PSU’S common to 
two half samples is approximately constant, i.e., 

‘=&k~, wkJ;k*l 
~ Jvh=wk,l= (3.12) 

heMk, , l;k=l
\ 

It follows from (3.11) and (3.12) that the covanances 
for different half samples relate to those for the 
same half sample in a fixed ratio of approximately 

Cov (Xj-p, Xjj) 

Cov (x$), x$;)) 

~d= l+ AIUP+ (1 –W)2] 
1 +fo 

(k#l). 

(3.13) 

Substituting the approximations (3.6), (3.7), and 
(3.8) and the hypothesis (2.1) in (3.4) and (3.5), we 
obtain for the covariances-between the U statistics 

(2f;w2N@’pi~r.+ &2U(l ‘@)Prc 

(3.14) 

Thus the ratio of the covariance for different 
subsamples to that for the same subsamples is 
fixed for (i, j) # (f, g) 

Cov (Uy, Ujf;)_ W(l —few) 
pu = 

Cov (up,u};)) (1 –A) 

for k # 1; (i, j) # (~ g); (3.15) 

If f. is small, (3.15) will also hold approximately for 
(i, j)= (f, g). 

4. Testsof the Hypothesis 

Chapman’ has derived a test of the null 
hypothesis (2.1) based on the statistics 

The test relies on the following— assumptions 
under Ho: 

(a) E(z$) ) = o; (4.2) 

(b) Cov(Z(y,Zy;)= Cov(z:$)!z}}; (4.3) 

for alli#f, j+g, i’ #g’, j’ #g’; k=l, ,.. >K 

and 

(c) Cov(z(;),Zy = o (4.4) 

for all k # 1 and all i, j, f, g. 

While (c) holds approximately for large L, it 
can easily be shown,” on the basis of computations 
similar to those in the appendix, that (a) and (b) do 
not hold in general, even approximately. 

The statistics X(~}defined by (2.6) do, however, 
have expectation zero, and approximate tests of 

4 



the hypothesis can be derived on the basis of the Two different test procedures can be suggested 
covariance approximations of the previous section. based on the above results. 
Set (a) From (4.11), under HO 

Y;=(Ykl, . . ., Ykp) y_N o 9 l+(K–l)P . (4.13) 
= (x(:),, -,, X!,,,,
...,x(f)..., ...? ([ K 1$) 

Let ~ be the estimate of ~ obtained by substitut-
4.%,.-1)? (~=1, . . ., K) (4.5) 

ing the sample estimates ofpijh in (3.1) or the sam

where p= (r —1) (c —1). Then asymptotically, 
ple estimates of Pij in (3.10) fork= 1. Set 

Yk-N(/.!, $)(k=l, . . .,JO (4.6) ~=l+(K–l)P-. 
K $ (4.14) 

with 
Then 

/L’=(#l, . . .,PP) (4.7) 
G= i’C-Ii (4.15) 

and 
is the approximate large sample test statistic, dis

# 
‘((UllU)) =((cov(Yku, Yk.)))(u, ~=l, . . ., P), tributed asymptotically X2 with p degrees of free

dom 9 under Ho. 
(4.8) (b) Define 

is defined by the appropriate value of cov (X~), 
~=l+(f=l)PA.

X~~J) independently of k according to (3.1) since l–p 
(4.16) 

Mk,k={l, . . . . L}. Then 
Next, according to the approximation (3.13), 

we have B-W(P, K–1, [1+ (K– l) P]~). (4.17) 

Thus 
P 

$ 
= ( (pull”)) T’= K(K – 1) Y’B-lY (4.18) 

= ((COV (Yk., Yl”)))(u, zJ=l, . . .,p) (4.9) 
is distributed under Ho as Hotelling’sp-dimensional 

for any k + 1 where p= px is defined by (3.13). Tz with K–1 degrees of freedom so that Ho can


Mornson 6 has shown that, under the conditions be tested by comparing


(4.6)-(4.9), if we define

K–P 7Y2= K(K – P) ~B-lY (4.19) 

F=(K–l)P P 
it=; ~ Yk, (4.10) 

k=l with the critical value of the F distribution with p 
then and K —p degrees of freedom. 

