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PREFACE
‘The theory of design of surveys has advanced greatly in the past

three decades. one result is that many surveys now rest upon complex
designs involving such factors as stratification and poststratification,
multistage cluster sampling, controlled selection, and ratio, regression,
or composite estimation. Another result is a growing concern and
search for valid and efficient techniques for analysis of the output from
such complex surveys.

A central difficulty is that most of the standard classical techniques
for statistical analysis assume that observations are independent of one
another and are the result of simple random sampling, often from a
universe of normal or other known distribution-a situation that does not
prevail in modern complex design. This report reviews several aspects
of the problem and the limited literature on the topic. It offers a new
method of balanced half-sample pseudoreplication as a solution to
one phase of the problem.

The entire matter of how best to analyze data from complex sur-
veys is nearly as broad as statistical theory itself. It encompasses not
only the technical features of analysis, but also relationships among
purpose and design of the survey, and the character of inferences
which may be drawn about populations other than the finite universe
which was sampled. This report treats only a very small sector of
the subject, but, it is believed, introduces a scheme which may be
widely useful. There is good reason to hope that the method, or
possibly variations of it, may have utility beyond the somewhat narrow
area with which it deals specifically.

The exploration and developments reported here are the outgrowth
of discussions among a number of people, as is nearly always true
when the subject is a pervasive one. But they are particularly the
product of a study by Philip J. McCarthy of Cornell University under
a contractual arrangement with the National Center for Health Sta-
tistics. Contributions of the Center were coordinated by Walt R.
Simmons. Professor McCarthy wrote the report. Garrie J. Losee of
the Center was responsible for initial work on half-sample replication,
as employed in NCHS surveys, and prepared the appendix to this re-
port.
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A key featwe of statistical techniques necessary to the analysis of data
from complex surveys is the method of calculating variance of the sam-
ple estimates. EaYliev direct computational procedures aye either in-
appropm”ate OY much too difficult, even with high speed electronic com-
pute~s, to cope with the elabovate stratijlcation, multistage clustey sawz-
pling, and intricate estimation schemes found in many curyent sample
suvveys. A diffe~ent appvoach is needed.

A numbev of statisticians have attempted solution thyough a variety of
schemes which employ some foym of replication or random grouping of
observations. These efforts are recalled in this repovt, as a part of the
background Yeview of principal issues present in choice of analytic
methods suitable to the complex su?wey.

Among- the estimating schemes in recent use is a half-sample pseudo-
replication technique adapted by the National Center fov Health Statis-
tics from an approach developed by the U.S. Bureau of the Census, This,
method is descyibed in detail in the repoyt, Typically, it involves sub-
sampling a payent sample in such a way that 20-40 pseudoveplicated es-
timat~s of any specified statistic are produced, with the precision of the
corresponding statistic from the parent sample being estimated from the
variability among the Replicated estimates.

One difficulty in using this method is that the 20-40 estimates aye cho-
sen from among the thousands OY millions of possible replicates of the
same chavactey, and hence may yield an unstable estimate of the var-
iability among the possible Replicates. The report presents a system fov
controlled choice of a limited number of Pseudoveplicates —often no
moye than 20-40 foy a majoy nationul survey— such that for some classes
of statistics the chosen small numbev of Replicates hus a vayiance al-
gebraically identical with that of all possible replicates of the same
chayacte?’ within the pavent sample, and the same expected value as the
variance of all possible replicates of the same character joy all possi-
ble pavent samples of the same design. Illustrations of the technique and
guides for its use ave included.

SYMBOLS

Data not available ------------------------ ---

Category not applicable ------------------ . . . I
Quantity zero ---------------------------- -

Quantity more than O but less than 0.05 ----- 0.0

Figure does not meet standards of
reliability or precision ------------------ *



REPLICATION
AN APPROACH TO THE ANALYSIS OF DATA

FROM COMPLEX SURVEYS

Philip J. McCarthy, Ph. D., Cornell University

INTRODUCTION

A considerable body of theory and practice
has been developed relating to the design and
analysis of sample surveys. This material is
available in “such books as Cochran (1963),
Deming (1950), Hansen, Hurwitz, and Madow
(1953), Kish (1965), Sukhatme (1954), and Yates
(1960), and in numerous journal articles. Much
of this theory and practice has the following
characteristics: the sampled populations contain
finite numbers of elements; no assumptions are
made concerning the distributions of the pertinent
variables in the population; major emphasis is
placed on the estimation of simple population
parameters such as percentages, means, and
totals; and the samples are assumed to be “large”
so that the sampling distributions of estimates
can be approximated “by normal distributions.
Furthermore, it has frequently been appropriate
to regard the principal goal of sample design as
tiat of achieving a stated degree of precision for
minimum cost, or alternatively, of maximizing
precision for fixed cost.

Sample surveys in which major emphasis is
placed on the estimation of population parameters
such as percentages, means, or totals have been
variously called “descriptive” or “enumerative”
surveys and, as noted above, the work in finite-
population sampling theory has been primarily
concentrated on the design of such surveys.
Increasingly, however, one finds reference in
the sample survey literature to “analytical”

surveys or to the use of “analytical statistics. ”
Cochran (1963, p. 4), for example, says:

In a” descriptive survey the objective is
simply to obtain certain information about
large groups: for example, the numbers of
men, women, and children who view a tele-
vision program. In an analytical survey,
comparisons are made between different sub-
groups of the population, in order to dis-
cover whether differences exist among them
that may enable us to form or to verify
hypotheses ahout the forces at work in the
population. . . . The distinction between de-
scriptive and analytical surveys is not, of
course, clear-cut. Many surveys provide
data that serve both purpdses.

Although there are some differences in emphasis,
Deming (1950, chap. 7), Hartley (1959), and Yates
(1960, p. 297) make essentially the same dis-
tinction. Kish (1957, 1965) more or less auto-
matically assumes that data derived from most
complex sample surveys will be subjected to
some type of detailed analysis, and applies the
term “analytical statistical methods” to proce-
dures that go much beyond the mere estimation
of population percentages, means, and totals.

The Health Examination Survey (HES) of the
National Center for Health Statistics (NCHS) is
one example of a sample survey that, in some
respects, might be classified as an enumerative
survey, but whose principal value will undoubtedly
be in providing data for analytical purposes. Some
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of the basic features of Cycle I of HES are pre-
sented in a publication of the National Center for
Health Statistics (Series 11, No. 1). A brief de-
scription of the survey, quoted from the report,
is as follows:

The first cycle of the Health Examination
Survey was the examination of a sample of
adults. It was directed toward the collection
of statistics on the medically defined prev-
alence of certain chronic diseases and of a
particular set of dental findings and physical
and physiological measurements. The prob-
ability sample consisted of 7,710 of all non-
institutional, civilian adults in the age range
18-79 years in the United States. Altogether,
6,672 persons were examined during the
period of the Survey which began in October
1959 and was completed in December 1962.

A rather detailed account of the survey design has
been published by the Center (Series 1, No. 4).

The enumerative and analytical aspects of
this survey, and the inevitable blending of one
into the other, ‘are well illustrated in two reports
that have been published on the blood pressure
of adults (NCHS, Series 11, Nos. 4 and 5). Not
only does one find in these reports the distribution
of blood pressure readings for the entire sample,
but one also finds the comparison (with respect
to blood pressure) of subgroups of the population
defined by a variety of combinations of such
demographic variables as age, sex, arm girth,
race, area of the United States, and size of
place of residence. It seems unnecessary to
argue where the enumerative aspects end and
the analytical aspects begin. For all practical
purposes. and by any definition one chooses to
adopt, the survey is analytical in character. The
same will be true of almost any sample survey
that one examines, at least as far as many users
of the data are concerned. Certainly this is the
view of the staff at NCHS.

The principal goal of this report will be to
examine some of the problems that arise when
data from a complex sample survey operation
are subjected to detailed and critical analysis,
and to discuss some of the procedures that have
been suggested for dealing with these problems.
Particular emphasis will be placed on a pro-

cedure for estimating variances which is especial-
ly suitable for sample designs similar to those
used in the Health Interview Survey and the Health
Examination Survey.

COMPLEX SAMPLE SURVEYS AND

PROBLEMS OF CRITICAL ANALYSIS

Simple random sampling, usually without
replacement, provides the base upon which the
presently existing body of sample survey theory
has been constructed. Major modifications of
random sampling have been dictated by one or
both of two considerations, These are as follows.

(1) One rarely attempts to survey a finite
population without having some prior knowledge
concerning either individual elements in the pop-
ulation, or subgroups of population elements, or
the population as an entity. This prior information,
depending upon its nature, can be used in the
sampIe design or in the method of estimation to
increase the precision of estimates over that
which would be achieved by simple random sam-
pling. Thus we have such techniques as stratifica-
tion, stratification after the selection of the
sample (poststratification), selection with prob-
abilities proportional to the value of some auxil-
iary variable, ratio estimation, alld regression
estimation.

(2) Many finite populations chosen for survey
study are characterized by one or both of the
following two circumstances: the ultimate popula-
tion elements are dispersed over a wide geograph-
ic area, and groups or “clusters” of elements can
be readily identified in ad;ance of taking the sur-
vey, whereas the identification of individual pop-
ulation elements would be much more costly.
These circumstances have led to the use of multi-
stage sampling procedures, where one first
selects a sample of clusters and then selects a
sample of elements from within each of the chosen
clusters.

In addition to these two main streams of
development, whose results are frequently com-
bined in any one survey undertaking, there is a
wide variety of related and special techniques
from which choices can be made for sample
design and for estimation. Thus one can use



systematic sampling, rotation sampling (in which
a population is sampled over time with some
sample elements remaining constant from time
to time), two-phase sampling (in which the results
of a preliminary sample are used to improve
design or estimation for a second sample), un-
biased ratio estimators instead of ordinary ratio
estimators, and so on. Finally, it is necessary
to recognize that measurements may not be ob-
tained from all elements that should have been
included in a sample, and that such nonresponse
may influence the estimation procedure and the
interpretation of results.

As sample design and estimation move from
simple random sampling and the straightforward
estimation of population means, percentages, or
totals to a stratified, multistage design with ratio
or regression forms of estimation, it becomes
increasingly difficult to operate in an “ideal”
manner even for the purest of enumerative sur-
veys. Ideally, one would like to be assured that
the “best” possible estimate has been obtained
for the given expenditure of funds, that the bias
of the estimate is either negligible or measur-
able, and that the precision of the estimate has
been appropriately evaluated on the basis of the
sample selected. Numerous difficulties are en-
countered in achieving this goal. Among these
are: (1) the expressions that must be evaluated
from sample data become exceedingly complex,
(2) in many instances, these expressions are only
approximate in that their validity depends upon
having “large” samples, and (3) most surveys
provide estimates for many variables—that is,
they are multivariate in character—and this, in
conjunction with the first point, implies an ex-
tremely large volume of computations, even for
modern electronic computing equipment. This
last point is accentuated when one wishes to study
the relationships among many variables in numer-
ous subpopulations. The foregoing difficulties are
well illustrated by the Health Interview Survey
(No. A-2), the Health Examination Survey (Series
1, No. 4), and the Current Population Survey
(Technical Paper No. 7). The sample designs
and estimation techniques for these three sur-
veys are somewhat similar, although the Current
Population Survey employs a composite estimation
technique (made possible by the rotation of sample
elements) that is not employed in the other two
surveys.

We have at various points in the preceding
discussion used the term “complex” sample
surveys, implying thereby that the sample design
is in some sense or other complex. Little is to
be gained by arguing the distinction between sim-
ple or complex under these circumstances, al-
though several observations are perhaps in order.
We are, of course, primarily concerned with
the complexities of analysis that result from the
use of a particular sample design and estimation
procedure. These complexities arise from various
combinations of such factors as the following.
The assumption of a functional form for the dis-
tribution of a random variable over a finite pop-
ulation is rarely feasible and thus analytical
power for devising statistical procedures is lost.
The selection of elements without replacement,
or in clusters, introduces dependence among ob-
servations. Estimators are usually nonlinear and
we are forced to use approximate procedures for
evaluating their characteristics. Some design
techniques that are known to increase the pre-
cision of estimates almost invariably lead to the
negation of assumptions required by such common
statistical procedures as the analysis of variance
(e.g., strata having unequal within-variances).
Further comments on these points will be made
later in this report.

New dimensions of complexity, both concep-
tual and technical, arise as one progresses from
a truly enumerative survey situation to a purely
analytical survey. Each of these will now be
discussed briefly.

On the conceptual side, the major question
concerns the manner in which one chooses to
view a finite population-either as a fixed set of
elements for which a statistical description is
desired, or as a sample from an infinite super-
population to which inferences are to be made.
In simplest terms, this can be viewed as follows.
An infinite superpopulation, characterized by ran-
dom variable Y with mean

E(y) = g, and with variance
E(y-p)2=u2,

is assumed as a basis for the sampling process.
IV independent observations on Y lead to a finite
population with mean

(l/N~~lyi= ~, and with variance
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(l/fV-I) i~, (Yi -~)z-~z. while a

simple random sample, drawn without replace-
ment, from the finite population has the observed
mean

(] /n)l~l Yi = Y and variance

(l/.-l) i~l(yi-~)z=S2.

Ordinary sampling theory assumes that we wish
to describe the realized finite population of N ele-
ments, and we have

E (ylfixed N values of y) = ?

N-n S2v (ylfixed N values of y) - ~ ~

N–n S2; (ylfixed N values of y) = ~ ~

where the symbol A indicates an estimator of a
population parameter, If, however, we wish to
draw inferences for the infinite superpopulation
from our observed sample, and therefore take
expectations over an infinite set of finite popula-
tions of N elements, then it is straightforward to
demonstrate that

E(y)=p

V(y)= u2/n

;(~)=s 2/n

In effect, the only formal difference in the two
views is that the finite population correction is
omitted in the variance of Y and in the estimate
of the variance of y. This point has been made
by Deming (1950, p. 251) and Cochran (1963,
p. 37). Cochran says , in reference to the com-
parison of two subpopulation means:

One point should be noted. It is seldom of
scientific interest to ask whether ~j = ~~ be-
cause these means would not be exactly equal
in a finite population, except by a rare chance,
even if the data in both domains were drawn
at random from the same infinite population.

Instead, we test the null hypothesis that the

two domains were drawn from infinite pop-
ulations having the same mean. Consequently
we omit the fpc when computing V(yj ) and
V(jj). . . .

Actually, it can also be argued that one would
rarely expect to find two infinite populations
with identical means. Careful accounts of statis-
tical inference sometimes emphasize this fact
by distinguishing between “statistically significant
difference” and “practically significant differ-
ence, ” and by pointing out that null hypotheses
are probably never “exactly” true.

