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FOREWORD

The preparation of the decennial life tables, 1959-61, was the joint
effort of the Office of the Actuary of the Social Security Administration
and the National Center for Health Statistics. The Office of the Actuary
was responsible for developing the methods for constructing the life
tables. The National Center for Health Statistics was responsible for
directing and coordinating the project and for programming and calcu-
lating the life tables on its computer and for publishing the resulting
reports.

Mr. Zenas M. Sykes and Mr. Francisco Bayd of the Social Security
Administration developed the methods of constructing the life tables.
Mrs. Florence K. Koons and Mr. David G. Halmstad of the National
Center for Health Statistics prepared the computer programs. Dr.
T. N. E. Greville is a mathematical consultant to the National Center
for Health Statistics. He prepared this report and worked closely with
Mr. Bay6 in the development of the methods for constructing these life
tables. Dr. Donald R. Schuette prepared the mathematical appendix to
the report.

Monroe G. Sirken, Ph. D., Chief
Division of Health Records. Statistics
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METHODO1OGYOF THE

NATIONAL,REGIONAL,AND STATELIFE TABLES
FORTHEUNITEDSTATES:1959-61

●

T. N. E. Greville, Ph. D., Professo~, School of Business, and lWathematics Reseaych Center,

U. S. Army, University of Wisconsin

INTRODUCTION
This report describes the methodology em-

ployed in the preparation of the decennial life
tables for 1959-61 for the United States, individ-
ual States, the nine geographic divisions estab-
lished by the Bureau of the Census, and metro-
politan and nonmetropolitan areas as defined in
the Census publications. 1 The methodology in-
volved in the development of 1959-61 life tables
for the United States by causes of death is highly
specialized, and is given in the report containing
these tables. 2 It will be assumed that the reader
is acquainted with the definitions of the usual
life table functions as given in other reports
of this series. The calculations to be described
later were made on the IBM 1401 and 1410
computers of the National Center for Health Sta-
tistics, Methodological studies in connection with
the 1959-61 decennial life tables were initiated

lThe last named application required additional assump-
tion in order to provide for gaps in the tabulations of the
underlying birtb data and population data at ages 85 and ov,er.
For a description of these special adjustments, see National
Center for Health Statistics, “Life Tables for Metropolitan
and Nonmetropolitan Areas,” Li/e Tables, 1959-61. To be
published.

2National Center for Health Statistics: United States life
tables by causes of death, 1959-61. Life Tables, 1959-61. To
be published.

by Zenas M. Sykes, former Assistant Chief
Actuary, Social Security Administration. The
basic methodology followed in obtaining life table
mortality rates for ages under 5, the idea of
obtaining 5-year survival rates for ages 5 and
above by equating the 5-year central death rates
of the life table to those of the actual population,
and the idea of using an iterative approximation
procedure in this connection originated with
him. The use of the separation factors ~ f ~
to secure convergence of the iterative approxi-
mation procedure was the suggestion of Fran-
cisco Bayo’, Deputy Chief Actuary, Social Security
Administration. Methodological decisions neces-
sitated by special problems arising in connection
with the determination of life table mortality rates
at ages 5 and above, and those peculiar to the
life tables for States and other geographic sub-
divisions, were made primarily by him (some-
times in consultation with Monroe G. Sirken,
Chief, Division of Health Records Statistics,
National Center for Health Statistics, and with
the writer of this report). The detailed exami-
nation described herein of the effects on life-
table values of (1) the assumption of equality of
5-year central death rates for the actual popu-”
lation and the hypothetical life-table population,
and (2) the use of April 1, 1960, populations with-
out adjustment as if they were July 1 populations
is also due to Mr. Bayd.
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Table 1. Enumerated population and age-specific death rates of the nonwhite popu-
lation by sex, ages 40-79: United States. 1959-61

Age
x

40---------------------
45---------------------
50---------------------
---------------------

::---------------------
65---------------------
70---------------------
75---------------------

Male

Enumerated
population
at ages x mPoPa
tox+4, 5x

April 1, 1960

558,843 0.0087
529,746 0.0121
448,806 0.0186
.398,646 0.0248
287,655 0.0390
246,956 0.0502
166,866 0.0630
104,143 0.0741

~pop
5x

5m:E

1.39
1.54
1.33
1.57
1.29
1.25
1.18

Female

Enumerated
population
at ages x
tox+4,

April 1, 1960

618,380
564,577
463,620
405,008

● 304,124
271,730
181,024
114,098

pop~
5mx

0.0065
0.0090
0.0140
0.0192
0.0295
0.0340
0.0467
0.0.576

1..38
1.56
1,37
1,54
1.15
1.,37
1,23

aReported deaths at ages x to x+ 4, 1959-61, divided by 3 times the enumerated
population.