1+ (K–l)p The same tests can be performed with the U
(a) ~-N ~, ~ 1$) 

; (4.11) 
statistics (2.7). If we set([ 

(b) A= ~ (Yk–i)(yk–i)’ 
YL= (Ykl, . . . , Ykp)= 

k=l (q;;, . . . , qy_,9 . . . 9 q!{,,, . . . , U:!\,c_, )9 
- R+, K–1,(1-p) ~); (4.12) (k=l, . . . ,K), (4.20) 

i.e., replace pX by pu (defined by (3.15)), and replace z 
A is distributed p-Wishart with K– 1 degrees of by the substitution of the sample estimates of I’ti 
freedom and variance matrix (1 –p)z; and in (3.4) and (3.5), the tests defined by (4.15) and 
(c) Y and A are independent. (4.19) are valid under the same assumptions. 
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. 

An alternative test using the cross product 
ratio could be based on the statistics 

Vij=ln ~
.Pij.F~~[1Pi.Prj 

(i=l, . . . ,r–l; j=l, . . . ,c–1). (4.21) 

The covariance matrix of these statistics can be 
approximated by the appropriate Taylor expansion 
as 

Cov(vij,vfg) = ~ ~ (—1)@ ’@’v’) 
u=l,r u’=f,r

v=j,c v’=g~ . .


COV(PW,PU’V’ (4.22)) 
PUVP,,’.’ 

where CY(U,V,U’,V’)=ti~+ S;+ ti~,+ 8;,. 

The covariances, COV(PU,.,~UW), can then be esti
mated by the balanced half-sample method: 

.“~ 
Cov (PUV,PU$V,—) –* ~ (h:!– R$!) (fi;~,? –h;\/) .

k=] 

(4.23) 

Finally, set V’= (VII, . . . . Vr-l,c-1) and let C 
= ( (c&(Vij, Vffl)) ) be defined by (4.22) with the 
covariances estimated by (4.23) and	 with P~v,PW . A 
replaced by their sample estimates PUUand PU,t;I, 
respectively. Then the large sample W ald statistic 
VC-W’ can be used to test the null hypothesis 
with asymptotic distribution under the null hy
pothesis of x’(p). 

5. Numerical Examples 

The data used for the examples are from the 
noncertainty urban strata of the Israel Labour 
Force Survey for the period October-December 
1%8. The primary sampling units are towns and the 
stratification criteria are size, region, and type of 
population. Two PSU’S are selected within each 
stratum with probabilityy proportional to size (num
ber of inhabitants), but, as size varies little within 
strata, the selection can be regarded for all practical 
purposes as equal probability sampling. Within 
PSU’S, households (25–80 per PSU) are sampled 
random-systematically, so final selection probabil
ities are equal. For the first example, the character
istics cross-classified were labor force participation 

(2 classes) and age (5 classes). Simple sample esti
mates of the values of Pijhwere obtained from the two 
PSU’S in each stratum and were used together with 
the average sample size, 7Zh, in each stratum, to 
obtain estimates of COO(X$$J,X}$) as defined by (3.1). 

Five different approximations of (3.1) were 
compared as follows: 

(a) c&O(X\jJ,X~/) – 

obtained from (3.1) bv substitution of the.,. 
approximations (3.6) for the covariances 
defined by (3.2)– assumption (a) of section 3. 

(b) 

obtained from the previous approximation by 
substitution of the approximation (3.7) – 
assumption (b) of section 3. 

(c) Ciih(x$;),x};)— 
obtained from the previous approximation by 
substitution of the approximation (3.8)– 
assumption (c) of section 3. 

(d) c&’3 (x$),x};))— 
obtained from the previous approximation by 
substitution of the approximation (3.12). 

(e) c&4 (Xy,x$:))— 
obtain~d fr~-m the previous approximation by 
substitution of the null hypothesis (2.1), i.e., 
substitution of (3.10) with the approximation 
(3.12). 

Table A gives the values of these approxima
tions for k= 1 (independent of the value of k) and 
their average, maximal, and minimal values over 
all pairs k # 1. It should be noted that by defini
tion c& (X~), Xj# ) ==c&s (Xj}), Xj#) for k= 1 and 

that c~v3(X\}), X$;)) and c&4 (X~), Xjj)) are in-

dependent of the values of k and 1 for all k + 1 and 
for all k= 1. 

While the differences between the last four 
approximations are slight, it can be seen from 
table A that the first approximation differs from 
them considerably in some cases. This is due to 
the fact that in this example there are some serious 
departures from (3.7) (assumption (b) of section 3), 
as can be seen from table B. 