In practice, the survey sampler is ordinarily
in a position to control only the inference from
the sample to the finite population. He may know
that the finite population is indeed a sample,
drawn in some completely unknown fashion from
an infinite superpopulation, but when he tries to
specify this superpopulation, his definition will
ordinarily be blurred and indistinct. Professional
knowledge and judgment will therefore play a
major role in such further inferences. Further-
more, comparisons with other studies, com-
parisons among subgroups in his finite population,
and a consideration of related data must be brought ‘
to bear on the problem. There seems to be little
that one can say in a definite way at present about
this general problem, but very perceptive com-
ments on this subject have been made by Deming
and Stephan (1941) and by Cornfield and Tukey
(1956, sec. 5). Even the answer to the specific
question of whether or not to use finite popula-
tion corrections in the comparison of domain
means would appear to depend upon the circum-
stances.

The technical problems raised by the ana-
lytical use of data from complex surveys differ
in degree but not really in kind from those faced
in the consideration of enumerative survey data.
These problems are primarily of two types:

1. As indicated earlier, most analytical uses
of survey data involve the comparison of sub-
groups of the finite population from which the
sample is selected. These subgroups have been
frequently referred to as “domains of study.”
The basic difficulty raised by this fact is that
various sample sizes, which in ordinary sam -
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pling theory would be regarded as fixed frbm
sample to sample, now become random variables.
Furthermore, this occurs in such a manner that
it is usually not possible to use a conditional
argument—that is, it is not possible to consider
the drawing of repeated samples in which the
various sample sizes are viewed as being equal
to the size actually observed—as can be done
when estimating the mean of a domain on the
basis of simple random sampling.

2. In making critical analyses of survey
data, one is much more apt to use statistical
techniques that go beyond the mere estimation
of population means, percentages, and totals
(e.g., multiple regression). Ordinary survey
theory has attacked the problem of providing
estimates of sampling error for certain esti.
mates, e.g., ratio and regression estimates, but
the body of available theory leaves much to be
desired. An example of each of these problems
will now be described briefly.

One of the most frequently used techniques
from sampling theory is that of stratification.
A population is divided into L mutually exclusive
and exhaustive strata containing IVl , Nz,. . . , iVL
elements; random samples of predetermined
size r71, nz, . . ..n L are drawn from the respec-
tive strata; a value of the variable y is obtained
for each of the sample elements; and the popula-
tion mean is estimated by

where y~ is the mean of the n~ elements drawn
from the hth stratum, N is the total size of the
population, and w~ = N# N. It is easily shown
that an unbiased estimate of the variance of 9
is given by

where s; is the variance for the variable y as
estimated in the hth stratum, and fh = ~h /~h is
the sampling fraction in the hth stratum. For
purposes of illustration, let us assume that the
strata are geographic areas of the United States,
that nh, Nh,and N refer to all adults (18 years of

age and over) and that the variable y is blood
messure.

Suppose now that one wishes to estimate
the average blood pressure for males in the 40-
45 year age range with arm girth between 38 and
40 centimeters. This special group of adults is a
subpopulation, or domain of study, with reference
to the total finite population, and elements of the
domain will be found in each of the defined strata.
The weights for the strata and the fixed sample
sizes do not refer to this subpopulation and, over
repeated drawings of the main sample, the number
of domain elements drawn from a stratum will
be a random variable. Furthermore, the total
number of domain elements in a stratum is un-
known. Under these circumstances, let

n~,~= the number of sample elements in
the h th stratum falling in domain d.

Yhi ~= the value of the variable for the ith

sample element from domain d in the
h t h stratum.

& ‘~~1 (1/fh) nh ~= the estimated tOtal

number of elements
in the domain.

‘h,d

~h,d-(llnh,d) i~l Yhi, d = S-pk mean,
for h th stratum,
of elements fall-
ing in domain d.

Then an estimate of the domain mean and its es-
timated variance are given by

t(;d)=z N;(l-fh) ~(Yhi d–jib d)z
[fi{ h ‘h(nh–]) i ‘ ‘

where h= 1,2, . ... L and i=], z,....nh.~.
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These expressions have been presented anddis-
cussed byanumber ofauthors–tirbin (1958, p.
117), Hartley (1959, p. 15), Yates (1960, p. 202),
Kish (1961, p. 383), and Cochran (1963, p. 149.

The factor (I /;j ) was evidently omitted in the
printing of this formula ).

Three points concerning these results are
worthy of note in the context of the present
discussion. These are:

1. The estimate is actually a ratio estimate—
technically, a combined ratio estimate. It is there-
fore almost always biased for small sample sizes,
and the variance formula is only approximately
correct.

2. The complexity of the formulas, as re-
gards derivation and computation, has been in-
creased considerably over that of ordinary strati-
fication.

3. The variance has a between-strata com-
ponent as well as a within-strata component and,
if nh ~ is small as compared with n~ , this be-
tween-strata component can contribute substan-
tially to the variance. Thus we see that changing
emphasis from the total population to a sub-
population has introduced added complexities in
theory and computations.

As regards the use of more advanced sta-
tistical techniques in the critical analysis of
survey data, we shall simply refer to the diffi-
culties that have been encountered in obtaining
exact theory when ordinary regression techniques
are applied to random samples drawn from a
finite population. Cochran (1963, p. 193) summa-
i-izes this very well:

The theory of linear regression plays a
prominent part in statistical methodology.
The standard results of this theory are not
entirely suitable for sample surveys because
they require the assumptions that the popula-
tion regression of y on x is linear, that the
residual variance of y about the regression
line is constant, and that the population is
infinite. If the first two assumptions are
violently wrong, a linear regression esti-
mate will probably not be used. However, in
surveys in which the regression of y on x
is thought to be approximately linear, it is
helpful to be able to use 71, without having

to assume exact linearity or constant residual
variance.

Consequently we present an approach
that does not demand that the regression in
the population be linear. The results hold
only in large samples. They are analogous
to the large-sample theory for the ratio es-
timate.

Somewhat the same point is made by Hartley
(1959, p. 24) in his paper on analyses for do-
mains of study. He says:

. . . nevertheless we shall not employ regres-
sion estimators. The reason for this is not
that we consider regression theory inappro-
priate, but that this theory for finite popula-
tions requires considerable development be-
fore it can be applied in the present situation.

Some developments have. arisen, since Hartley’s
paper and reference to these will be given ‘in the
next section.

As a final complicating factor, we note that
certain techniques used in some sample survey
designs are such that their effects on the pre-
cision of estimates cannot be evaluated from a
sample, even in the case of an enumerative sur-
vey. We refer specifically to the technique of
controlled selection, described by Goodman and
Kish (1950), and to instances in which only one
first-stage sampling unit is selected from each
of a set of strata (Cochran, 1963, p. 141).

In order to provide a convenient illustration
of some of the foregoing points, the appendix
presents a brief description of the “complex”
sample design and estimation procedure employ-
ed in the Health Examination Survey, together
with a selection of examples that arose in the
more or less routine analysis of information
collected on blood pressure. The data given are
estimates of the percentage of individuals with
hypertension in various subclasses of the popu-
lation of adults, with the subclasses definecl in
terms of such demographic variables as race,
sex, age, family income, education, occupation,
and industry of employment. These subclasses
cut’ across the strata used in the selection of
primary sampling units, and the variances of the
estimates are also affected by the various clus-
tering and estimation features of the design.
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Most of the cited cases refer to the estimation
of variance for the percentage of hypertension
in a single subclass, although several examples
are given in which the percentages in two sub-
classes are compared. The variances were es-
timated by a replication technique that will be
introduced in “Balanced Half-Sample Replica-
tion, ” a technique that to some extent overcomes
the problems of analysis that have just been raised.
‘The results obtained through the application of
this technique will be used for illustration at
several points throughout this report.

GENERAL APPROACHES FOR

SOLVING PROBLEMS OF

CRITICAL ANALYSIS

Two Extreme Approaches

It is possible to identify two extreme views
that one may hold with respect to the problems
raised in the preceding section. First of all,
one might conceivably argue that analytical work
with survey data should be done only “by design. ”
That is, areas and methods of analysis should
be set forth in advance of taking the survey and
the sample should be selected so as to conform
as closely as pssible to the requirements of the
stated methods. On the other extreme, one might
decide to throw up his hands in dismay, ignore
all the complicating factors of an already executed
survey design, and treat the observations as
though they had been obtained by random sampling,
presumably from some extremely ill-defined su-
perpopulation.

The first approach, that of “design for a-
nalysis, “ is certainly the most rational view that
one can adopt. No careful examination of the
literature was made to search out actual ex-
periences on this point, but it would appear un-
likely that one could find any examples of large-
scale, complex, and multipurpose surveys in
which this approach had been attempted. A pos-
sible exception might be the Census Enumerator
Variation Study of the 1950 U.S. Census, as de-
scribed by Hanson and Marks (1958), although
this study was based primarily on the complete
enumeration of designated areas rather than on
a sample of individuals selected in accordance

with a complex sample design. In other cases
individuals have been randomly selected from a
defined population of adults to provide observa-
tions for a complex “experimental design, ” as
in the Durbin and Stuart (1951) experiment on
response rates of experienced and inexperienced
interviewers, but again this differs considerably
from the type of problem raised in the preceding
section. Another example in which an experi-
mental design has been applied to survey data is
provided by Keyfitz (1953) and discussed by
Yates (1960, pp. 308-314). In this case, the
sample elements were obtained by cluster sam-
pling, but the author investigates the possible
effects of the clustering and concludes that it
can be ignored in the analysis of variance.

Some recent work by Sedransk (1964, 1964a,
1964b) bears directly on the problem of design
for analysis and it assumes that the primary goal
of an analytical survey is to comp~re the weans
of different domains of study. If Yi and Vi are
the estimated means for the ith and ;th do-
mains, Sedransk places constraints on the vari-
ance of their difference, for all z and j, and
searches for sample-size allocations that will
minimize simple cost functions. A variety of
different situations are considered. Random sam-
ples can be selected from each of the domains;
random samples can be selected from the over-
all population, but the number of elements falling
in each domain then becomes a random variable;
two-stage cluster samples can be selected from
each of the domains; and two-stage cluster
samples can be selected from the total population,
but again the number of elements falIing in each
domain is a random variable. In the second and
fourth cases, the author considers double sampling
procedures and obtains approximate solutions to
guide one in choosing sample sizes for sampling
from the total population so as to satisfy the con-
straints which are phrased in terms of all pos-
sible pair-wise domain comparisons. Even if
one does not wish to impose constraints on
domain comparisons and on minimization of cost,
the cited papers contain of necessity many de-
velopments in theory that will be of assistance
in attacking the problems raised in the preceding
section. It should be observed that the com-
plexity of the designs considered is still far
from that of the Current Population Survey or
the HeaIth Examination Survey.

7



Major difficulties in designing for analysis
are and will continue to be encountered when the
primary goal of a survey is to describe a large
and dispersed population with respect to many
variables, as the analytical purposes are some-
what ill defined at the design stage. Thus the
bro,ad primary purposes of HES were to provide
statistics on the medically defined prevalence in
the total U.S. population of a variety of specific
diseases, using standardized diagnostic criteria;
and to secure distributions of the general popula-
tion with respect to certain physical and physio-
logical measurements. Nevertheless, analysis of
relationships among variables is also an impor-
tant product of the survey.

A similar set of circumstances arises with
respect to data on unemployment collected by the
Current Population Survey. Clearly the primary
goal is to describe the incidence of employment
and unemployment in the total U.S. population,
and yet the data obtained must also be used for
comparison and analysis. Faced with difficulties
of analysis, as described in the preceding sections,
one may wish to retreat to the opposite extreme
from design for analysis and view the observa-
tions as coming from a simple random sample.

Actually, this type of retreat would appear
to place the analyst in a difficult, if not un-
tenable, position. Cornfield and Tukey (1956)
speak of an inference from observations to
conclusions as being composed of two parts,
where the first part is a statistical bridge from
observations to an island (the island being the
studied population) and the second part is a
subject-matter span from the island to the far
shore (this being, in some vague sense, a pop-
ulation of populations obtained by changes in
time, space, or other dimensions). The first
bridge is the one that can be controlled by the
use of proper procedures of sampling and of
statistical inference. One may be willing to in-
troduce some uncertainty into the position of the
island, for example by ignoring finite population
corrections, in the hope of placing it nearer the
far shore than would otherwise be the case. How-
ever, there seem to be no grounds for suggesting
statistical procedures that may, unbeknownst to
their user, succeed only in moving the island a
short distance from the near shore.

The Health Examination Survey was carried
out on a sample chosen to be broadly “repre-

sentative” of the total U.S. population. Among
other characteristics of design, the sample was
of necessity a highly clustered one. As is well
known, a highly clustered sample leads to es-
timates that have much larger standard errors
than would be predicted on the basis of simple
random sampling theory if the elements within
clusters tend to be homogeneous with respect
to the variables of interest. Since geographic
clustering leads to homogeneity y on such char-
acteristics as racial background, socioeconomic
status, food habits, availability and use of medi-
cal care, and the like, it can therefore be ex-
pected that there will also be homogeneity with
respect to many of the variables of interest in
the Health Examination Survey. A portion of
this loss of precision is undoubtedly recovered
by stratification and poststratification, but there
is no guarantee that the two effects will balance
one another. Hence the ignoring of sample design
features might well lead to gross errors in
determining the magnitude of standard errors
of survey estimates. In effect, the situation might
be viewed as one in which inferences are being
made to some ill-defined population of adults,
rather than to the population from which the sam -
ple was so carefully chosen. These points have
been emphasized by Kish (1957, 1959) as they
relate to social surveys in general.

The effect of these sample design and es-
timation features on the variances of estimates
for the Health Examination Survey are illus-
trated in the data presented in the appendix. For
each of 30 designated subclasses, the variance
of the estimated percentage of adults in a sub-
class with hypertension was estimated by two
methods: (1) the replication technique to be in-
troduced in “Balanced Half-Sample Replication”
was employed, thus accounting for most of the
survey features, and (2) the observations falling
in a subclass were treated as if they had arisen
from simple random sampling. In the second
case, variances were computed as pqfn, where
p was the observed fraction of hypertensive
individuals among the n sample individuals falling
in a particular subclass. The ratios of the first
of these variances to the second, for the 30
comparisons, ranged from .45 to 2.87, with an
average value of 1.31; the ratios of the standard
errors ranged from .67 to 1.69, with an average
value of 1.12. These ratios probably overes -
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timate slightly the true ratios, since the rep-
lication technique uses the method of collapsed
strata and in this instance does not account for
the effects of controlled selection. Furthermore,
they are subject to sampling variability.