,

PRELIMINARYADJUSTMENTOF DATA

In the preparation of the 1959-61 decennial
life tables no allowance was made for possible
incompleteness in the enumeration of thepopu-
lation or in registration of births or deaths. It
is true, however, that the well known tendency
toward underenumerationof infants in the census
was reco’gfiized,to the extentthatforages under 2,
birth statistics rather than population data were
used asaningredient inthecalculation ofmortality
rates. With this qualification, the official statis-
tics produced by the Bureau of the Census and
the National Center for Health Statistics were used
without modification or adjustment to the extent
that it was consideredpracticabletodo so.In fact,
the only important adjustment made in theunder-
lying data involved a redistribution of the non-
white population affecting the age groups 55-59
and 60-64.

The need for this adjustment arises from
a preference for 1900 as theyear ofbirth among
nonwhites enumerated in the 1960 census. In this
census the question regarding age asked for the
date ofbirth(instead oftheageincompleted years,
as in previous censuses). The age in completed
years on the census date, Aprill, 1960, was then
calculated from the date of birth given. Ifa re-
spondent reported a date of birth before April 1
in the year 1900, his age would be calculated as

60; for a 1900 birth date after April l, theage
59 would be assigned. Thus, if there were a
group of persons whose year ofbirthwaserro.
neously reported as 1900 and if the reported
dates of birth were more or less uniformly dis-
tributed over the months of the year, about one.
fourth of the group would be assigned toage60
and about three-fourths to age 59. If the erro-
neous reporting of year of birth involved under-
statement and overstatement of age about equally
often, the net result would be an overstatement
of the population at ages 55-59 at the expenseof
the population at ages 60-64.

Evidence that this has occurred is provided
bytablel. Inthe columnsshowing theenumerated
populations on April 1, 1960, it can be observed
that the decrease from the age group 55-59to the
age group 60-64 isunexpectedlylargeincompari-
son with the corresponding population differences
for other pairs ofconsecutive5-year age groups.
Moreover, the ratio of the death rate for the age
group 60-64to that for theagegroup55-59is un-
expectedly large in kth cases, Theuse ofthese
death rates without adjustment inthe construction
of life tables would produce spurious points of
inflection in the curve of rates of mortality,

The redistribution was made by fitting a
second-degree polynomial to the populations in
the four consecutive 5-year age groups 50-S4,
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55-59, 60-64, and 65-69 in such a way that the
populations in the age intervals 50-54, 55-64,
and 65-69 are exactly reproduced (but not 55-59
and 60-64). ,.

If u, denotes thereported population atages
x to x+4 and v~ the corresponding adjusted
population, the adjusted populations v ~ ~ and v~~
are given by the following formulas:

4( U50+3U55+3U60-U65)
’55= 6

’60
=+(- U50+3.U55+ 3U60+U 65).

This redistribution was carried out for the non-
white population of the United States and all geo-
graphic subdivisions, including metropolitan and
nonmetropolitan areas.

A less significant adjustment results from
the fact that c~nsus tabulations by age based
on the full count of the population of the United
States and its subdivisions ended with a final
age group 85 and over. Subdivision of-this group-
ing into 5-year age groups up to age 100, and
a final group 100 and over, was available only
on the basis of a 25-percent sample of the popu-
lation. As the. more detailed age classification
was needed for life-table purposes, and as the
populations aged 85 and over based on the (in-
flated) sample differed from those based on the
complete count, an adjustment” was necessary.
Accordingly, an adjustment factor was computed
for each population category (by sex, color, and
geographic area) for which a life table was to be
constructed. This adjustment factor was obtained
by dividing the population aged 85 and over in the
given category based on the complete count by
the corresponding population based on the in-
flated sample. Then, for the given category, the
figure derived from the sample for each detailed
age grouping over age 84 was multiplied by the
adjustment factor. As a result, the adjusted
figures for the various age groupings over age
84 then added up to the population aged 85 and over
for the given category, as obtained from the com-
plete count.