The difference between nIi and W/# is due in 
this case to large PSU size variations within strata. 
It should, however, be pointed out that even the 
large departures from (3.7) do not affect the co
variance approximation very seriously. The other 
assumptions made for the remaining approxima
tions have virtually no effect. 
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TASLE A. Approzbaatiom of cov (X$), X$)) (X W) 

Appra 
imntio 

f= 1 [a) 
(b) 

K=l (c) 

(d) 
(e) 

f= 1 (a) 
(b) 

R-2 (c) 

(d) 
(.) 

f= 1 (a) 
(b) 

R-3 (c) 

(d) 
(e) 

f= 1 (a) 
(b) 

8=4 (c) 

(d) 
(e) 

i=l j= 1 I 
k#l 

k= 1ZIEzE 
14.005 14.010 14.004 14.021 i=l j=z 

13.039 13.041 13.039 13.053 
13.233 13.291 13.233 13,302 k#l 

k=! 
13.230 13.302 Mean Ma.xi- Mini. 
13.123 13.137 mum mum 

-2,412 -2.412 -2.413 -2.415 14.943 14.949 14.942 14.960 
-2.379 -2.379 -2.379 -2.381 13.s3s 13.337 13.333 13.9C0 
-2.341 -2.341 -2.342 –2.3.?4 14.017 14.020 14.017 14.032 

-2.341 -2.344 14.017 14.032 
-2.309 –2.312 14.005 14.IW 

-4.336 -4.356 -4.333 -4.363 –3.331 -3.331 -3.s33 -3.s36 
-3.063 -3063 -3.064 -3.067 -3.295 -3.295 -3.294 -3.298 
-3.006 -3.G06 -3.0C6 -3.W9 -3.349 -3.349 –3.349 –3.352 

-3.006 -3.009 
-3.12s –3.126 

-3.660 -3,660 -3.662 -3.663 
-4.147 -4.147 -4,148 -4.152 
-4.392 -4.392 -4.393 -4.397 

-4.392 -4.397 -4.993 -4.998 
-4,671 -4.676 -5.o&5 -5.C92 

i=l j=s 

k#l 

17.475 
17.s49 

EIEIE 
k=! 

I 

20.703 20.712 20.701 
17.245 17.249 17.244 
17.476 17.479 17.475 EEkE

-7.933 –7.982 -7.937 – 7.992 24.453 24.4.59 24.4% 24.433 
-6.337 -6.336 -6.5s3 –6.593 21.941 21.945 21.940 21.966 
-6.S44 -6.W -6.345 -6.851 22.475 22.4S0 22.475 22.301 

-6.S44 -6.051 22.475 22.301 
-6.878 -6.336 23.286 23.312 

TMMB. Values ofnhand Wh/f 

The values of the Chapman statistics qobtained 
for this example are 

Z’1= 45.0. based on (4.1), 

and 

Tz = 51.0, based on the dual of (4.1) with }U, ;i., 

and ~. j replaced by ~ij, pi., and ~. j, respectively. 
Four different values of the G statistic de-

fined by (4.15) for the X statistic were calculated: 

Go= 49.2 

G,=56.2 

G2=G3=55.7 

G4 = 53.3 

where Ga (a= O, 1, 2, 3, 4) is based-on the approxi
mation Cova (X$), X}$). 

It can be seen that the differences between the 
G statistics, due to the various simplifying assump
tions, are small. 

The GO value (4.15) for the U statistic (2.7) 
was 39.0 in this example. While this is considerably 
lower than the value obtained for the X statistic, it 
together with the remaining values obtained, 
still far exceeds the critical chi-square value at any 
practical level of significance. 

A further comparison of values of GOfor the X 
and U statistics was made on three 3 x 2 contingency 
tables from the same survey which indicated much 
smaller departures from the null hypothesis. 
The values obtained were as follows: 

Data set: I II III 
CO for X statistic: .953 3.93 12.93 
GO for U statistic: .928 3.90 12.16 

These values are close enough for all practical 

purposes. The other statistics, however, performed 
poorly for these examples, showing large di
vergences. 