Also included in the appendix are three
examples which refer to the estimated difference
between the percentages of hypertensive individ-
uals in each of two subclasses. In this instance,
the average ratio of variances is 1.51 while the
average ratio of standard errors is 1.23. These
comparisons are not as “clean” as the ones for
single subclasses since the random sampling
variances were computed on the assumption of
independence of the two estimates, and this is
not necessarily the case. This set of data, limited
though it may be, tends to confirm the general
experience. that estimates made from stratified
cluster samples will tend to have larger sampling
variances than would be the case for simple ran-
dom samples of the same size, although the
differences are not so pronounced as in situations
in which the intraclass correlation is stronger
than it is for this statistic.

Obtaining “Exactw Solutions

If one wishes to consider that the principal
goal of analytical surveys is either the estimation
or the direct comparison of the means of various
domains of study, then there already exists in
the literature a number of results that can assist
in achieving this goaL This “exact” theory can
be generally characterized as follows.

1. Ratio estimates of population means are
employed, primarily because sample size is a
random variable as a result of sampling clusters
with unequal and unknown sizes. This of course
introduces the possibility of bias for these es-
timates, although empirical research-e. g., Kish,
Namboodiri, and Pillai (1962)—indicates that the
amount of bias is apt to be negligible.

2. Expressions for the variance of a single
estimate and the covariances of two or more
estimates are obtained from the Taylor series
approximation, and variance estimates are con-
structed by direct substitution into these ex-
pressions. Hence variance estimates are subject
to possible bias.

3. In multistage sampling, it is either as-
sumed that the first-stage units are drawn with
replacement or that the first-stage sampling
fractions are very small. This means that vari-
ance estimates can be obtained without explicitly
treating within-first -stage unit sampling variabil-
ityy.

4. The most powerful tool for deriving re-
sults for domain-of-study estimates has been that
of the “pseudovariable” ‘–= ‘L- “-----– ‘----’-L’- “
That is

Yiij ‘Yhlj,

mu me mum V3THDUS. ~”

if the j th element in the
ith first-stage unit of
the h th stratum belongs
to the domain of interest

= O, otherwise

Uhij =1, if the j th element in the
ith first-stage unit of the
h th stratum belongs to the
domain of interest

= O, otherwise

Using this approach, which is related to Cor-
nfield’s (1944) earlier work, it is possible to
specialize ordinary results to domain-of-study
results.

A very brief summary of some of the litera-
ture on these aspects of analysis is as follows,
where no attempt has been made to assign

priorities to the various authors. Results that are
directly phrased in terms of domains of study
are given by Cochran (1963), Durbin (1958),
Hartley (1959), Kish (1961, 1965), and Yates
(1960). Related work on the estimation of the
variance of a variety of functions of ratio esti-
mators is presented by Jones (1956), Keyfitz
(1957), Kish (1962), and Kish and Hess (1959).
Aoyama (1955), Garza (1961), and Okamoto (1963)
discuss chi-square contingency-table analyses
in the presence of stratification. McCarthy (1965)
considers the problem of determining distribu-
tion-free confidence intervals for a population
median on the basis of a stratified sample.
Finally, we observe that, in the case of “small”
samples, not even the ordinary normality as-
sumptions are able to do away with difficulties,
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even without domain-of- study complications .l%us
unequal strata variances lead to difficulties in
obtaining tests and confidence intervals for a
population mean, although some approximate
solutions are available—e.g., Aspin(1949), Meier
(1953), Satterthwaite (1946), and Welch (1947).
If one has essentially unrecognized stratification—
that is, normal variables with common variance
but differing means—then it is necessary to
work with noncentral t, X2, and F distributions as
described by Weibull (1953).

Replication Methods of

Estimating Variances

As a result of the indicated theoretical and
practical difficulties associated with the esti-
mation of variances from complex sample sur-
veys, interest has long been evidenced in de-
veloping shortcut methods for obtaining these
estimates. For example, we noted earlier that
Keyfitz (1957) and Kish and Hess (1959) have
emphasized the computational simplicity that
can result when primary sampling units are drawn
with replacement from each of a number of strata,
and when one can work with variate values as-
sociated with the primary sampling units. There
are, however, other approaches that have been
suggested and applied to accomplish these same
ends. We refer in particular to methods that
have variously been referred to as interpene-
trating samples, duplicated samples, replicated
samples, or random groups. In the succeeding
discussion, the term “replicated sampling” will
be used to cover all of these possibilities. Ref-
erences will be made to the pertinent literature,
but no attempt will be made to assign priorities
or to be exhaustive. Deming has been a consistent
and firm advocate of replicated sampling. He
first wrote of it as the Tukey plan (1950); his
recent book (1960) presents descriptions of the
applications of replicated sampling to many dif-
ferent situations, and contains a wide variety
of ingenious devices that he has developed for
solving particular problems.

In simplest form, replicated sampling is
as follows. Suppose one obtains a simple random

sample of n observations—drawn with replace-
ment from a finite population or drawn independ-

ently from an infinite population-and that the
associated values of the variable of interest are

Y1*Y2 *...7 ~n , Then, if y denotes the sample
mean and Y the population mean, E (y) = ~ and

;“(J)4,(H -ja2/n (n - 1)

~n(y) provides an unbiased estimate of V(Y).
Suppose now that n observations are randomly
divided into t mutually exclusive and exhaustive
groups, each containing (n/t) elements, and that
the means of these groups are denoted by

Yl*72*. ... Yt. It is clear that

and that the variance of J can be estimated by

tt (y) -j:, (Yj -y)2/f(t - 1)

In this simple case, th: advantages gained by
using ~t (y) rather than V“(y) lie in the faCt that
one has to compute the sum of t squared de-
viations instead of the sum of n squared de-
viations. If t is considerably smaller than n and
if such computations must be carried out for
many variables, the savings in computational
time may be substantial. Also, the kurtosis of
the distribution of the ~i is less than that of

Yi, PossiblY offsetting some of the effect of
having fewer degrees of freedom to estimate V(Y).

There is, of course, a loss of information
associated with the subsample approach for es-
timating variances since ~t (ji) is subject to
greater sampling variability than is fi (y). A
variety of ways have been suggested for measur-
ing this loss of information. Hansen, Hurwitz,
and Madow (1953, vol. I, pp. 438-449), who des-
ignate this the random group method of esti-
mating variances, make the comparison in terms
of the relative-variance of the variance estimate.
For example, they show by way of illustration
that the relative-variance of a variance estimate
based on 1,200 observations drawni from a nor-
mal distribution is 4.1 percent while the relative-
variance based on a sample of 60 random groups
of 20 observations each is 18.3 percent. Actually,
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this approach places emphasis on the variance
estimate itself rather than on the fact that one
usually wants to use the variance estimate in
setting confidence limits for a population mean
or in testing hypotheses about a population
mean. Under these circumstances, Fisher (1942,
sec. 74) suggests a measure for the amount of
information that a sample mean provides re-
specting a population mean. Since his approach
has been questioned by numerous authors -e.g.,
Bartlett (1936)—we shall simply adopt the ex-
pedient of taking the ratio of, say, the 97.5
percentiles of Student’s t distribution for 1,200
and 60 degrees of freedom, which is .981, and
interpreting this as a measure of the relative
width of the desired confidence intervals. This
is evidently the approach used by Lahiri (1954,
p. 307).

The foregoing is, of course, the familiar
argument that a sample of roughly 30 or more
is a “large” sample when dealing with normal
populations, since [g,~ for 30 degrees of free-
dom is 2.042 and for a normal distribution is
1.960. Ninety-five percent confidence intervals
will, on the average, be only about four percent
wider when S2 is estimated with 30 degrees of
freedom than when U2is known. A slightly dif-
ferent measure has been proposed by Walsh
(1949), formulated in terms of the power of a
t-test.

If one wishes to use replicated sampling in
conjunction with drawing without Yeplacernent
from a finite population, then two different pos-
sibilities arise. One can first draw without re-
placement a sample of (n/t) elements, then re-
place these elements in the population and draw
a second sample of (m/t) elements, and continue
this process until t samples have been selected.
Denoting the sample means by 71, Y2, . . . . Yt ,
we have

y= ; j7j/f
j+

t(Y) -j~*(Y, -Y)7t (f-1)

and

E[tt (y)]= ‘-$’t] &

N- (n/f) S2.— —
Nn

This type of replication makes the successive
samples independent of one another, but it does
permit the possible duplication of elements in
successive samples and hence lowers the pre-
cision of Y as compared with the original draw-
ing of a sample of n elements without replace-
ment. However, there may be a saving in the cost
of measuring the duplicated items. Hence a
slightly larger sample could be drawn for the
same total cost, recapturing some of the loss of
precision.

Finally, one can draw a sample of (n/t)

elements without replacement, a second sample
without replacing the first sample, and so on.
This is, of course, equivalent to drawing a sam-
ple of n elements without replacement and then
randomly dividing the sample into t groups. It
follows that

; jij
j=l

Y=y

; (yj - y)2
N-n I=]01(y)= ~

t(t-1)

and

This latter variance is smaller than the preceding
one because of the difference in finite population
corrections. Note, however, that the independence
achieved by the first method of drawing makes
it easy to apply nonparametric methods (e.g.,
the use of order statistics) for estimation and
hypothesis testing. These pints have been dis-
cussed, in a more general framework, by Koop
(1960) and by Lahiri (1954).

Although replicated sampling for simple
random sampling, as described in the preceding
paragraphs, does provide the possibility of a-
chieving some gains in terms of computational
effort, the principal advantages of replication
arise from other facets of the variance estimation

problem. Some of these facets may be identified
as follows.

1. ‘There are instances of sample designs
in which no estimate of sampling precision can
be obtained from a single sample unless certain
assumptions are made concerning the population.
Systematic sampling is a case in point. (See
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Cochran, 1963, pp. 225,226.) If the total sample is
obtained as the combination of a number of rep-
licated systematic samples, then one can obtain
a valid estimate of sampling precision. This
approach was suggested by Madow and Madow
(1944, pp. 8,9) and has been discussed at greater
length and with a number of variations by Jones
(1956). In some instances, estimates made from
replicated systematic samples may be less ef-
ficient than from a single systematic sample, and
then one must cho”ose between loss of efficiency
and ease of variance estimation, as discussed by
Gautschi (1957).

2. As is well known, the ordinary Taylor
series approximation for obtaining the variance
and the estimated variance of a ratio estimate,
even for simple random sampling, provides a
possibly biased estimate of sampling precision.
As an alternative, one can consider drawing a
number of independent random samples, com-
puting a ratio estimate for each sample, and
then averaging these ratio estimates for the final
estimate. A valid estimate of sampling precision
can then be obtained from the replicated values
of the estimate. It is true, however, that the
bias of the estimator itself is undoubtedly larger
for the average of the separate estimates than
it is for a ratio estimate computed for the com-
plete sample since this bias is ordinarily a de-
creasing function of sample size. Thus gains
may be achieved in one respect, while losses
may be increased in the other. As far as the
author knows, no completed research is available
to guide one in making a choice between these two
specific alternatives. This problem is, however,
related to some suggestions and work by Mickey,
Quenouille, Tukey, and others, and their results
will be discussed in some detail in the following
section.

3. After an estimate and an estimated var-
iance have been obtained, confidence intervals
are ordinarily set by appealing to large sample
normality and to the approximate validity of
Student’s t distribution. Replication can some-
times assist in providing “better” solutions.
For example, consider a stratified population in
which the variable of interest has a normal dis-
tribution within each stratum, but where the
variance is different for the separate strata.
Difficulty is then encountered in applying the chi-

square distribution to the ordinary estimate of
variance, as discussed by Satterthwaite (1946),
Welch (1947), Aspin (1949), and Meier (1953).
However, the mean of a replicate will be nor-
mally distributed, being a linear combination of
normally distributed variables, and the chi-
square distribution can be applied directly to a
variance estimated from the means of a number
of independent replicates, This aspect of the
problem has been discussed at some length by
Lahiri (1954, p. 309).

4. If one is using a highly complex sample
design and estimation procedure, and if independ-
ent replicates can be obtained, then replicated
sampling permits one to bypass the extremely
complicated variance estimation, formulas and
the attendant heavy programming burdens. Vari-
ance estimates based upon the replicated esti-
mates will mirror the effects of all aspects of
sampling and estimation that are permitted to
vary randomly from replicate to replicate,, This,
of course, includes the troublesome domain-of-
study type of problem.

One major disadvantage of replicated sam-
pling has been mentioned in the preceding para-
graphs, namely that the variance estimate re-
fers to the average of replicate estimates rather
than to an estimate prepared for the entire sam-
ple. If the estimates are linear in the individual
observations, the two will be the same. ThEy will
not be the same, however, for the frequently em-
ployed ratio estimator and the other nonlinear
estimators, and the average of the replicate es-
timators may possibly be subject to greater bias
than is the case for the overall sample estimate.

Another major disadvantage arises from the
difficulty of obtaining a sufficient number of
replicates to provide adequate stability for the
estimated variance. Thus the commonly used
design of two primary sampling units per stratum
(frequently obtained by collapsing strata from each
of which only a single unit has been drawn) gives
only two independent replicates, and the resulting
confidence intervals for an estimate are much
wider than they should be or need to be. Some
suggestions have been made for attacking this
problem, and they will be discussed in the follow-
ing section.

Another, but subsidiary, problem arises
with replication if one wishes to estimate com-
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ponents of variance— that is, to determine what
fraction of the total variance of an estimate
arises from the sampling of primary sampling
units, what fraction arises from sampling within
primary sampling units, and the like. This prob-
lem does not appear to have been discussed at
any great length in the sampling literature and
will not be considered here since it bears more
directly on design than on analysis. Some of
Sedransk’s work (1964, 1964a, and 1964b) does
relate to the problem, and McCarthy (1961) has
discussed the matter in connection with
for the construction of price indexes.

PSEUDOREPLICATION

sampling

Half-Sample Replication Estimates of

Variance From Stratified Samples

If a set of primary sampling units is strati-
fied to a point where the sample design calls for
the selection of two primary sampling units per
stratum, there are only two independent repli-
cates available for the estimation of sampling pre-
cision. Conf@ence intervals for the correspond-
ing population parameter will then be much wider
than they need to be. To overcome this difficulty,
at least partially, the U.S. Bureau of the Census
originated a pseudoreplication scheme called half-
sample replication. The scheme has been adapted
and modified by the NCHS staff and has been used
in the HES reliability measurements. A brief de-
scription of this approach is given in a report of
the U.S. Bureau of the Census (Technical Paper
No. 7, p. 57), and a reference to the Census Bu-
reau method of half-sample replication was made
by Kish (1957, p. 164). We shall first present a
technical description of half-sample replication
as used by NCHS in the Health Examination Survey.
The theoretical development duplicates, in part,
work by Gurney (1962). We shall then suggest
several ways in which the method can be modi-
fied to increase the precision of variance esti-
mates.