A further relatively minor adjustment relates
to the fact that the tabulations of deaths include
a relatively small number for which the age is
not reported. The assumption was made that

these deaths were distributed among the various
age groups in the same proportions as the deaths
for which the age was reported. In order to give
effect to this assumption, an adjustment factor
was again computed for each population category
for which a life table was to be constructed. In
this case, the adjustment factor was obtained by
dividing the total number of deaths reported for the
given category for the 3-year period 1959-61
by the total less the number for which the age
was not reported. The number of deaths reported
in each age group for the given category was
then multiplied by the adjustment factor,

CALCULATIONOF “BASIC”

LIFE-TABLEVALUES

General

The underlying data used in the preparation
of each of the 1959-61 decennial life tables con-
sisted of (1) reported. deaths occurring in the 3-
year period classified by age at death, (2) enu-
merated populations classified by age on the
census date, April 1, 1960, and (3) total regis-
tered births for each of the calendar years 1957
to 1961, inclusive. Populations and deaths were
available by single years of age under age 5,
then by 5-year age groups up to age 99, with a
final age group 100 and over. In each case the
age referred to is the age in completed years:
that is, the exact age on the individual’s last
birthday. In addition, deaths occurring at ages
under 1 year were available for four subdivisions
of this first year of life: O-1 day, 1-3 days, 3-
28 days, and 28-365 days. Life-table values were
calculated for these subdivisions of the first year
(but not published in the case of the State life
tables), and by single years of age throughout the
remainder of the life span.

In calculating the life-table values, fundamen-
tally different procedures were followed for (1)
ages under 2, (2) ages 2-4, and (3) ages 5 and
over: In each of these three cases, however, the
procedure may be regarded as consisting of three
phases: (i) calculation from the underlying data
of some” “basic” life-table value
each age or age interval involved;

or quantity for
(ii) calculation
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from the “basic” values of a column of values of
! the number surviving to age x in the life
t;~le cohort starting with t ~ =100,000 live
births, for all integer values of x and for those
fractional values which are terminal ages of the
subdivisions of the first year of life for which
deaths were available; and (iii) calculation from
the column of c~ values of all the life-table
values to be published, appropriately rounded,

. and edited so that the most obvious arithmetic
relationships among the columns of the life
table will hold exactly for the published figures.
In each case, phase (i) is the decisive, and
relatively troublesome phase, while phases (ii)
and (iii) are relatively routine and straightfor-
ward. Though this section of the report deals
primarily with phase (i), it will be necessary in
a few instances to anticipate some features of
phase (ii) in order to provide a sufficiently
clear explanation of certain procedures involved
in phase (i).

Ages Under 2

For these ages the “basic” Iife-table value

is ~dx, the number of deaths occurring between
exact ages x and x + t in the life-table cohort
commencing with t ~ live births. This was cal-
culated by the formula

(1) ~dx=flo ~Dx/t Ex,

where ~D ~ denotes the number of deaths (adjusted
as described earlier for nonreporting of age)
occurring in the 3-year period 1959-6k between
exact ages x and x + t, and ~E ~ denotes the ap-
propriate denominator as indicated in table 2.
These denominators are based on the assumption
of uniform distribution over the calendar year
of the births of 1957, 1958, 1960, and 1961. In
each case COis taken as 100,000.

Ages 2-4

For these ages the “basic” life-table value
is q ~ , the fraction or proportionof a grouP of
persons at exact age x who are expected to die
before attaining age x +1. If m. denotes the

ratio dx/Lx, commonly called the central death
rate, then it is well known3 that on the assumption
of uniform distribution of deaths over the year of
age

(2) 2mxqx=—
2+mx

This formula was used to obtain q2, q3, and

q4 t m ~ being calculated in each case from the
underlying data, as will now be explained.

If Dx denotes the adjusted number of deaths
in a population category at age x (in completed
years) occurring in 1959-61 and Px denotes the
population at age x in the middle of the period,
then 3

(3)

at least approximately. The middle of the 3-
year period would be July 1, 1960; however,
it was decided that no significant error would
result from using in this connection populations
enumerated in the 1960 census (as of April 1,
1960) without any adjustment for possible change
in population during the 3-month period, A more
detailed discussion of this assumption appears
later in this report.

On the other hand, since the deaths occurring
in a given single year of age during 1959-61 were
drawn from three consecutive annual cohorts of
the population, it was considered that the accuracy
of the calculation of these m ~ values would be im-
proved by replacing 3PX in the denominator of (3)
by the sum of the populations at age x -1, x, and
x +1. Thus, the formula becomes

(4) mx . Dx

P ‘_l+ px+ Px+l “

This formula, in combination with (2), was used
at ages 2 and 3.