7 



Simtdations of 350 sets of sample frequencies 
for the same 10 strata 3 x 2 table were obtained from 
three sets of cell probabilities, one of which satis
fied the null hypothesis while the other two repre
sented increasing departures from the null 
hypothesis (see details in Nathan’s paper).l’) From 
each set of sample frequencies, the Chapman 
statistics ( T1, Tz), three approximations of Wilks’ 
statistics (Cl, Gz, Gs), and Hotelling’s F were conr
puted for the X statistic. The relative frequencies 
of the number of times each of the statistics ex
ceeded the critical chi-square values for nominal 
levels of significance of .01, .05, and .10 are given 
in table C. These relative frequencies estimate the 
powers of the statistic and again indicate small 
differences between the two variants of Chapman’s 
statistic and between the various approximations of 
Wilks’ statistics. In general, higher estimated 
powers are achieved for statistics with higher esti
mated levels of significance, but Hotelling’s sta
tistic indicates smaller power than Wilks even 
though it has a higher actual level of significance. 

TABLE C. Relative frequencies of times nominal 
significance level exceeded using nonproportional 
sampling (350 simulations) 

[ .10 .591 .594 .837 .834 .831 .754T
Hypcxh- ::” Chapman 

-,...
w mm [otelling 

esis 
level T, T, G, G, F 

.01 .011 .017 .029 .026 .026 .083 
Ho. . . . . .. . . .05 .046 .037 .103 .097 .091 .180 

[ .10 .071 .169 .166 .166 .160 .286 

.01 .060 .063 .151 .149 .149 .191 
H, . . . . . . . . . .05 .160 .146 .326 .309 .306 .337 

{ .10 .226 .209 .437 .420 .417 .437 

.01 .337 .311 .577 .563 .563 .420 
H, . . . . . . . . . .05 .497 .506 .760 .754 .754 .654 

In order to eliminate the effect of the different 
actual levels of significance, unbiased estimates of 
the Expected Significance Level (ML) proposed 
by Dempster and Schatzoff 11 were computed for 
each alternative. The estimated ESL is the Mann-
Whitney statistic, which is based on comparisons 
of the values of statistics obtained under the null 
hypothesis with those obtained under the alterna
tive hypotheses and measures the relative effi
ciencies of the statistics independently of the actual 
significance levels attained. 

The estimated ESL values based on 250 simula 
tions for each alternative are given in table D. As 
before, the results indicate that the differences 
between variations of the statistics within groups 
are small as compared with the differences between 
groups and ar& in fact, not significant, while 
differences between groups are significant (at the 
l-percent level). The results thus indicate that for 
the given parameters of the two alternatives, 
Wilks’ statistic, with any of the three approxima
tions, is more efficient than Chapman’s (either 
variation), while Hotelling’s statistic is less efficient 
than Chapman’s. 

TABLE D. Estimates and rank of Expected Signij
cance Level (ESL) using nonproportional 
sampling (250 simulations) 

H, H, 
Statistic 

ESL Rank ESL Rank 

Chapman–T, . .. . . . . .6301 4 .8734 4 
Chapman– T,....... .6249 5 .8735 5 

WiIks–G, . . . . . . . . . . . .6554 1 .9080 1 
Wilks–Cz . . . . . . . . . . . .6547 3 .9078 3 
Wilks_-Gs . .. . . . . . . .. .6549 2 .9075 2 

Hotelling–F . . . . . . . . .5999 6 .8005 6 

A further 250 simulations were carried out for 
each hypothesis, with sample sizes proportional to 
strata weights (i.e., TIh = nw)l). In this case, taking 
into account the previous results, only one statistic 
from each group was computed– Chapman’s T1, 
Wilks’ G*, and Hotelling’s F. In addition, the log-
likelihood ratio statistic based on the overall mar
ginal table was computed as follows: 

H=–2 n(ln n) –~nt.(ln ni.) –~n.j(h n.j)
[ i j 

+	 ~ (ln ntj) 
i,j J 

and compared with the critical values of Xz(p). 
Both from the relative frequencies of times the 

critical values were exceeded, given in table E, and 
from the estimated ESL’S given in table F, it is seen 
that the naive test has greater power than the test 
based on Wilks’ statistic although the difference in 
ESL is not significant. Thus this computationally 
simple test can be used in the case of proportional 
sampling without any loss of efficiency. 
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TABLE E. Relative frequencies of times nominal 
significance level exceeded using woDortional 
sampling (250 simulations) - - -

Hy. Signifi- Log
poth. cance Chapman Wilks Hotettin/ ikelihood— 
esis level T, G, F H 