Consider a stratified sampling procedure
where two independent selections are made
in each stratum. Let the population and

sample characteristics be denoted as
follows:

Stratum Weight

1

2

h

L

WI

W2

Wh

.

w.
L

-r

Popula-
tion

mean

-,
Y1

Y2

.

?h

1.-,
L

Popula-

vam”ance

s;

s:

s;

s:
L

Sample Sample
observations mean

Yh ~YYh2 jh

YLIJ’L2

An unbia~ed estimate of the population mean
~ is ~st ‘~~1 Wt ~h , and the ordinary sample
estimate of V (ySt) is

where dh = (Yhl-yhz).
Under these circumstances, a half-sample

replicate is obtained by choosing one of Yll and

Y12* one of Y21 and Yzz, . . ., and one of YL~
and YL*. The half-sample estimate of the popu-
lation mean is

where i is eithey one or two for each h. There
are 2 L possible half samples, and it is easy to
see that the average of all half-sample estimates
is equal to y$t. That is, for a randomly selected
half sample

13



If one considers the deviation of the mean
determined by a particular half sample, for ex-
ample ~~~,j= 2 ‘h Yhl > from the overall sample
mean, the result is obtained that

= (1/2) z Wh(yh, - yh2)= (1/2) z J’Vhdh

In general, these deviations are of the form

(~~,-j,l) = (1/2)(f Wldl * W2d2 . . . f WL dL)

where the deviation for a particular half sample
is determined by making an appropriate choice of
a plus or minus sign for each stratum. In the ex-
ample given above, each sign was taken as plus.
The squared deviation from the overall sample
mean is therefore of the general form

(yh,- ji,t)z= (1/4) Z W; d: + (1/2)~Z~~W, Wkdhd~ (4.1)

where the plus or minus signs in the cross-prod-
uct summation are determined by the particular
half sample that is used.

If the squared deviations of a half-sample
estimate from the overall sample mean are
summed over all possible half samples, then it is
easy to demonstrate that the cross-product terms
appearing in the separate squared deviations can-
cel one another. Thus, for a randomly selected
half sample

Since v (~,t) is known to be an unbiased estimate
of V (ji~t) if one takes expected values over re-
peated selections of the entire sample, we have
the result that

This also follows directly from (4. 1) if we note
that E (dh d,) = O because of the independence of
selections within strata. If the sampling fractions
are the same in all strata, then a finite popula-
tion correction can easily be inserted at the end
of the variance estimation process. The effect of
differing sampling fractions could be taken into
account by working with W; ‘s, where W; is equal

to Wh multiplied by the square root of the appro-
priate finite population correction.

The foregoing properties of a half-sample
estimate of the population mean have been ex-
ploited for variance estimation in the following
manner.

Consider the population of 2L possible
half-sample estimates, for fixed values of

Y]1JY12... .JYL1TYL2. This population ,has
mean equal to y,t. Furthermore, the mean
value of (y~~- y$J 2 is equal to v(y,t). Draw with
replacement, a sample of k half samples. Denote
their means by Yks,l, yh~,2,. . . . y~~,~. Then take

(4.3)

as an estimate of V(y$t). Since the expected

value of each squared term is equal to V @St),
the expected value of their average is also equal
to V(Y~t). The different squares are not indepen-
dent, since the ~~~,i ‘s have elements in common,
but this does not influence the expected value.

Quite clearly, vh,,~ (y,t) is o@y an approxi-
mation to v (ySt ) which, in turn, is only an ap-
proximation to V(JSt). Let us therefore attempt
to estimate the degree of approximation by com-

Puting the variance of vh,,~(y,t). The relationship
given in Hansen, Hurwitz, and Madow (1953, vol.
II, p. 65)

v(u) = E, [v(ub)] + ~ [E(UIV)] (4.4)

will be applied to the variable u = (~h~ - ~~t) 2,

and the conditioning variable v will be replaced
by the set of dh’s. The first term then becomes

,,...dL[V{(Yh,-y,,)’ Id,. . . dL}]E

By definition, where it is understood that all
dh ‘S are fixed,

[
2

v[(yh~-jiJ21=E (yfis-Yst 1)2- (1/4)Z W; d:

ZL

[ 1
= ~ 2 (l\2)h,Zj ahj,i (Wh dh) (Wj dj)

2
2L i=l

where the summation on i is over all possible
half samples, and ahj, i is either plus or minus
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one, depending on the particular half sample and
the particular combination of h and j. This ex-
pression is equal to

~L

[
~~ ~(Wh dh)2 (Wj dj)z+ (sum of cross-
2L+ZI=1~<j product terms, each

term containing at
least one dj to the
first power) 1

It can be demonstrated that the cross-product
terms, when summed over all 2L samples will
vanish. Hence

V[(yh, -y,t)z Idl. . . dL]

= (1/4) ~:j (W~dJ2 (Wjdj)2

Since E (di12) = S: and dh and dj are independent,
the expectation of this variance over sets of dh

is equal to

We shall now evaluate the
(4.4). Since

(4.5)

second term in

E[@h,-~,~)2 \ d, . . . d~] = (1/4) ~ W;d;

We have

~[E(ulv)]=E[(l/4)Z W; d;- (1/2) 2 W:S:]2

= (1/4)13[z W/(+z- S;)lz (4.6)

= (1/4) Z W:E (~ -S;)2

where the cross-product terms vanish because
the selections within strata are independent from
one stratum to another and because E (di /2) = S~

Putting expressions (4.5) and (4.6) together,
using relative variance (rel-variance) instead of
absolute variance, and taking account of the fact
that we are averaging k half-sample estimates of
variance (which affects only the first term) we have

Rel-var [vh,,k (~,t)] =
(4. 7)

The exact value of this expression depends
upon the values of W: S: and the distribution of
the y ij .s within strata. However, reasonable ap-
proximations can be obtained. Thus the first tc t-m,
in (4.7) is a maximum, for fixed value of Z Wh2~2,
if W~S~= W~S~... = W~S~ = W2S2. Under these
circumstances, the value of this term is

L (L–1)
4 w’s’ 2 2 (L-1)—— — .
k w4sd L’ kL

For the second term, assume that the strata
weights are equal, that the strata variances are
equal, and that B( = ~4/u’) is the same for each
stratum. Using the expression for the rel-vari-
ance of the estimated variance (Hansen, Hurwitz,
and Madow, 1953, vol. II, p. 99) the second term
in (4.7) is then approximated by

/9+1 I—..
n.

Then the rel-variance of Vh$,K(y$t) is approxi-
mated by

2(L-1) + 9+1
kL 2L

(4.8)

This expression, as earlier developed by Gurney
(1962)., was used in obtaining values given in a
U.S. Census report (Technical Paper No. 7, table
29), where L was taken to be 85 and a table was
prepared for several different values of B.

The Health Examination Survey is based on
42 strata, collapsed into 21 strata for the present
model. Hence we have the results given in table
1 for 19=3 and 19=6.

Table 1. Rel-variance of a variance es t i-
mated from k independent half -saznple
replications

(Number of strata, L , is ?1)

k

1 ------- ------- -----
------- ------- -----

;-----------------------
10------------------

------- ------- -----
%--------------------
100-----------------
00 ------- ------- ---

t’3=3

2.0000
1.0476
.4762
.2857
.1904
.1428
.1142
.0952

P=6

2.0715
1.1191
.5477
.3572
.2619
.2143
.1857
.1667
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Table 2. Equivalen; degrees of freedom
obtained from independent half-
sample replications

(Analysis of variance assumptions; 21 strata)
.—

Rel-variance
of estimated

variance

2.0000
1.0476
.4762
.2857
.1904
.1428
.1142
.0952

Equivalent
degrees of

freedom

1.0
1.9

/..::

14:0
17.5
21.0

t
.975

12.706
4.740
2.727
2.365
2.213
2.145
2.105
2.080

If one is committed to using independent
half-sample replications ,towhich~eabove table
refers, an appropriate number ofreplicatesmust
be chosen.Insome sense or other, one would like
to use a sufficient number of replicates so that
not “too much” of the available information is
lost. On the other hand, this desire must rebal-
anced against the cost of processing “too many”
replicates. If a simple analysis ofvariancemodel
is assumed, it is possible to obtain some idea of
the amount of information that is lost for various
numbers of replicates. For example, assume
that the strata are of equal weight, that thevari-
able y has a normal distribution in eachstratum,
that the strata means are possibly different, and
that the variances within strata have a common
value S2. Under these circumstances, theordi-
nary within- stratum estimate of S 2 has 21 de-
grees of freedom, and confidence intervals for a
population mean would be based on Student’s t
distribution with 21 degrees of freedom.

For a normal distribution, the relative vari-
ance of an estimated variance is 2/(n-1) -Coch-
ran (1963, p. 43)—where n is the number of
independent observations. If the relative variances
given in table 1 for P = 3 are set equal to 2/(n -J)
and we solve for (n – I ), the result can be
viewed as “equivalent degrees of freedom” for
use with Student’s t distribution. The values
obtained from this process are given in table 2.

As previously noted, there are a variety of
ways that one can make comparisons among these

Table 3. Relative width of confidence in-
tervals obtained from k independent
half-sample replications

(Analysis of variance assumptions; 21 strata)

k

1 -------- ----------
------------------L--------------

1o-----------------
20-----------------

1oo----------------
00 .------- --------

Width of confidence
interval relative

to the full 21
degrees of freedom

6.109
2,,279
1(,311
14,137
1,,064
1“031
1“012
1.000

various cases, but the simplest would appear to
be on the basis of width of the95 percent confi-
dence interval, for fixed value of the estimated
variance. This approach has evidently been used
by Lahiri (1954, p. 307). Table3 points this out.
Remembering that thedetermination of therela-
tive variance of the variance is probably anover-
estimate, and that the effect of replication is less
pronounced for valuesof P greater than3, it would
appear that between 20 and 40 independent repli-
cations would work out quite satisfactorily in
practice. This statement must of course bequali-
fied in terms of the cost of additional replications.

Balanced Half-Sample Replication

Although the point has not been explicitly
emphasized, the preceding development shows that
the variability among half-sample estimates of
variance arises from between-strata contribu-
tions to these estimates, as is evident from
equations (4. 1) and (4 .5). These contributions come
from the cross-product terms involving d~ d~ .
These cross-product terms cancel one another
over the entire set of 2L half samples, or when
one uses an infinite number of half-sample rep-
lications. The question then arises whether one
can choose a relatively small subset of half
samples for which these terms will also disap-
pear. If this can be done, then the corresponding
half-sample estimates of variance will contain all
of the information (21 degrees of freedom in the
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simple situation being considered here) available
in the total sample. Some attempt at “balancing”
is indicated in the U.S. Bureau of the Census
publication (Technical Paper No. 7, p. 57) and
this is described in the following quotation:

For the non-self-representing strata, the
strata were grouped into 85 homogeneous
pairs. For each of these 85 pairs, a set of
20 random numbers between 1 and 40 were
selected without replacement. The first PSU
in the pair was included in the 20 replica-
tions corresponding to these 20 random num-
bers, and the second PSU in the remaining
20 replications. In this way, a set of 85
PSU’S, one from each pair, was assigned to
each replication. It would have been possible
to make an independent selection from each
pair for each replication; however, it is be-
lieved that the reliability of the estimates
was increased somewhat by insuring that
each PSU would appear in 20 of the 40 rep-
lications.

It is unlikely, however, that this type of balancing
will appreciably affect the reliability of variance
estimates, since as noted above, this reliability
is determined by the joint occurrence of elements
from pairs of strata.

A simple example will show that it is possible
to select a subset of half-sample replications
that will have the desired property. Consider
a three-strata situation with observations

(Y**>Y12). (Y21* Yzz)! and (Y31,Y32). There
are 23= 8 possible half-sample replicates. Now
consider the following subset of four replicates:

Stratum
Replicate 1 2 3 (Yh+ - i~t)

1
Yll Y21 Y31 ‘1’2) (+WI ‘1+ ‘2 ‘2+ ‘3 ‘3)

2
Y11 ’22 ’32

(1/2) (+W1dl-W2 d2-W3 d3)

3 y12 Y22 Y31
(1/2) (-WI dl-W2 d2+ W3 d3)

4 ’12 ’21 ’32 (1/2)(-wl dl+ W2 d2-‘J’3d3)

The signs of the separate terms in the
deviations are determined by the definition of
dh = (y~~- y~.2). It is, of course, immaterial
how the two observations within a stratum are
numbered originally. Once the numbering is set,

however, as in the first replicate, it is main-
tained in determining the remaining replicates.
If these deviations are squared, the first part of
each expression is W12d~/4+ W~d~/4 + W32d~/4,

which is the desired estimate of variance. The
second part of each expression contains the cross-
product terms, and it can easily be checked that
all these cross-product terms cancel when the
squared deviations are added over the four rep-
licates. This follows from the fact that the
columns of the matrix of signs in the deviations
are orthogonal to one another. Thus this set of
balanced half samples can be identified as

+++-
+ -.
-- +
-+-

where a plus sign indicates Yh], whiIe a minus
sign denotes yhz. Notice that this particular set
of replicates does have the property that each of
the two elements in a stratum appears in half the
samples.

If one wishes to obtain a set of half samples
that will have this feature of “cross-product
balance,” for any fixed number of strata, then it
becomes necessary to have a method of construct-
ing matrices of + and - signs whose columns are
orthogonal to one another. A method is described
by Plackett and Burman (1943-46, p. 323) for
obtaining k x k orthogonal matrices, where k is a
multiple of 4. Suppose, for example, that we have
5, 6, 7, or 8 strata. The Plackett-Burman method
produces the following 8 x 8 matrix, which is the
smallest that can be used for these cases because
of the muItiple-of-4 restriction. The rows identify
a half sample, while the columns refer to strata.

+ -- +-++--
+-!- --+-+-

++ +--+--

- +-+-+---!--

+--l- +i----

-+- -!- ++--

-- +-+++--

----- ---

Any set of 5 columns for the 5 strata case, 6
columns for the 6 strata case, 7 columns for the
7 strata case, or the entire 8 columns for the 8
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strata case, defines a set of eight half-sample
replicates which will have the “cross-product
balance” property. If it is necessary to use the
eighth column, the resulting set of half samples
will not have each element appearing an equal
number of times. This will not destroy the variance
estimating characteristics of the set of half
samples, but it does mean that the average of the
eight half-sample means will not necessarily be
equal to the overall sample mean.