3Spiegelman,N1.:Introduction to Demography. Chicago.
The Society of Actuaries, 1955. p. 78.
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Table 2. Denominators ~Ex used in calculating ~dx for ages under 2

Age interval x to x + t

O-1 day-----------------------

1-3 days ----------------------

3-28 days ---------------------

28-365 days -------------------

1-2 years ---------------------

Denominator of ~dx

7;() (B1958 + 730 B1959 + 730 B1960 + 729 B1961)

L
730 (4B1958 + 730 B1959 + 730 B1960 + 726 B1961)

* (31 B1958 + 730 B1959 + 730 ‘1960 + 699 ‘1961)

~ (393 B1958 + 730 B1959 -1- 730 B1960”+ 337 B196L)

2 (B1957 + 2 B1958 + 2 ‘1959+ ‘196c))

NOTE: B= denotes the reported number of births occurring during the calendar year
z for the population category (by sex, color, and geographic area) involved.

Consideration was given to the use of the
same procedure at age 4 as well. However, this
was not done because populations atage5 were
availableonly for the United States (not for geo-
graphic subdivisions), and it wasdesiredtomain-
tain a consistent methodology for both national
and subnational life tables. Thus, formula (3),
rather than(4), was used atage4.

The procedure involving formula(4) wapnot
used at age 1 because thiswouldhaveinvolved the
inclusionof PO in the formula, and this was con-
sidered unsuitable because of the well knownten-
dency toward underenumeration of infants4 and
the relatively high mortality in the first year of
life.

Ages5 andOver

For ages 5 and over the “basic” life-table
value was taken as ~qX=5dX/eX, the fractionor
proportion of a group of persons at exact age x
who are expected to die before attaining age
x+5, x being a multiple of 5. In view of the
availability of data only by 5-year age groups,
these quantities could not be calculated easily,
if at all, directly from the underlying data. How-
ever, the latter do yield at once the 5-year cen-
tral death rate for the population

41bid., pp. 35-36.

(5)
pop D

Smx . Q,
35PX .

where ~ Px denotes the enumerated population.
at ages
central

(6)

It was

x to x+4, inclusive. Similarly, a 5-year
death rate for the life table is defined by

d P –1X+5
5

MX=U= X
5LX TX–TX+5 “

considered reasonable to determine the
life-table values sothat these two 5-year central
death rates are equal foreach 5-year age group,
starting with 5-9 and ending with 90-94, in
other words,

(7) ~mX=5m~0P

A detailed analysis of this assumption is given in
the next subsection of this report. We shall now
discuss the problem of determining numerical
values of ~q~, ~qlo,. . . ,~qgo such that e.qua-

tion(7) holds for x=5,10,. . .“,90.
The interpolation and other procedures used

to calculate the remaining life-table values from
given valuesof q~ ~$5~10,..-.) willbedescribed
in detail later In connection with phases (ii) and
(iii) of the process of life-table construction. For
the present it will suffice to say that, in con-
sequence of the procedures mentioned, the re-
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quired values of ~LXare given in terms of !4, [5,
Q1o’”””’ [lo ~ by the following formulas:

(8) ~L5 = – 1.808303 Q4+4.446995 t5+2.623337 P10

– .300185 115+.037251 tzo +.000905 ~25,

(9) ~L10=.449328$–.790687t5+2.848458tlo+2 .779262 (15

–.328328P20+.041967 Q25

(10)5LX = .0368 tx_10–.31041x_5 +2.7736 !x+2.7736 !x+5

–.3104F ~+lo+.0368[x+15

(for x=15, 20j ..., 90 ). As explained later,
mortality rates at ages 95 and over in all the
life tables were based on Union Civil War
veterans t mortality experience. Consequently,
the values of ~q95and ~q loocan be regarded as

given, and we have, of course, the relations

(11) floo= [95(1 -5q95)

(12) { = tloo(l–5q100).
105

It is easily verified (and will be shown later)
that both Q~ and Q ~ are uniquely determined by
the “basic” life-table values for ages under 5, and
can therefore be regarded as known quantities.
From (6) and (7) we obtain

(13) ~m:OP L = d
5x5x

(for x=5, IO,. . ., 90). In view of formulas(8),

(9), and (10), and since Sdx =Ix–tx+5

‘opare given numerically byand the values of&X
(5), equations (11), (12), and (13) constitute a
system of 20 simultaneous linear equations in the
20 unknown quantities [lo,~l~,. . ., !105.