.01 .004 .016 .064 .016

Ho..,.,.. .05 ,016 .052 .156 .048


[ .10 .040 .092 .196 .092


.01 .052 .116 .160 .100 
Ht .. . .. . . .05 .140 .272 .336 .256 

{ .10 .204 ,360 .456 .356 

.604 .448 .592 

.792 .684 .776 

+.864 .780 .864 
* 

TABLE F. Estimates and rank of Expected Signi& 
cance Level (ESL) using proportional sampling 
(250 simulations) 

HI H,
Statistic 

ESL Rank ESL Rank 

Chapman– Tt. .. . . . . .7041 3 .9232 3 
WiIks-G, . . . . . . . . . . . .7336 2 .9463 2 
Hotelling-F .. . . . . . .. .6848 4 .8703 4 
Lo~likelihood – H. .7351 1 .9466 1 

It should be noted that the ranking of the ESL’S 
of the statistics used in the nonproportional sampling 
case remains the same in the proportional case, thus 
strengthening the previous results. 

6. The Case of a 2x2 Table 

For the special case of a 2x2 table (r= c= 2), 
some simplifications of the tests are possible. Thus 
the statistics (2.4) and (2.5) become 

and 

(6.2) 

so that 

x(k) = u(k)+ UW (6.3) 

where 

U’(M= Pg@# – qyy. (6.4) 

U@J and U’(k) can be shown to be independent and, 
from (3.10) and (3.14) under the null hypothesis, 

Var (X(@)= 2fo(l+fO)P~lPzz = 2 Var (U(k)). (6.5) 

The variates (4.5) are univariate, so that if 

x=;	 ~ x(~);u=; ~ Iw, (6.6) 
k=l k=l 

the test statistics to be used instead of (4.15) are 

G==J K x 
1 + (K– l)px tizfo(l +fo) ill~zz 

(6.7)
and 

both distributed asymptotically standard normal 
under Ho. Similarly, (4.18) and (4.19) can be replaced 
by 

(6.9) 
and 

l–pu
Tu= 

J ,+(K-,,PUJ* 
(6.10) 

,
and compared with the critical Student’s t values 
(with k– 1 degrees of freedom). 
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APPENDIX I


PROOFS OF (3.1) AND (3.5)


Denote for fixed values of k, 1 

M(l)=Mk, / 
and 

M(2) ={h:h$Mk,l}, (Al) 

~#)(U) = ~ Wh[(1 – ~~k))~ijh,+~~k)~jh,] 

half(u) 

(u=l,2; i=l,..., r;j=l, c;k=l, k, K)..., K). 

(A.2) 

Also, 

E[&(@]=E[@ (u)] =Pij(u), (A-4) 

where 

P/j(~) ‘ ~ yh [~ff)~jhl+ (1 – ~~k)) ~ijhz] . 

hdi(u) 

(A.5) 

Thus 

= 2 Fy (U)F$!(v),Cov [x
U,r=l 

Cov [A}) (UI )F!y (u’) , F;; (u3)Fj$ (Z44) w) 

where the summation is over all the 16 possible 
combinations. 

It can easily be seen that @ (u) is inde

. . #t, 
u # v (and similarly for all other pairs of estimates 
from mutually exclusive subsets of strata). Also, 
the following are pairs of independent variables: 

as each of the two estimates in any pair is derived 
from different PSU’S in each stratum. 

Each of the covanance terms in the summation 
(A.6) is of the form cov (zy, z?y’), where the pair 
of random variables (x, z’) is independent of the 
pair of random variables (y, y’). Under these 
conditions it is easily verified that 

Cov (Xy, X’y’ ) = Cov (z, i) Cov (y, y’) 

+E (x)~ (x’) COV(y, y’)+E (y)E (y’) COV(X, X’). 
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In particular, if, in addition, y and y’ are inde
pendent, then 

cov (xy, iy’) =E (y) E (y’) COV (%, x’). (A.7) 

The evaluation of the components of (A.6) is then 
obtained by noting that 

P.fgh’)– Pijh) (~J~\f– ] . (A.8) 

But 

E[ (~$~ –Pij~) (F}$I ‘Pfgh’) 1 

She; h= h’ and d~) = ~(~) 
= 

[ O; otherwise, (A.9) 

where S(ij)(fg) is defined by (3.2). Thus 

Cov [P@(l), q$(l)]=cov (qy(l)? q#W) 

= ~ W’~s(ij)(fg)h. (A.1O) 
hcM(l) 