Since orthogonal matrices of plus and minus
ones can be obtained whenever the order of the
matrix is a multiple of four, it is always possible
to find a set of half-sample replicates having
cross-product balance. It follows that the number
of half samples required will be at most three
more than the number of strata, The HES analysis
is based on 21 strata and it is therefore necessary
to use 24 half-sample replicates. A possible set
of balanced half samples for this particular case
is shown below. This design was obtained by using
the first 21 columns of the construction given in
the Plackett-Burman paper. Any two columns of
this design are orthogonal, and each element ap-
pears in 12 of the 24 replicates. The entire pattern
is completely determined by the first column. The
second column is obtained from the first by mov-
ing each sign down one position and placing the
23d sign at the top of the second column. This
rotation is applied repeatedly to obtain the remain-
ing columns. The 24th position is always minus
and is not involved in the rotation.

The staff of NCHS has adapted the foregoing
method of balanced half-sample replication to the
routine analysis of data from HES, and this adap-
tation is described in the appendix. Professor
Leslie Kish of the Survey Research Center of the
University of Michigan has also employed the
method in estimating the sampling errors of
multiple regression coefficients, although the re-
sults of his study are not yet available for publi-
cation.

Partially Balanced Half samples

If a complex sample design is based on a
large number of strata, say 80, then it would
ordinarily be undesirable to use a complete set
of balanced half samples. As we have seen, a
complete set would consist of 80 samples, and the

processing of results for such a large number of
half samples might prove too costly. The question
can then be raised of whether it is possible to de-
vise a set of k partially balanced half samples
which will produce a more precise estimate of
variance than can be obtained from k independent
half -sample replicates. One way of accomplishing
this will now be described and evaluated.

To illustrate the approach, consider the case
of L = 4. There are 24 = 16 possible half sam-
ples; a balanced set of four half samples can be
constructed as shown in the preceding section; we
desire a partially balanced set of two half samples.
The following design was proposed by the staff of
NCHS:

St7-atum
Sample 1234

1
T

2 +-l+-

A plus indicates yh, and a minus yh2. As before,
‘h= (Yh]- ybz) . This desigh was obtainecl by
using orthogonal columns for the first two strata
and then repeating this in the second two strata.
The corresponding squared deviations of the half-
sample means from the overall sample mean are:

+ (1/2)(-WI W2 d,dz + ~ W3 d, d3

– WIWhdld~ - W2W3 d2d3

+~~d2d4—W3~ d3d4)

Their sum, divided by two, is

(1/4) ~ W: d; + (1/2) (~ W3 d1d3 + W2W4 d2d4)

Thus we see that cross-product terms within
orthogonal sets have been eliminated, and that a
portion of the cross-product terms between or-
thogonal sets have been eliminated. Applying the

18



.
A set of balanced half samples for 21 stratal

Stratum

Half sample 1 2345678910

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

+--- -+ -+--

++----+-+-

+ + +----+--+

++++----+-

+ ++++----- i-

++ +++----

-1-- -F i-+++---

-+- +“+ +++--

a

i- -+- +++++-

-F+-+- ++-+++

-++-+-++++

-++-+--!-++

+ --++-+--+ i-

++ --++-+ -+

++- -++ - + -

-- ++- -++-+

+ - - ++ - - +-!- -

-+- -++- -++

+-+--++- -+

-+-+- -++--

-- i--+ --+i--

--- +--l---++

--- - +-+ - - +

--- --- --- -

11

+

+

-F

+

-1-

+

+

+

+

+

-!-

+

12

+

+

+

-1-

+

+

+

+

-1-

+

+

+

13

+

+

+

+

+

+

+

+

+

+

+

+

l-l

+

+

+

+

+

+

i-

+

+

+

+

+

15

+

+

+

+

+

+

+

+

+

-1-

+

+

16

+

+

+

+

+

+

-1-

+

+

+

+

+

17

+

+

+

+

+

+

4-

+

+

•!-

+

+

18

-1-

+

+

+

+

-!-

+

+

+

+

+

+

19

-1-

+

+

+

i-

+

-!-

+

+

+

+

+

20

-!-

+

+

+

+

+

-t

+

+

+

+

i-

21

+

+

+

+

+

-1-

+

+

+

-?-

-1-

+

lItisassumed thattwo e[eme~@ aredrawn independent] yfromeaCh 0f21 Strain- Aplussiw isarhitrarily assiwed

to one of the elements and a minus sign to theothdr. A row in this table then identifies a particular semple, the element

with the indicated sign being tsken from each of the21 strata.
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argument used in obtaining equation (4.8), the is the sum of the separate variances. If one now
rel-variance of the estimated variance is ap- assumes that the ~h’s are equal and that the S/ ‘s
proximate by are all equal, the argument that led to expression

2x2 p+] I B+l (4.8) gives for the rel-variance of the estimated

If the two half-sample replicates had been chosen
independently this rel-variance would be, from
equation (4.8),

Hence a gain has been achieved, over the use of
independent replicates, by using a partially bal-
anced set of half samples.

This argument can be set forth in general
terms, Suppose there are L strata and that a bal-
anced set of k half samples is used, where for
convenience we assume that L divided by k is an
integer, and the k-pattern of half samples is re- s
peated over each succeeding set of k strata. (In
the preceding example, L =4, k =2, and L/k= 2.)

Then

variance

2( L–k)+O+l
kL 2L

(4.10)

Since the first term in expression (4.8) is
2 (L -1 )/kL, we see that the reduction in this por-
tion of the rel-variance is like a finite popula-
tion correction effect. By way of illustration, let
us take L= 80, k=20 or40, and /3=3 or 6. The
results are given in table 4. The gains for 20
replications are modest, but they are essentially
achieved at little or no expense.

In conclusion, we observe that Gurney (1964)

has approached this problem in a different fashion.
Suppose again that there are 80 strata and that
one enumerates the complete set of 80 balanced
half samples. If one now selects without replace-
ment 20 replicates from the complete set of 80,
Gurney shows that the gains over independent rep-
lication are essentially the same as for the pro-
cedure that has just been considered. Thus two
alternative ways of proceeding are available, both
giving finite population factor gains in one com-
ponent of the total variance,

where the second summation is taken over all
Half-Sample Replication and the Sign Test

pairs (h, j ) such that

h<j

h is from one set of k strata and j is from
a second set of k strata

h and j represent corresponding columns
from the k orthogonal columns that make up
a balanced set.

The remaining cross-product terms disappear be-
cause of orthogonality conditions. It is easy to
see that there are

+(:-1)
k ~L,k)c2= = L(L-k)

2 2k

terms in the summation.
Since h and j are always different in the

second part of equation (4.9) and since E (d~ ) = O,

the covariance of the two parts of (4.9) is equal
to zero. Therefore the variance of the expression

Suppose that the sample observations Yhl
and yh2 with which we have been dealing actually
represent the differences of two other variables,
say Zh,and Xhi. That is, yh,= (zh~- xl,,) and
~~z= (~hz- Xhz). Under these circumstances,
the population mean of the variable y is equal to
the difference of the population means of the
variables z and x. If the assumption of approxi-
mate normality for Y$t is questioned, or if one
wishes to avoid the computation of variances, it
is tempting to think of combining the half-sample
replication technique and a nonparametric tech-
nique in the following manner.

Obtain k half-sample estimates of ~. As
before, denote these by ~h~,~,~h~,z. . . . . Yh5,~.

Apply some type of nonparametric technique
to these observations. For example, one might
use a sign test to test hypotheses about the median
of the distribution from which the ~h~,i are drawn,
or one might use the order statistics of this set of
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Table 4. Comparison of components of rel-variance for independent replicates and for
partially balanced replicates

(L ==80)

/9=3 (3=6

Independent replicates .099+ .025 = .124 .099+ .044 = .143

k=20 Partially balanced .075+ .025 = .100 .075+ .044= .119
replicates

(.100)/(.124) =81% (.119)/(.I.43) ’83%

I Independent replicates .049+ .025 = .074 .049+ .044 = .093

k=40 Partially balanced .025+ .025 = .050 .025+ .044 = .069
replicates

(.050)/(.074) = 68% (.069)/(.093) = 74%

*The first term in each sum represents the component due to half-sample replication.
The second term represents the component that arises in ordinary variance estimation.

~hs,i ‘s to determine confidence intervals fora
population median.

The difficultiesassociated withsuchananaly-
sis arise from the fact that the half-sample rep-
licates are not independent of one another, when
they previewed as samples from theoverallpop-
ulation. As an illustration, let us consider the
following two half-sample estimates:

~h$,l= w’lYll+w2Y21 + W3Y31

~hs,2 = wlYII+ wzyz2 + ‘3y32

If repeated drawings of the entire sample are
made, then

E(~h,,i)=W,P,+W2T2+W3P3

cOvbhs,l, ~hs,2 )=E{[q(Y,l-q)

+ w’2(y21-q) + W3(Y31-F3)] x

m]}[W(YI1- q+ W*(Y22- 19+ w3(y32- j

All other cross-product terms titiecovariance
dropout because oftheindependence ofselections
within and between strata. Finally, the correla-
tion between ~h~,1 and ~h~,z is

‘~hs,l ● ~hs,2 = 1/3

and we see, in general, that the correlation be-
tween any two half-sample means will be equal
to the fraction of common elements, provided
fiat the W~S~are allequal. ThUS ~cantakeonthe

values 0,1/L,21L,3/L,...,(1)lL/L ,1.
If one makes independent selections ofhalf-

sample replicates, then the number ofeIements
common to any two replicates will be arandom
variable whose average will be L/2, and thereis
little one cando ina preciseway about evaluating
the effect of the correlation ona sign test. How-
ever, the completely balanced set of replicates
that was described in “Balanced Half-Sample
Replication” does have “nice’’propertiesint his
respect. For example, the set offour replicates
given in this section for L=3 is such that anY
pair of replicates have a single common element.
Therefore the correlation between any two of these
~h,’s is 1/3, assuming equality of the Wh2&.
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Furthermore, these y~, ‘s have the same expected
value and variance.

If one were to apply a sign test to these four
y~,’s for the purpose of testing the hypothesis
that median of the distribution from which they
are drawn is zero, then one would look at the
number of positive ~~~’s in the sample of four.

Ordinary theory assumes that the observations are
independent, and that the probability that any single
observation is greater than zero is 1/2. Hence,
if the hypothesis is rejected whenever there are
either zero or four positive observations, the
level of significance is (1/2)4 + (1/2)4 = .125.
This value does not hold in the present situation
because observations are dependent upon one
another.

It is possible, however, to obtain an appro-
priate value in this case if one is willing to as-
sume that the y~, IS have a normal multivariate
distribution. Gupta (1963, p. 817) provides a table
which gives the “probability y that N standard nor-
mal random variables with common correlation
p are simultaneously less than or equal to H!’ If
we take N =4, P =1/2, and H=o,we find this
probability to be .14974. Therefore the level of
significance of the test procedure is 2(.14974)=
.299 instead of the .125 that would be obtained
from independent observations. This is a clear in-
dication that the nominal significance levels of a
sign test will be changed markedly if there is
correlation among the observations.

Whether or not the analysis of the preceding
paragraph can be generalized to a larger number
of strata depends upon the pattern of common
elements in the balanced half-sample replicates
and upon the availability y of tables. The situation
regarding common elements can be inferred from
an examination of the 8 x 8 orthogonal matrix
given in “Balanced Half-Sample Replication.”
Because the matrix is orthogonal, any pair of
rows of the full 8 x 8 matrix will contain four
elements in common and the common correla-
tion between half-sample means will be P = 1/2,

assuming that the W~S~are constant. This will hold
in general if the number of strata is a multiple
of four. If the number of strata, L, is one less
than a multiple of four, and if one deletes the
column whose sign entries are all the same then
any pair of rows will still have the same number

of elements in common. This will be ~ -1,
and the common correlation will be

L+l ~—.
L-1p= 2 .—

L 2.L

For L = 7 the number of required half-sample
replicates will be 8, the number of common ele-
ments between pairs of replicates will be 3, and
/l = 6/14 = .43. Using the Gupta tables for
N = 8 and P = ,40, the probability of obtaining all
plus or all minus signs is 2 x (.07909)= .158.
The corresponding value for eight independent
observations is (1/2)8 + (1/2)8 = .0078. Again
we see the marked disparity between the two
significance levels.

If the number of strata is two less than a
multiple of four, pairs of half samples will no
longer have the same number of elements in
common. It is, however, easy to show the follow-
ing

Numbev of common Numbev of pairs of
elements samples

L+2 z—-
2

(L+ 2) (L+ 2)/4

L(L + 2)/4
(L +1) (L+ 2)7

One might then consider using an average correla-
tion coefficient. A similar analysis could be used
for cases where the number of strata is three
less than a multiple of four, and one would then
find three possible values for the “number of
common elements .”

At the present time, this type of analysis
is not very practical because Gupta’s tables give
probabilities only for the case where all values
are positive or all are negative. For larger num-
bers of strata, one would have to be able to move
in from the extremes on the distribution of num-
ber of plus signs in order to get meaningful levels
of significance. Lacking such tables, the preceding
analysis shows that levels of significance are
“too far off” when obtained from the assumption
of independence. Actually, if one must assume
normality in order to obtain probabilities for
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making a sign test, then one might just as well
use normal tests for correlated observations, as
described by Walsh (1.947).

Jackknife Estimates of Variance From

Stratified Samples

Quenouille (1956) introduced a method for ad-
justing the members of a certain class of biased
estimators in order to reduce the bias from order
1/n to order I/n*. Numerous other authors—Jones
(1956, 1965), Tukey (1958), Durbin (1959), Deming
(1963), Lauh and Williams (1963), Robson and
Whitlock (1964), Miller (1964), and BriHinger
(1964)—have made contributions to the develop-
ment and behavior of such estimators and to the
estimation of their variances. Tukey (1958) gives,
in an abstract, the following brief account of these
characteristics:

The linear combination of estimates based on
all the data with estimates based on parts
thereof seems to have been first treated in
print as a means of reducing bias by Jones
(J. Am. statist. Ass., Vol. 51 (1956), pp.

54-83). Let y(.) be the estimate based on all
the data, Y(i~ that based on all but the ith

piece, Y(,, the average of the Y(, ~. Quen-
ouille (Biovzetrika, Vol. 43 (1956), pp. 353-
360) has pointed out some of the advantages
of Zly(.) - (n - l)ji(,) as such an estimate of
much reduced bias. Actually, the individual
expressions my(.)– ( m- l)Y(,) may, to a
good approximation, be treated as though they
were independent estimates. Not only is
each nearly unbiased, but their average sum
of squares of deviations is nearly n (n – 1)
times the variance of their mean, etc. In a
wide class of situations they behave rather
like projections from a non-linear situation
on to a tangent linear situation. They may
thus be used in connection with standard con-
fidence procedures to set closely approximate
confidence Iimits on the estimate.