Such a system of simultaneous linear equa-
tions is called ‘‘nonsingular’ r if there is one and
only one set of values of the unknown quantities
satisfying the equations.5 It is proved rigorously

5For those ~eader~ who are acquainted with determinants

it may be remarked that a system of n linear equations in n un-
known quantities is nonsingular if and only if the determi-

nantof the coefficients of the unknown quantities is not equal
ta zero.

in a mathematical appendix to this report that the
system of equations encountered here is actually
nonsingular for a large class of situations likely
to arise in the construction of a life table. How-
ever, even if the conditions given in the appendix,
which guarantee nonsingularity, are not satisfied,
it would by no means follow that the system is
singular. A singular system of equations is ~as
the name implies, exceptional, and it is most
unlikely that mortality rates for any actual popu-
lation would give rise to such a system.

It would have been possible to regard the
quantities flo, P15, . . , , P105 as the “basicff

life-table values and to obtain them numerically
by solving the system of linear equations described
in the preceding paragraphs by one of the standard
methods available for solving such systems, In
retrospect, I am now of the opinion that this would
have been the most efficient method of proce -
dure.6 However, at the time the work was actually
done, it was not appreciated, either by me or by
the others more immediately concerned with
developing the methodology employed, that the
problem could be reduced to the solution of a
system of linear equations.

It was sought, therefore, to devise an itera-
tive procedure7 that would provide successively
closer approximations to the values of ~q~ , ~qro,

Experiments were made with several. . “’ 5990”
iterative procedures before one was found that
actually converged to a definite set of limiting
values of ~qX. The procedure eventually adopted
gives at the third iteration life-table values
that substantially satisfy (7) at all ages, This
procedure is suggested by an attempt to general-
ize formula (2), in a modified form, to the
case of a 5-year age interval. The assumption

61t !Yould be especially advantageous if tho calculations
were to be made on an electronic computer for which “library”

pro,~ams were already available for solving systems of simul.
taneous linear equations.

7After the 1959-61 life tables had been calculated, but

before this report on methodology was completed, Nathan
Keyfitz described a somewhat similar method of Iife-tabIo
construction, in “A Life Table That ,4grees Witfr the Drcta,f$

Journal of the American Statistical Association, Vol. 61, No.

314, Fart 1, pp. 305-312, June 1966. He does not assume that
the centraI death rates of tbe life table and of the actual popu.

lation are equal, but rather that they are connected by means
of an assumed rate of population increase. On his assumptions

the determination of tbe life-table functions does not reduco
to a system of Iinear equations, and he suggests an iterative

procedure similar in some respects to the one described fieru.
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of uniform distribution of deaths over the 5-
year interval would give

(8), (9), and (10), and ~m~,,m~o,

were obtained from (6), By “means of

1
“ “‘5m90

(17j ~f~. .

(14)
5 ~mx

~qx =
1+2.55m “x

While the uniform-distribution assumption is
clearly not admissible over an interval of this
length, the values given by (14) may neverthe-
less be good enough for “starting” values to
begin an iterative procedure.

Moreover. it is evident that there must
exist a quantity~fx (in general
such that

(15)
5 ~mx

~qx =
l+5fx ~mx

Solving (15) for ~fx gives

not equal to 2.5)

~fx = A– ~= 5~x–5~x
qrn5X5X d

5x”

From the second expression for .ifx it is easily
deduced that 5– ~f ~ is the average number of
years lived beyond age x by the ~dX members
of the life-table cohort who die between exact
ages x and x+5. From this last observation
it is’ clear that the numerical value of ~f ~ is
necessarily between O and 5.

Denoting by a superscript r a life-table value
obtained at the rth iteration, the iterative pro-
cedure used may be described as follows:

(16)
5 sm~”p

~q;=

l+5f~ ~m~p

I

2.5 for r=l .

(17) ~f; =+_L forr>l
q - ~m~–l5x

In other words, values of ~q~ , ~q~o,.. ., sq~o

were first calculated by (16), taking fl =2.5.

From these ~q~ values and those of ~~g~ and
~qloo based on the Union Civil War veterans’
experience, t ~0, t:5, . . .. , !~05 were obtained.

Then, 5L~. 5L~0, . . ., ~L;o were calculated by

was then computed for each 5-year age int=l--
val, and ~g~ was obtained from (16). The entire
process was then repeated.