Similarly,


COV[F#)(2) , ~}~)(~) ] = Cov (FJz)(2) >‘}})(2))


= ~ ~#(ij)(fg)~. (All) 
hcM(2) 

Using the above, the covariance terms of the sum 
mation (A.6) are evaluated as follows: 

Cov (i~~)(u)}[$)(u) , @ (ZM$)l (~) ) 

. (z v~%)U9)h )(2 Wf&j~J)(ftgl)h 
)

hcM(u) hcM(u) 

for u= 1, with the expression for u= 2 obtained by 
interchanging (~g) and (~’g’ ). The other terms o~ 
(A.6) are obtained as follows: 

(u),F’:(v)Pj~,
cov (P\~)(u)P\~, (v))=0 for u#v. 

(A.13) 

Cov (P(&(l)P:y(vl), Py(l)qy?h)) 

= Pitjt (Vl)Pftgl (W) ~ w~Sij)(ff/)h 

/16,11( I ) 

for (v1,vz) # (1,1). (A.14) 

for (vl,w) 

# (1,1). 

(A.15) 

for (ti1,v2) 

# (2,2). 

(A.16) 

= pij(?)~)pf~gf (?)2) ~ ~;s(i’j’)(fg)h for (vI,v2) 

hc,M(2) 

# (2,2). 

(A.17) 
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Substituting (A.12)-(A.17) in (A.6), we obtain Using (A.1O) and (All), we obtain 

Cov (Pw$! , Pjq!:,) 
A = 2€~ Wj$(ij)(fg)h. (A.20) 

h=] 

A typical term of B is 

and by summing over (A.18) we obtain 

Cov (Fy$Fyp:) = P.g ~ Wjs(ij)v.)h. (A.22) 
h=l 

Evaluating the remaining terms of B similarly, we 
obtain 

B = 2 ~ W: [Pi.s(.j) (fg)h + P.js(i.) (f~)/, 
h=] 

+Pf. S(ij)( .!,))]+p. !)s(ij)(f.)111 (A.23). 

A typical term of C is again obtained by summing 
over (A. 18) as follows: 

= ~ w~s(i.)(f.)h )(x Wz#(j) (.g)h 

(+
( 

hdfk, , hdfk, , ) 

h@fk, 

~ 
, 

W&.) (.g)h )(2 
hf$fk, , 

W~S(f.)(.j)h 
) 

+	 Pi.f’f. ~ w~s(.j) (.9)h 

k .il~,/ 

+	 P.jp.g ~ w~.$(i.)Cf.)h 
hdfk, , 

+	 Pi.p.g ~ W~S(F)(j)h 
k>wk, / 

+ Pf.p.j ~ w~s(i.) (.y)h . (A.24) 
hp$fk, , 



Similarly, 

Cov (Fpi$),pjf?j%?) =Cov (p(f.)~(~),;$?i!:)) 

W~s(i.)(.U)h= ~ w;s~.,(.,),,)(x 
.hdfk, , 

hdk, , )
( 

W~S(i.) (fi)fi 
+	 ~ ~~s(j)(.g) )(x 

hfuk, I ) 
( II&k, , 

+Pf.P.j > ~2#(i.)(.g)h 

~Mk, I 

+Pi.p.g ~ ~~s(f.)(.j)h 
h6Mk, , 

+P.jp.g ~ ~~s(i.)(-f.)h 
hfMk, , 

+Pi.Pf. ~ V~S(.j)(.g). 
(A.25) 

h F“k, [ 

Thus 

~~s(.j)(.g)h
C=2 [(x 

w~s(i.)(f.)h )( z ) 

‘6Mk,l
‘6Mk,l 

+ (2 
~~s~.)(.j)h )(x 

~~s(i.)(.g)h 
) 

“’’’k,/ ‘cMk,l 

.* 

+ (x J7~SV.) (.j)h)(x w’~s(i.)(.g)h 
) 

hf,tfk,l h@fk,/ 

+Pi.PF ~ w’~s(.j)(.g)h 
h=l 

L


+P.jp.g ~ w~s(i.)~)h

h=l 

L


+Pi.p.g ~ w~s(f.)(.j)h

h=l 

L 

+Pf.p.j ~ w~s(i.)(.g)h 1
h=l 

(A.26) 

Substituting (A.20), (A.23), and (A.26) in (A.19), we 
obtain (3.1). 

000 
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