This general procedure, as decribed by Tukey,
has been called the Jackknife method since “Like
a boy scout jackknife, such a technique should be
usable for anything. . . although, again like a jack-

knife, many of its jobs could be better done by
the corresponding specialized tool, if that tool
were only at hand. ”

The application of these ideas to stratified
sampling, with two independent selections per
stratum, is straightforward. Consider the simple
stratified model described in “Half-Sample Rep-
lication Estimates of Variance From Stratified
Samples.” For simplicity, let L = 3. Then if one
leaves out each “piece” in succession, and forms
the estimate based on the remaining “pieces,”
we have the following six estimates of the popu-
lation mean:

= y Yll + ~2(Y21 + Y~*)/2 + W3 (Y31 + Y3Z)/2
‘(1)

0)/2 + W~(Y~, + y32)/2= q Y~2 + W2 (Y2] + J’2.
‘(2)

q(3)
= ~(y,l + y,2)/’2 + W2 yz, + w3(yJI + Y3zJ/z

‘(4) = w,(yll + y12)/2 + W2Y22+ ~3(y31 + y32)/Z

1$) =
W] (y]~ + yl~)\2 + W2(Y71 + Yzz)/2 + ‘3Y31

W,(y,, + Y12)/2 + W2(Y21 + y22)\2 + ‘3y32
‘(6) =

In general, there will be 2L such quantities. The
estimation procedure applied to the entire sample
gives

f?= w, (Y~*+ YJ2 + w2(y21+ y22)/2 + W3(y31+ y32)/2

If the original sampIe had consisted of six inde-
pendent observations, then the Jackknife proce-
dure would call for obtaining six estimates of the
form q~i)= 6q - Sq(i). In the present example,
however, there are two independent selections
within each stratum. Hence it is appropriate to
form the six estimates

q(;)= 2q – q(i)

The final estimate of the population mean is
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and the variance of q* is estimated by

i:, (q;) - 17*)Y2

In general, the mean will be estimated by

q’ =i:l q;)/2L

and its variance by

i:,(q;, – q*12/2

In the simple linear case that is being con-
sidered here, it is easy to show that an analysis
in terms of the q~,’s produces results that are
identical with those obtained by the standard
analysis. For example,

Q(l) =
7st + q4h) f?;) = Y,t – y~~iz

q(z)
= y~t – ~dl/2, q* = y~t + ~dl/2

(2)

q(5) = 7$t + W3d3/2, q“
(5) = Yst - W3d3/2

‘(6)
= y~t – W3 d3 /z , q;, = ji$t + W3d3/2

q = Yst Q* =, Y*t

Furthermore

~ (q: - q*)2/2 = (W;d; + W22d: + W;d:)/4
i=l (1)

which is the ordinary estimate of the variance of
Y,t, just as in the case of the balanced half-
sample replicates.

There is another variant of the Quenouille
type of estimate which is closely related to the
half -sample approach. Suppose that a particular
half sample is chosen. Denote its elements by

Y1],Y21,...7YL1 and its mean by ~h~. The
set of remaining elements, one in each stratum,
then constitutes an independent half sample whose

mean we denote by y~~.
mate is then defined by

2y~, - (yh, +

A Quenouille-type esti-

y$ )/2

which, in the simple linear case that is being
considered here, is identically equal to Y,t. This
approach does not provide an estimate of vari-
ance in the present instance since only one esti-
mate is obtained. In more complicated situations,
however, different half samples will provide dif-
ferent values of the Quenouille half-sample esti-
mate, and it might be possible to base estimates
of variance on these different values. This pos-
sibility will be discussed briefly in the following
section.

Half-Sample Replication and the

Jackknife Method With Stratified

Ratio-Type Estimators

We have introduced half-sample replication
and the Jackknife method in the setting of a simple
linear situation, where they obviously have no real
utility. Under these circumstances, they merely
reproduce results that can be obtained by direct
analysis. If, however, more complicated methods
of sampling and estimation are employed, then
direct methods of analysis may not be available,
may require a prohibitive amount of computation
in comparison with the methods being considered
here, or may even give results that are in one
way or another inferior to those provided by half -
sample replication and the Jackknife.

Although one may accept on intuitive grounds
the general premise that half- sample replication
and the Jackknife do permit the “easy” computa-
tion of variance estimates that in one way or
another mirror most of the standard complexities
of sample design and estimation, the exact char-
acteristics of the resulting estimates and their
corresponding estimates of variance are, for the
most part, unknown. This is particularly true for
half-sample replication, even though the intuitive
appeal of this method may be more direct than
that of the Jackknife. No published or unpublished
references to the behavior of half-sample rep-

24



lication in complex situations were discovered,
and the notion of balanced half samples was
introduced in this report for the first time. On
the other hand, there is a growing body of
literature and data relating to the Jackknife. We
shall now summarize this material on the Jack-
knife and then report the results of a very small
experiment which compares results obtained by
balanced half-sample replication and by the Jack-
knife.

Although QuenouiIle (1956) introduced his
method of adjustment as a means for reducing
the bias of an estimator, our interest in the Jack-
knife is primarily focused on its utility for vari-
ance estimation. One is naturally interested in
obtaining any reductions in bias that are possible,
but there is a considerable body of empirical
evidence—notably in the work of Kish, Nam -
boodiri, and Pillai (1962)—which indicates that the
“combined ratio estimator” for population means,
subpopulation means, and differences of sub-
population means probably has negligible bias in
most practical surveys. On p. 863, Kish et al.
say “Our empirical investigations, set in a theo-
retical framework, show that the bias inmost prac-
tical surveys is usually negligible; the ratio of
bias to standard error (B/a) was small in every
test, even those based on small sub-classes. ”

There is actually very little published ma-
terial which has a direct bearing on our present
concern. The pertinent items are briefly sum-
marized.

1. Quenouille (1956) has shown by formal
analysis that the variance of his esti-
mator, where such an estimator is ap-
propriate, differs from the variance of
the unadjusted estimator by terms of
order I/n2.

2. Durbin (1959) applied the method of Quen-
ouille to the ratio estimator r = ~/.F,

where a random sample was divided into
two groups of equal size. Thus he con-
sidered the estimator, of E (Y)/E (x),

f= 2r – (rl + r2)/2

where ~ = {y/x), r] = (yl/xI), r2= (y2/x2),

y and x are sample totals, y, and x*

are half-sample totals, and Yzand X2 are

the other half -sample totals. Durbin con-
siders two cases: (1) x is a normal vari-
able with variance O (n-l), and the regres-
sion of y on x is linear, not necessarily
through the origin; (2) x is a gamma
variable with mean m and the regression
of y on x is linear. For the first case,
when terms of O(n- 4)are ignored, the
result is obtained that the variance of f

is smaller than the variance of r. For
the second case, it was not necessary to
use an approximate form of analysis.
Durbin concludes that “. . . whenever the
coefficient of variation of x is less than
1/4, which will be satisfied by all except
the most inaccurate estimators, Quen-
ouille’s estimator has a smaller mean
square error than the ordinary ratio es-
timator. ‘This is an exact result for any
sample size. ”

3. Brillinger (1964) studies the properties
of these estimators in relation to maxi-
mum likelihood estimators. His conclu-
sions are: “Summing up the results of the
paper, one may say that Tukey’s general
technique of setting approximate confi-
dence limits is asymptotically correct,
under regularity conditions, when applied
to maximum likelihood estimates and that
the technique provides a useful method of
estimating the variance of an estimate.
Also one may say that the estimate pro-
posed by Quenouille will on many occa-
sions have reduced variance, smaller
mean-squared error and closer to asymp-
totic normality properties, when com-
pared to the usual maximum Likelihood
estimates. ”

4. Robson and Whitlock (1964) apply Quen-
ouille’s method of construction to obtain
estimates of a truncation point of a dis-
tribution. One of the interesting features
of their work relates to the construction
of estimators that successively eliminate
bias terms of order n-z, n ‘3, etc. They
find for their particular problem that the
variance of these estimators increases
as the bias is decreased.

5, Miller (1964) is concerned with conditions
under which a JaclQcnife estimator, and its
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associated estimated variance, will as-
ymptotically have a Student’s t distribu-
tion. Both of the situations described by
Miller are ones in which the unjackknifed
estimator had a proper finite or limiting
distribution under weaker conditions than
required for the Jackknife.

The foregoing five references are concerned
with estimators and with their bias and variance.
None deals with the problem of estimating vari-
ances. However, Lauh and Williams (1963) do
present some Monte Carlo results which relate
primarily to the estimation of variance. They are
again concerned with the estimation of a ratio,
E(y)/.E(x), but the Quenouille procedure is ap-
plied to the individual sample observations instead
of to half samples as in the Durbin
That is, they compare the behavior

investigation.
of

q=(i:,Yi)/( $ xi)
i =]

with the behavior of

q “=iq*/n
1=, (i)

where

‘(+ J“j-_Vi)/(l~lX,-xi)
q(l) j=l

and

~~l=nq–(n–l)q. (,)

This is similar to the estimator
posed for stratified sampling in

:hat was pro-
the preceding

section. Lauh and Williams define two populations
which are used for empirical sampling: (1) x is
a normal variable, while the regression of Y on
x is linear thwugh the origin; (2) x is a chi-
square variable with 2 degrees of freedom, and
the regression of Y on x is linear through the
ovi~”n. Since the regressions are forced to go
through the origin, both q and q* are unbiased
estimators of E(Y)/E (x). For each population
1,000 samples of n are drawn, n = 2, 3, . . . . 9.
and a variety of variance estimators are con-

sidered. In particular, the ordinary estimate of
vari;mce obtained from a Taylor series approxi-
mation was employed, denoted by VI(q); also an es-
timate of variance was obtained from the ~ {i~‘s,
namely

v(q*) = i (q* – q*)2/r2(n– 1)
i=l (’)

The results of this investigation are most in-
teresting, particularly the fact that the precision
of v (q’) is much better than that of VI(g) when x
has an exponential distribution, and are sum-
marized by the authors as follows:

From the results of these two studies, it
may be inferred that the bias of the esti-
mator v,(q) is dependent upon the degree
of skewness of the original y and x popu-
lations. Estimators of the true variance taken
from higher order approximations lead only
to slight improvements over the second
order approximation v,(q), and in some cases
the estimate is actually worse. The preci-
sion of v (q’) is nearly double that of VI(q)

for exponential x distributions and the bias of
v (9*) is smaller than that of V1(q). ThUS
it appears that the split-sample estimator

cl” may be definitely preferable to q in some
situations.

Finally, we note that extensive Monte Carlo
investigations of many of these points have been
initiated by Dr. Benjamin Tepping, Director of the
Center for Measurement Research in the U.S.
Bureau of the Census. Results of these investiga-
tions are not yet available.

The foregoing references are concerned only
with random samples drawn from infinite popula-
tions. Our principal concern is with stratified
samples drawn, usually without replacement, from
finite populations where complex estimation pro-
cedures are applied to the basic sample data. Un-
der these circumstances, a careful investigation
of the behavior of estimators and of variance es-
timators would undoubtedly require a large-scale,
Monte Carlo type of program, integrated with as
much analytic work as possible. This was not
feasible within the confines of the present study,
even in terms of planning. Nevertheless, we did
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Table 5. Artificial population

I

Y x

3 T

4 6

11 20

Total 18 30

RI .= = .6000
30

Stratum

II

Y x

5 Y

9 8

24 23

38 35

R, = 38—= 1.0857
35

R-97-—= 1.1548
84

desire some small numerical model that would
illustrate the various points that have been raised.

As an example, we started with the small
artificial population that is used for illustrative
purposes in Cochran (1963, p. 178, 179). However,
since we wished to enumerate all possible samples
and thereby investigate the behavior of both bal-
anced half -sample replication and the Jackknife
method of variance estimation, and since com-
putations were to be carried out on a desk cal-
culator, we were not able to use the full popula-
tion as given by Cochran. (It did not appear worth-
while to invest computer programming time on one
isolated and artificial example.) Accordingly one
observation was dropped from each stratum apd
the following population was used as shown in
table 5.

For this population, all possible samples of
six, r7~=2 in each stratum, were enumerated
-33= 27 possible samples. For each sample,
the following quantities were computed.

1. The combined ratio estimate.
2. The estimate of variance based on the

ordinary Taylor series approximation to
the variance of the combined ratio es-
timate.

3. The Quenouille estimate of the population
ratio, using individual observations as
previously described.

4.

5.

6.

7.

III

Y x

7 7

9 4

25 12

41 19

R .41_
3

= 2.1579
19

The Jackknife estimate of variance, as
described in the preceding section.
The average of four balanced half-sample
estimates, as described in “Balanced
Half-Sample Replication.” It was neces-
sary to consider two sets of balanced half
samples, one complementary to the other,,
since this is a nonlinear situation. It is
assumed that one of these two sets will be
chosen randomly in practical applications.

The estimate of variance based on the
four balanced half-sample estimates,
This estimate of variance is the sum of
squared deviations of four half-sample
estimates about the combined ~atio esti-
nzate, divided by four, and multiplied by
the finite population correction. This is the
manner in which the half-sample esti-
mate has been applied in the work of the
U.S. Bureau of the Census and in HES.
Again the estimate was made for each of
the two sets of balanced half samples.
The Quenouille estimate based on the
balanced half sampleq. That is, a Quen-
ouille estimate was obtained from a half
sample and its complement. T’his was
carried out for each half sample and then
averaged over the set of four balanced
half samples. The results of these com-
putations are summarized in table 6.
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Table 6. Behavior of estimates and estimates of variance obtained by enumerating
samples drawn from artificial population of table 5

Mean Average Variance

Estimate Bias Standard Variance square variance V::i:::eerror error estimate estimates

Combined ratio estimate------ +.0118 .122 .0148 .0149 .0099 ● 000034
Quenouille estimate,

individual observations ----- +. 0034 .126 .0160 .0160 ,0110
Balanced half-sample

.000040

estimate-------------------- +.0428 ● 104 .0109 .0127 .0122 ● 000047
Quenouille estimate,
half samples---------------- -.0198 .137 .0188 .0192 ... ...

●

In obtaining the variance estimates a finite pop-
ulation correction of(l- -$) was applied uni-
formly. It can be readily demonstrated that this
is appropriate for the Jackknife and balanced
half-sample estimates of variance, atleast inthe
simple linear case that was used to introduce
these techniques. Jones (1965) describes amodi-
fication of the Jackknife, whose purpose is to
introduce the finite population correction into the
“bias-reducing” argument upon which the Quen-
ouille adjustment rests. This modification was
not used here.