Suppose that at some stage 8

for x=5, 10, . . ..9O. Then (16) gives

_ l+5f~ sm~p5 1 r
= —+5fxqr—l

5x sm~op mPOP
,5x

Substituting this result in (17) and simplifying
gives

r—1
5mx

=5m~0p

~us, if the iterative procedure described con-
verges to definite values of 5q5 , Sqlo, ..., Sqgo,
these values must necessarily be the ones be-
longing to the life table whose s mXvalues satisfy
(7).

In the mathematical appendix it is proved
rigorously that this process does converge to
definite values if certain conditions are satis-
fied. It is likely that it would converge in many
situations in which the conditions stated in the
appendix are not fulfilled. As a practical matter,
in every case that has been tested it was found
that the ~m ~ values of the life table and the
actual population were substantially equal after
three iterations. To provide additional assurance,
five iterations were performed for each life table.
In other words, the fifth set of values Sqx to be
obtained (counting the initial approximations ob-
tained .by taking s f~=2.5) were the ones used in
subsequent calculations.

‘Strictly speaking, convergence of the iterative process

does net imply that the Sqx values at two successive stages
will ever be exactly equal, but rathe;_\bat, for r sufficiently

large, all the differences sq~ – sqx can be made smaller

(in absolute value) than any preassigned positive quantity C,
ho}vever small. If this is indeed the case, it is easily shown,

by a suitable modification of the argument, that it then folloivs
that, for sufficiently large r, all the differences 5mj–#y

can be made smaller in absolute value than any press signed

positive quantity q . This implies the existence of aunique

set of limiting values of Sqxsuch that (7) holds exactly.
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POP ~~ ~ Goai for 5mX

5m x

Assumption (7), which equates the 5-year cen-
tral death rates of the actual population and the
hypothetical life-table population, may be thought
to introduce a systematic bias. It may be argued
that in general the 5- year central death rates of the
actual population should be lower than those of the
life-table population, because of the assumption of
identical cohort sizes in the life table as compared
with the increasing cohort sizes of practically all
real populations. Within each 5-year age group, the
assumption of equal cohorts gives too much weight
to mortality at the older ages.

It may be pointed out, however, that the non-
centrality of the census date (April 1, 1960, rather
than July 1, 1960) would be expected to introduce a
systematic bias in the opposite direction. As the
July 1 population would in general be larger than
that on April 1, the use of the latter would tend to
produce overstatement of the central death rate.
Table 3 shows the results of some calculations
based on the 1959-61 United States life table for the
total population, designed to test the effects in this
instance of increasing cohort size and noncentral-
ity of the census date. Cohort size was as sumed to
change each year by a conscant percentage. Itwas

found that the resultfig percentage differences in
the ~mx values were of the order of aboilt 1.5percent

to 20 percent (see the second column of table 3)
of the annual percentage change in cohort size.
This means, for example, that a 2 percent annual
increase in cohort size would produce an under-
statement of ~~X oftheorderof0.3toO.4percent.

The third column of table” 3 shows that these
errors tend to be more than offset by those
resulting from the noncentrality of the census
date. It may be notedthat,while the netper-

centage error in ~mX (expressed as a percentage
of the assumed annual increase in cohort size)
covers a fairly broad range, the large percentages
occur at ages where there are few deaths; so
that the net effect on the IX values of the life
table is slight. In any event, for a 2 percent

annual increase in cohort size the largest net
relative error would be about 1 percent.

In the less usual case of “decreasing cohort
size in the actual population, each of the two

Table 3. Esti.rnate of relative error in
~mx due to increasing cohort size and

noncentrality of census date (expressed
as percentage of assumed annual per-
centage increase in cohort size)a

Age
interval

5-9-----
1o-14---
15-19---
20-24 ---
25-29 ---
30-34 ---
35-39 ---
40-44---
45-49---
50-54 ---
55-59 ---
60-64 ---
65-69 ---
70-74 ---
75-79 ---
80-84 ---
85-89 ---
90-94 ---
95-99 ---
1oo-1o4-

=

Percentage

-;;
-21

-5
-4

-12
-17
-19
-19
-17
-17
-16
-16
-17
-18
-18
-20
-15

-9
-8

:
2
2
1

1:
15

aFor examDle. if there were a 2 per.
cent annual lnc;ease in cohort size, the
relative error in the age interval 35-39
due to increasing cohort size only would
be -17 percent of 2 percent or -0.34 per-
cent.

NOTE : These are first approximations
based on the 1959-61 U.S. life table for
the total population.

biases mentioned would tend to actintheoppo-
site direction to that described above. Thus
their effects would again beoffsetting, butoppo-
site in sign.