Although it is clearly impossible to draw
any general conclusions from one artificial ex-
ample such as the above, theresults areinterest-
ing, In particular, we find that the combined ratio
estimate has almost negligible bias and that the
ordinary variance estimate seriously underesti-
mates the true variance; that the Quenouille es-
timate with individual observations does reduce
the bias at the expense of increasing the vari-
ance by about 8 percent, and that the Jackknife
estimate of variance again seriously underesti-
mates the true variance; that the average of the
four balanced half-sample estimates has the
smallest variance and the largest bias, while at

‘the same time providing a reasonable estimate
of the correspondifig variance. Thevarianceof the
variance estimates is largest for the estimate
based on the balanced half samples. Even ifone
makes the comparison onthebasisofmean square
error, the balanced half-sample averageis still
superior to the other estimates in spite of its
larger bias, except for the variance of thevari-

ante estimate. As a final point, the Quenouille
adjustment applied to the balanced half samples
does reduce the bias, but at the expense ofa
marked increase in terms of variance.

This example, trivial and artificial as it
may be, does raise one question that concerns
half-samplt replication. Theuseofthe Quenouille
estimate and the Jackknife method of estimating
variances have usually been considered simulta-
neously. On the other hand, the half-sample rep-
lication method of estimating variances has
always been used to estimate the variance of the
estimate obtained from the entire sample, and
not the variance of the average of the half-sample
estimates. Of course when one does not have an
“exhaustive” set of half samples, as in the case
where they are drawn with replacement, the
average of half-sample estimates would not be
appropriate. Here, however, we do have an
“exhaustive” set of balanced half-sample esti-
mates, and we might well consider using their
average in place of the combined ratio estimate.
In terms of our example, a variance estimate
with average value .0122 is being used to esti-
mate the variance of the combined ratio esti-
mate, whose true value is .0148. This is some-
what better than the ordinary Taylor series var-
iance estimate, whose average value is .0099,
but not nearly as good as if one uses the half-
sample estimate of variance to estimate the
mean square .error of the average of the balanced
half-sample estimates—namely, a quantity whose
average is .0122 to estimate a quantity whose
true value is .0127.
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A small amount of data which relates to the
foregoing point is presented in table IV of the
appendix. For each of the six subclasses for
which comparisons of percentages are presented,
the estimate obtained from the entire sample can
be compared with the average of the 16 balanced
half-sample estimates. It follows from the argu-
ment used in developing the Quenouille-type es-
timate that the difference between the two can be
viewed as an estimate of bias for the overall
estimate. This approach has been used by Deming
(1960, p. 425). These estimates of bias, expressed
as fractions of the estimated standard errors,
range from approximately .03 to about .38. These
data are reassuring, but they are also too frag-
mentary to support any general conclusions con-
cerning the bias of estimates for HES analysis.

In conclusion, attention should be drawn to
another avenue of approach to estimation and
variance estimation which is somewhat related to
the Jackknife method, although this relation has
not been explored or even noticed in the litera-
ture. Mickey (1959) presents a general method
for obtaining finite population unbiased ratio and
regression estimators building on the work of
Goodman and Hartley (1958). In addition, he con-
structs unbiased estimates of the estimator vari-
ance by the process of breaking up the sample
into subsamples, more or less along the lines of
Tukey’s general version of the Jackknife. Williams
(1958, 1961) specializes these results to regres-
sion estimators, and considers their properties
in some detail. No detailed attention has been
given to this topic in connection with the prepara-
tion of the present report.

SUMMARY

Sampling theory provides a wide variety of
techniques which can be applied in sample design
to obtain estimates having essentially maximum
precision for fixed cost. These techniques are
particularly um?ful when populations are spread
over wide geographic areas so that highly cluster-
ed samples must be obtained, and when extensive
prior information about the population under study
can be used in sample selection or in estima-
tion. Such complex sample designs do, however,
require extremely complicated and only approxi-
mate expressions for estimating from a sample

the variance of survey estimates. If an extremely
large number of widely differing types of esti-
mates are to be made from a single large-scale
survey, the burden of developing appropriate
variance expressions, of programming these for
a computer, and of carrying out the computations
may become excessive.

The foregoing problems are intensified, al-
though not .appr~ciably changed in kind, if survey
analysis is to go much beyond the estimation of
population means, percentages, and totals. l%is
is particularly true when the goals of analysis are
to compare and study the relationships among
subpopulations, or domains of study. Investiga-
tors are then interested in applying such standard
statistical techniques as multiple regression or
analysis of variance, and find that many of the
assumptions required for the application of these
techniques are violated by the complexities of the
sample design. Some authors have used the term
“analytical survey” to refer to any survey in
which extensive comparisons are made among
subpopulations; other authors reserve this term
for surveys that are specifically designed to con-
trol the precision of these comparisons. There
seemed to be little point in arguing this issue in
the present report, since most surveys are multi-
purpose in character and it is usually impossible
to design for a specific comparison. The major
portions of the first three sections of the report
are devoted to a literature survey and discussion
of these topics.

Survey design (as opposed to the analysis of
survey data) requires the use of “exact” variance
expressions since it is necessary to balance the
effects on precision of a wide variety of sampling
techniques. It is possible, however, to bypass the
corresponding detailed variance estimation tech-
niques in the actual analysis of survey data through
the use of replication. This approach is discussed
in “Replication Methods of Estimating Variances, ”
where an attempt is made to set forth its advan-
tages and limitations. Emphasis has been placed
upon variance estimation, although it is clear that
covariances can also be treated in the same
manner.

One of the most serious limitations of rep-
lication as applied to the analysis of complex
sample survey data arises from the difficulty of
obtaining a sufficient number of independent rep-
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lications to assure reasonably stable variance
estimates. This fact has beenparticularly obvious
when a set of primary sampling units is stratified
to a point where the sample design calls for the
selection of two primary sampling units per
stratum, thus leading to only two independent rep-
licates, To overcome this difficulty the U.S.
Bureau of the Census and the National Center for
Health Statistics have been using a pseudoreplica-
tion method for variance estimation, called half-
sample replication. This procedure is described
in “Half-Sample Replication Estimates of Vari-
ances From Stratified Samples ,” and several
improvements, balanced half-sample replication
and partially balanced half-sample replication,
are introduced in “Balanced Half-Sample Repli-
cation” and “Partially Balanced Half Samples.”
Still another, but related, variance estimation
technique, the Jackknife, is described in “Jack-
knife Estimates of Variance From Stratified
Samples. ” The application of these methods is
illustrated on an artificial set of data in “Half-
Sample Replication and the Jackknife Method
With Stratified Ratio-Type Estimators ,” and the
appendix shows how balanced half- sample repli-
cation has been used in analyzing data obtained
from the Health Examination Survey.

It would appear that replication and pseudo-
replication are extremely useful procedures for

obtaining variance estimates when one is making
detailed analyses of data derived from complex
sample surveys. Nevertheless, there are many
unresolved problems relating to the application
of these methods. Among these are the following:
(1) The effects of certain sampling techniques
on variances will not be picked up—e.g., the
selection of one primary unit per stratum and
controlled selection; (2) The variance estimate
ordinarily refers to the average of the replication
estimates, whereas the ordinary procedure is to
use an overall sample estimate, and the two will
not be the same except in the rare case that the
estimate is linear in form; (3) No investigations
have been carried out of the applicability of these
approaches to such problems as contingency table
analyses and standard analysis of variance ap-
proaches; and (4) It is extremely difficult to
attack any of these problems analytically, and
the development of empirical approaches that
will have widespread applicability seems most
difficult.

As a final point,. we call attention to the prob-
lems that arise when survey data, as opposed to
experimental data, are used to develop general
scientific conclusions. This topic has not been
more than mentioned in this report, but reference
may be made to discussions by Yates (1.960),
Kish (1959), and Blalock (1964).
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APPENDIX

ESTIMATION OF RELIABILITY OF FINDINGS FROM THE FIRST CYCLE OF

THE HEALTH EXAMINATION SURVEY

Survey Design

The sampling plan of the first cycle of the Health
Examination Survey followed a highly stratified, mul-
tistage probability design in which a sample of the
civilian, noninstitutional population of the conterminous
United States, 18-79 years of age, was selected. In
the first stage of this design, the 1,900 primary sam-
pling units” (PSU’S), geographic units into which the
United States was divided, were grouped into 42 strata.
Here a PSU is either a standard metropolitan statistical
area (SMSA) or one to three contiguous counties. By
virtue of their size in population, the six largest SMSA’S
were considered to be separate strata and were in-
cluded in the first-stage sample with certainty. As
New York was about three times the size of other strata
and Chicago twice the average size, New York was
counted as three strata and Chicago as two, making a
total of nine certainty strata. one PSU was selected
from among the PSU’S in each of the 33 noncertainty
strata to complete the first-stage sample. Later stages
resulted in the random selection of clusters of typically
four persons from segments of households within the
sample PSU’S. The total sampling included some 7,700
persons in 29 different States.

All examination findings for sample persons are
included in tabulations as weighted frequencies, the
weight being a product of the reciprocal of the prob-
ability of selecting the individual, an adjustment for
nonresponse cases, a stratified ratio adjustment of the
first-stage sample to 1960 Census population controls
within 6 region-density classes, and a poststratified
ratio adjustment at the national level to independent
population controls for the midsurvey period (October
1961) within 12 age-sex classes.

The sample design is such that each person has
roughly the same probability of selection. However,
there were sufficient deviations from that principle in
the selection and through the technical adjustments to
produce the following distribution of sample weights as

required to inflate to U.S. civilian, noninstitutional pop-
ulation levels:

Class
Weight class avewge

7,000-20,999 14,000
21,000-34,999 28,000
35,000-48,999 42,000
49,000-62,999 56,000
63,000-76,999 70,000
77,13(XZ-90,999 84,000

l-di~”t
relative
weight

1

2
3
4
5
6

Peycent
distribution

78.7

18.4
1.9
0.6
0.0

0.4

A more detailed description of the sampling plan
and estimation procedures is included in Vital and

HeaZth Statistics, Series 11, No. 1, 1964: “Cycle I of the
HealthExamination Survey, Sample and Response.”

Requirements of a Variance Estimation

Technique

‘The Health Examination Survey is obviously com-
plex in its sampling plan and estimation procedure. A
method for estimating the reliability of findings is re-
quired which reflects both the losses from clustering
sample cases at two stages and the gains from strati-
fication, ratio estimation, and Poststratification. Ideally,
an appropriate method once programmed for an elec-
tronic computer can be used for a wide range of sta-
tistics with little or no modification to the program.
This feature of adaptability is an important and special
requirement in HES. The small staff of anaIysts in the
Division of Health Examination Statistics typically works
on ordy a few sections of the examination and Ialmratory
results at a time. Consequently tabulation specifications
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and edited input for a sizable variety of report topics
are not available until shortly prior to the need for
estimates of sampling error. New tables of sampling
error have been prepared for each of the 12 reports
published to date and at least a dozen more will be
prepared before the Cycle I publication series is com-
pleted.

Development of the Replication Technique

The method adopted for estimating variances in
the Health Examination Survey is the half-sample
replication technique. The method was developed at
the U.S. Bureau of the Census prior to 1957 and has
at times been giveq limited use in the estimation of
the reliability of results from the Current Population
Survey. A description of the half-sample replication
technique, however, has not previously been published,
although some references to the’ technique have ap-
peared in the literature.

The half-sample replication technique is particu-
larly well suited to the Health Examination Survey
because the sample, although complex in design, is
relatively small (7,000 cases) in sample size. Only
a few minutes are required for a pass of all cases
through the computer. This feature permitted the de-
velopment of a variance estimation program which is
an adjunct to the general computer tabulation program.
Every data table comes out of the computer with a
tab~e of desired estimates of aggregates, means, or dis-

tributions together
with the estimated

with a table identical in format but
variances instead of the estimated

statistics. The computations required by the method are
indeed simple and the internal storage requirements are
well within the limitation of an IBM 1401-1410 computer
system.

The variance estimates computed for the firat
few. reports of Cycle I findings were based on 20
random half-sample replications. A half sample was
formed by randomly selecting one sample PSU from
each of 16 pairs of sample PSU’S, the sample repre-
sentatives of 16 pairings of similar noncertainty strata,
and 8 of 16 random groups of clusters of sample per-
sons selected from the 9 certainty strata and the San
Francisco SMSA, the largest sample PSU of the 33
noncertainty strata. The concept of balanced half
samples is utilized in present variance estimates for
HES. ‘The variance estimates are derived from 16
balanced half-sample replications. The composition
of the 16 half samples, shown in tables I and H, was
determined by an orthogonal plan. In the tables an “X”
indicates that the PSU or random group was included
in the half sample. The construction using 16 balanced
half-sample replications results from viewing the
certainty and noncertainty strata as independent tmi-
verses. This is only approximately true as the post-
stratified ratio adjustment to independent population
controls is made across both certainty and noncertainty
strata. An alternative construction, and perhaps a slight-
ly more accurate one, would have been to use 24 bal-

Table 1. Composition of the 16 balanced half-sample replicates-certainty strata

1

2

3

4

5

6

7

8

1 ------- ------- ------- ------- ------
2-------- -------- -------- -------- --

------- . . . . . . . ------- ------- ------
;----------------------------------

5-------- -------- -------- -------- --
6-------- -------- -------- . . . . . . . . --

7-------- . . . . . . . . -------- -------- --
8-------- -------- . . . ----- -------- --

9------- .- . . ..- .- . ..-. . . . . . . . ------
10----------------------’-----------

11---------------------------------
12---------------------------------

I

13---------------------------------
14---------------------------------

15---------------------------------
16---------------------------------

—

1

—

x

x

x

x

x

x

x

x—

—

2

—

x

x

x

x

x

x

x

x

—

—

3

—

x

x

x

x

x

x

x

x

—

Balanced half-sample replications
—

4
—

x

x

x

x

x

x

x

x
—

—

5

—

x

x

x

x

x

x

x

x
—

6
—

x

x

x

x

x

x

x

x

—

.

7
—

x

x

x

x

x

x

x

x

—

—

8
—

x

x

x

x

x

x

x

x
.

—

9
—

x

x

x

x

x

x

x

x

—

10 11

x

x

x

x

x

x

x

x
—

x

x

x

x

x

x

x

x
—

.