In summary ’it is believed that the neterrors
resulting from the combination of assumption (7)
and the use of census populations as if they were
central are, for practical purposes, negligible,
and that the use of the assumptions in question Is
fully justified.
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CAICUIATIONOF~VAIUES FROM

THE “BASIC’’VA1UES

Ages Urrder5

At ages under 2 the “basic” life-table values
were the values of ~@Xfor successive age inter-
vals, calculated on the assumption that !~ =
100,000. The value of (x for the terminal age
of each age interval was obtained by successive
application of the formula

t = [x- ~dx,.
x +t

At ages 2, 3, and 4, where the “basic” life-table
values were the values of ~~, successive appli-
cation of the formula .

(18) ,4X+1= Ox(l-qx)

yielded the values of !3, CQ,and t
5“

Interpolation Procedure at

Ages 5 and Over

At ages 5 and over the “basic” values were
those of ~qx by 5-year intervals from ~q~ to

5q90 “
Starting with !5, successive application

of the formula

(19) tX+5= !x(l–5qx)

gave the values of Clo,C15,. . . , Q and ! loo
and !105 were obtained from (19) ‘~y’ means of
the values of ~q95 and ~qlOobased on the Union
Civil War veterans’ experience. As ~X values by

single years of age were required, interpolation
was performed on the quinquennial {x values
using interpolation coefficients developed by H. S.
Beers, which are shown in table 4.

In this application the coefficients given in
the table for calculating U1, u*, and u ~ were not
used, and those for U4 were used only indirectly
in connection with a special device to insure
smooth junction of the values of t6, t,, etc.,
with those of !4 and !5 already obtained. Direct

application of the table to calculate (~ would
give

(4= .0819!.+1.068945-.1666tlo–.0126!15

+ .0399120-.0115!25.

Solving this equation for !0 (which we now call
r; ) gives

t: =~({ –1,0689c5+.1666!10+.0126!15
.0819 4

—.0399!20+.0115025).

A fictitious value t: calculated by this formula
was used instead of the true I~ in calculating

‘6’q7’g8’ Q9’Qll’Q12’
P 13, and Q14 by means of

table 4. It follows from the derivation of the
formula for t: that the ~use of this value to
calculate P4 by means of table 4 would repro-
duce the previously calculated value of this
quantity. Moreover, the smoothness inherent in
the Beers coefficients insures that !4 and t ~
will form a smoth progression with !6 and suc-
ceeding values.

The use of the fictitious value t: is justified
on the ground that the actual value of o~ cannot
be regarded as forming a smooth progression with
the values of o~,tlo, etc., because of the rel-
atively high mortality occurring in infancy.

In carrying out the iterative process already
indicated, which is designed to secure equality
of 5-year central death rates in the life table and
in the actual population, the entire interpolation
procedure just described (including the special
adjustment to provide smooth junction at age 5)
was used at each step of the iteratiori. As pre-
viously explained, the iterative process requires
the calculation at each step of ~Lx for each 5- year
age interval between ages 5 and 95. At all ages 1
and above it was assumed that

Lx=~(tx+[x+l),

and, of course,

~LX=LX+ LX+I+ LX+2+LX+3+LX+4 .



Table 4. Beers’ interpolation coefficients for performing interpolation on quin.
quennial values of a function Ux to obtain values at intervals of unity (“minlmi.zed

fifth-differenceformula with smoother ends”)a

Coefficients to be used in first two intervals

Coefficients of Ux to obtain:

‘l-----------------------------------

‘2-----------------------------------

‘3-----------------------------------

‘4-----------------------------------

‘6-----------------------------------

‘7-----------------------------------

‘9-------------------------------=---

o

- .6667

.4072

.2148

.0819

-.0404

-.0497

-.0389

-.0191

5

.4969

.8344

1.0204

1.0689

.8404

.6229

.3849

.1659

x

10

-.1426

-.2336

-.2456

-.1666

,2344

.5014

.7534

.9354

15

-.1006

-.0976

-.0536

-.0126

-.0216

-.0646

-.1006

-.0906

Coefficients to be used in subsequent intervals

Coefficients of Ux to obtain:

‘5mtl --------------------------------

u5m+2--------------------------------

u5mt3--------------------------------

u5m+4--------------------------------

5m-10

.0117

.0137

.0087

.0027

5111-5

-.0921

-.1101

-.0771

-.0311

20

.1079

.1224

.0884

.0399

-.0196

-.0181

-.0041

.0069

.9234

.7194

.4454

.1854

.1854

.4454

.7194

.9234

25

-.0283

-,0328

-.0244

-.0115

.0068

.0081 ~

.0053

.0015

5W1O 5*15

-.0311 .0027

-.0771 .0087

-.1101 .0137

-.0921 ,0117

‘AmericanInstitute of Actuaries: The Record, Vol. XXXIV, Part 1, p.59. 1945,

For convenience,theseformulaswere combined
with theinterpolationcoefficientsin table4 to
obtainformulas(8),(9),and(10),whichexpress
~Lx directlyin terms of C4,15,~lo,~l~,etc.