L2
—

x

x

x

x

x

x

x

x

—

L3

x

x

x

x

x

x

x

x

14

x

x

x

x

x

x

x

x

15

x

x

x

x

x

x

x

x
—

—

16
—

x

x

x

x

x

x

x

x

.
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Table II. Composition of the 16 balanced half-sample replicates—noncertainty strata

Pair

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Sample PSU

Pittsburgh, Pa., SMSA---
Providence, R.I., SMSAl

Columbus, Ohio, SMSA----
Akron, Ohio, SMSA-------

York, Pa., SMSA---------
Muskegon-Ottawa,Mich---

Cayuga-Wayne, N.Y-------
York, Me----------------

Baltimore, Md., SMSA----
Louisville, Ky., SMSA---

Nashville, Term., SMSA--
San Antonio, Tex., SMSA-

Savannah, Ga., SMSA-----
Midland, Tex., SMSA-----

Barbour, Ala------------
Independent cities in
Virginia in 1950-------

Brooks-Echols-
Lowndes, Ga------------
Jackson-Lawrence,Ark---

Horry, s.c--------------
Franklin-Nash, N.C------

Lafayette-Panola,Miss--
E. Feliciana-St.
Helena, La-------------

San Jose, Calif.,SMSA---
M&n:polis-St. Paul,

-------------------

Ft. Wayne, Ind., SMSA---
Topeka, Kans., SMSA-----

Grant, Wash-------------
Apache-Navajo, Ariz-----

Dunklin-Pemiscot,Mo----
Franklin-Jacksen-
Williamson, Ill--------

Bates, Mo---------------
Bayfield, Wis-----------

1
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

2
—

K

K

K

K

x

x

x

K

x

x

x

x

x

x

x

x—

—

3
—

x

x

x

x

x

‘x

x

x

x

x

x

x

x

x

x

x—

Balanced half-sample replications
.

4
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
—

—

5
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x—

—

6
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

—

—

7
—

K

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
—

—

8
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x—

.

9
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x—

—

!0

x

x I

x

x

x

x

x

x

x

x

x

x

x

x

x

x
—

—

11
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

—

—

12
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x—

—

13
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
.

—

—

L4
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x—

—

15
—

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x—

16

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

1
Providence, R.I., SMSA figures into the variance computations as it is always a

part of the right hand size of the difference Z’i - Z’ in the variaIIceequa’tion”
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Table III. Estimates of the percent of demographic subgroups of the U.S. adult population with
hypertension and estimates of variance in percent

Demographic subgroup

Males aged 35-44 with income less
than $2,000------------------------

Females aged 55-64 with income of
$4,000-$6,999----------------------

Females with income of $10,000+-----
White rmles with income of
$4,000-$6,999----------------------

White females with income of
$7,000-$9,999----------------------

Negroes with income of
$2,000-$3,999----------------------

Males aged 18-24 with 9-12 years
of school--------------------------

Females aged 25-34 with none or
less than 5 years of school--------

Males with 5-8 years of school------
~;i.o~les with 13+ years of

-----------------------------
White females with 9-12 years of
school-----------------------------

Negroes with 5-8 years of school----

Males aged 65-74 who are married----
Females aged 35-44 who are
separated--------------------------

Females who are divorced------------
White males.who are single----------
White females who are widowed -------
Negroes who are married -------------

Males aged 55-64 who are craftsmen--
Females aged 35-44 who are private
household workers ------------------

Males who are laborers--------------
White males who are farmers or
farm managers ----------------------

White females who are clerical
and sales workers ------------------

Negroes who are professional
workers- ---------------------------

Males aged 25-34 who are employed
in construction and mining ---------

Females aged 18-24 who are employed
in wholesale and retail trade------

Males who are employed in
transportation---------------------

Wh;;;n~les who are employed in
, insurance and real estate-

White females who are employed in
services---------------------------

Negroes who are employed in
Government-------------------------

HES
estimate

of
percent

QL_!J

19.69

25.75
11.75

12.21

11.48

23.08

2.45

2.49
17.82

9.34

10,33
30.73

27.26

18.80
13.47
9.05
35.77
27.79

15.15

10.60
19.93

10.89

9.80

16.57

7.46

2.29

11.29

12.34

10.48

22.19

Replica-
cation
estimate

of
variance

QQ..LL)

34.1056

17.2225
4.7524

1.2321

5.7600

10.2400

1.0609

5.3361
1.8225

2.3716

0.5329
10.3684

19.2721

78.3225
13.7641
1.9321
15.1321
5.1076

29.9209

21.2521
11.4921

2.8900

2.8561

31.2481

9.3025

6.8121

4.1209

24.5025

3.0276

9.3636

SRS
estimate

of
psrcent

~

22.22

24.49
11.95

12.39

10.59

23.41

2.37

3.33
17.92

9.01

9.54
31.19

26.87

22.22
1;.;:

33:55
28.79

14.29

10.67
18.25

11.39

9.78

16.22

9.52

2.27

10.76

11.54

10.59

22.65

SRS
estimate

of
variance

@QAl

27.4348

18.8697
2.7326

1.2114

2.0066

8.7474

0.9151

10.7407
1.7805

1.4211

0.5187
7.4948

9.7751

96.0217
9.4658
2.2394
7.1223
3.8316

19.4363

12.7052
5.6730

6.3889

i.9522

36.7202

13.6775

500477

4.3067

13.0860

2.3324

9.6800

Sample
persons
examined

@!Lzl

63

3::

896

934

205

253

8%

577

1,666
286

201

1;:
401
313
535

63

2::

158

451

37

63

44

223

78

406

243

Ratio
of

variances

(CO1. 6)

1.2432

0.9127
1.7391

1.0171

2.8705

1.1706

1.1593

0.4968
1.0236

1.6688

1.0274
1.3834

1.9716

0.8157
1.4541
0.8628
2.1246
1.3330

1.5394

1.6727
2.0258

0.4523

1.4630

0.8510

0.6801

1.3495

0.9569

1.8724

1.2981

0.9673
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Table IV. Estimates of differences in percent between demographic subgroups of the U-S, adult
population with hy-pertension and estimates of variance in percent

Demographic subgroup

1. Adults with income
less than $2,000-------

2. Adults with income
of $10,000+------------

Difference (l-2)-----

3. Males with income
$2,000-$3,999----------

4. Males with income
$4,000-$6,999----------

Difference (3-4)-----

5. Females a ed 55-64 with
tincome $ ,000-$6,999---

6. Females aged 55-64 with
income $7,000-$9,999---

Difference (5-6)-----

HEs
estimate

of
percent

Jk2XQ

26.23

11.75

14.48

15.36

12.83

2.53

25.75

25.25

0.50

Replica-
cation

estimate
of

variance
@QQ.)

4.5796

1.3924

5.2850

4.2025

1.4641

4.5600

17.2225

99.8001

110.1069

SRS
estimate

of
percent

(Col. 3)

26.66

12.17

14.48

15.51

13.24

2.27

24.49

24.32

0.17

SRS
estimate

of
variance

(Col. 4)

1.7791

1.3933

3.1784

2.4499

1.1797

3.6296

18.8697

49.7500

68.6197

Sample
persons
examined

(Col. 5)

1,099

764

535

975

98

37

Ratio
of

Yariance

(CO1. 6)

2.5741

0.9994

1.6628

1.7154

1.2411

1.2563

0.9127

2.0060

1.6046

Average
of rep-
licate

per-

m

26.06

11.34

15.72

14.75

12.35

2.40

25.91

26.67

0.66

anced half-sample replications, viewing the 16 pairsof dozen demographic variables for which information
noncertainty strata and 8 pairs of randomly grouped
clusters from the certainty strata as a single universe.

After the composition of each ofthe balanced half
samples was determined, the resulting half samples
were then separately subjected to all the estimation
procedures and tabulations used to produce the final
estimates from the entire sample.

An estimated variance S2Z~ of an estimated sta-
tistic z’ofthe parameter z is obtained by applying the
formula

where z; is the estimate of z based onithhalf
sample and z“ is the estimate of z basedon the
entire sample.

Computer Output

For the Health Examination Survey the variance
tabulations and prepublication tabulations of estimates
are derived from the same computer output. Since the
findings are generally expressed as rates, means, or
percentages, each output “table” actually consists of
three tables, the statistic of interest, such as the
percent of persons with hypertension, the numerator
of each cell in the “table, ” and the denominator of each
cell. The cells of the table are across-classification
of the statistic by age and sex with one of abouta

was collected in the survey. The analyst can also
receive a printout of the same three tables for each
of the 16 half-sample replications. lle replication
tables are useful when estimates of the variance of
estimated differences between statistics or of such
derived statistics as medians are needed or for
evidence to support or refute a hypothesis concerning
observed patterns in the data. In additionto the “table”
of findings, the output alsoincludes a’’table”of estimat-
ed standard errors (of the statistic, its numerator,
and its denominator), a “table” of estimated relative
variances (the estimated variance of a statistic divided
by the square of the statistic), and a “tabIe’’ofthe
number of sample observations on which the statistic,
its numerator, and its denominator are based. l%e
last table together with the others gives some insight
into the effect of the sampling plan and estimation pro-
cedures.

Illustration

The figures in table HI are estimates from the
Health Examination Surveyofthepercent ofdemographic
subgroups of the adult population with hypertension and
their estimated variances. ‘The officiaI HES estimates
based on unbiased inflation factors adjusted for non-
response and ratio adjusted to independent population
controls are shown in column 1. Estimates of their
variance derived from 16 balanced half-sample repli-

37



cations treating the estimated percent of replicate
i as Z; are shown in column 2. For comparison, the
estimates of percent and variance which would have
resulted if the 6,600 examined persons had been a
simple random sample of the U.S. population and the
sample size in each demographic subgroup or domain
is considered to be fixed, are shown in columns 3 and
4. The number of examined sample persons in the demo-
graphic subgroup or domains (the bases of the percents)
are shown in column 5. The ratios of the two variance
estimates are shown in column 6. These ratios are in-
dicative of the net effect of clustering and stratification
in the sample design, deviations from equal probabilities
of selection, and nonresponse and ratio adjustment in
the estimation procedures, and reflect as well the
variance of the estimated variance.

The median ratio of replication variance to simple
random variance—i. e., of an appropriate variance to

a much cruder measure—is 1.30. The mean ratio is
1.31. As one would expect, there is a tendency for the
ratio to be higher for larger values of the statistic, al-
though this tendency is not very pronounced.

me Criteria for hypertension was 160 mm. Hg.

or over systolic blood pressure and 95 mm. Hg,, or
over diastolic. The average of three blood pressures
taken over a 30-minute period was used for each
examined person.

Table IV is similar to table HI but it also includes
the estimated difference in percent between two demo-
graphic subgroups. Estimates of variance of the dif-
ference between two estimated percents which would
have resulted if the sample had been a simple random
sample were obtained by summing, the estimated
variances of the two estimated percents. The average
of the estimated percents over the 16 replicates is
shown in column 7.
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Center for Health Statistics and its offices and divisions and data collection methods used and include
definitions and other material necessary for understanding the data.

Series 2. Data Evaluation and Methods Research. –Studies of new statistical methodology incIuding experi-
mental tests of new survey methods, studie~ of vital statistics colkction methods. new analytical
techniques, objective evaluations of reliability of collected data, and contributions to statisticrd theory.

Series 3. Analytical Studies. –Reports presenting analytical or interprcti}re studies kmsed on vital and health
statistics, carrying the analysis further than the exposito~ types of reports in the other series.

Series 4. Documents and Committee Reports. – Final reports of major committees concerned with vital and
health statistics and documents such as recommended model vital registration laws and revistd birth
and death certificates.

Series 10. Data From the Health Interuicw Swwy. –Statistics on illness, accidental injuries, disability, use of
hospital, medical, dental, and other services, and other health-related topics, all based on data collected
in a continuing national household intet-viev.’ survey.

Seri,> 11. [)ata lrorn the Health Examination Survey and the Heaith and iVutrition Examination SUrwy. –D~ta
from direct cxamirmtion, testing, and measurement of national samples of the civilian noninstitu-
timmlized popzdation provide the basis for two types of reports: (1) estimates of the medically defined
prevalence of specific diseases in the United States and the distributions of the population with respect
to physical, physiological, and psychological characteristics and (2) analysis of relationships arnon$ thr
various measurements without reference to an explicit finite universe of persons.

S.,ri, s 12. Daia From the institutionalized Population Surwys. –Discontinued effective 1975. Future reports frum
these surveys will be in Series 13.

Series 13. Data on Health Resources Utilization. –Statistics on the utilization of health manpower and facilities
providin~ long-term care, ambulato~ care, hospital care, arzd family pkmning services.

Series 14, Data on Health Resources: .}lanpo uvr and Faci[itics. –Statistics on the numbers, geographic distri-
bution, and characteristics of health resources including physicians, dentists, nurses. other health
occupations, hospitals, nursing homes, and outpatient facilities.

Series 20. Data on Mortality. –Various statistics on mortality other than as included in regular annual or monthly
reports. Special analyses by cause of death, age, and other demof$waphic variubIes; geographic and time
series analyses; and statistics on characteristic:; of deaths not available from the vital records based on
sample surveys of those records.

Series 21. Data on Aratulity, ,Ilarriago, and Divorce. —Vzrious statistics on natality, marriage, and divorce other
.’

than as included in regular unnual or monthly reports. Special amdyses by demographic variables;
geographic and time series analyses: studies of fertility; and statistics on characteristics of births not
available from the vital records based on sample surveys of those records.

.%ries 22. Data From the Nationai Mortality and i\Tatality Surzvys. –Discontinued effective 1975. Future reports
from these sample surveys based on vita] records v:ilI be included in Series 20 and 21, respectively.

Series 23. Data From the Nationa2 Survey o]’ Family GrozL~th.–Statistics on fertility, family formation and dis-
solution, family pknnin,g, and related maternal and infant health topics derived from a biennizd survey
of a nationwide probability sample of ever-mamied women 15-44 years of age.

For a list of titles of reports published in these series, w’rite to: Scientific and Technical Information Branch
National Center for Health Statistics
Public Health Service
Hyattwille, hfd. 20782



POST A(, E- APJO FEES PAIO

LJ S DEPARTMENT OF H E.W

HEW 396

THIRD CLASS

L)*-
u.S.MAIL


	CONTENTS
	PREFACE
	INTRODUCTION
	COMPLEX SAMPLE SURVEYS AND PROBLEMS OF CRITICAL ANALYSIS
	GENERAL APPROACHES FOR SOLVING PROBLEMS OF CRITICAL ANALYSIS 
	PSEUDOREPLICATION
	SUMMARY
	BIBLIOGRAPHY
	APPENDIX. ESTIMATION OF RELIABILITY OF FINDINGS FROM THE FIRST CYCLE OF THE HEALTH EXAMINATION SURVEY