Ending the life Tables
As theunderlyingdataat ages 95 andover

were scantyand unreliable,life-tablevalues
calculatedfor these ages from theunderlying
dataexhibitanomalousbehavior,andwouldsel-

dom, if ever,be suitableforinclusionin the
publishedlifetables.Accordingly,q, valuesfor
ages 95 and over from theUnionCivilWar vet-

erans’experience were usedinsteadofthecal-
culatedvalues.As a result,the qX values at
these ages are the same in allthelifetables.

9~fyers, R- J., and Shudde, L. O.: MortaIity experience

of Union Civil War veterans. TTansaations of the ~ooiety of
.4ctua?ies, Vol. VII, pp.63-68. Chicago, hiar. 1955.
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In order to provide a smooth transition from
the values based on the relevant underlying data
to those based on Union Civil War veterans’
experience, a linear blending of the two sets of
mortality rates was used at ages 85 to 94, in-
clusive. The blending formula was

[ 1~X =+ (95–X) ~:+(x–84) ~; ,

where qx denotes the value finally adopted, ~~
tie value calculated, by the formula

qx= I- f.+,/’x’

from the !X values obtained at the final stage of
the iteration, and ‘q: the value based on the Union
Civil War. veterans’ experience. Using the blended
values of gX for ages 85-94, and the values based
on Civil War veterans’ experience for ages 95 and
over, values of tx were recalculated by (18) for
ages 86 and over. This sequence of tX values was
extended to age 139.

CALCULATIONOF THE REMAINING
LIFE-TABLEVALUES

At the conclusion of phase (ii) of the overall
process of life table calculation, there ,was avail-
able, for each life table to be constructed, a
sequence of values of tX extending from age
O to age 139. These included values for all
integral ages and for the ages of 1 day, 3 days,
and 28 days. These Cxvalues were carried out
to 14 decimal places.

Using all 14 decimal places, the values of
T ~ , working from age 139 back to age 1, were
calculated by the formula

TX= TX+l +;(!X+!X+l) .

T 139 was taken as zero. For the subdivisions
of the first year of life, the corresponding formula

Tx=Tx+t ++(tx+tx+t)

was used. For ages O, 1 day, 3 days, and 28
days, respectively, t was taken as 1/365,

2/365, 25/365, and 337/365: For esch age up
to and including age 109, ~q ~ and :x were ob-
tained by the formulas

~9x =l–tx+t/!x,

$X=TX /! x

In these calculations 20 significant digits were
retained in the computer.

Each life table was then cut off at age 110
(that is, “109-11O” is the last line shown), and
the four columns of figures thus far obtained
were rounded: o and Tx to the nearest integer,
~~ ~ to the near~st fifth decimal place, and :X
to the nearest second decimal place.

The values of ~dx and ~Lx were obtained by
differencing the rounded cx and Tx columns:

~dx=!x-cx+t ,

~Lx=Tx-Tx+t .

SPECIALADJUSTMENTSIN LIFETABLES
FOR GEOGRAPHICDIVISIONS

AND STATES
For each of the 50 States and the District of

Columbia, life tables were calculated for nine
classifications by color and sex: the total popu-
lation, total whites, total nonwhites, total males,
total females, white males, white females, non-
white males, and nonwhite females. Life tables
were calculated also for the same nine classi-
fications for each of the nine geographic divi-
sions of the United States employed by the Bureau
of the Census, and further for the two groups of
metropolitan counties and nonmetropolitan coun-
ties within each, of the nine geographic divisions.

Of the nine tables calculated for each State
only five were published: those for the total
population, white males, white females, nonwhite
males, and nonwhite females. In the case of
the tables for the nine geographic divisions
(including their metropolitan and nonmetropolitan
subdivisions), only four tables were published
(that for the total population being omitted). Pub-
lication of the life tables for nonwhite males and

11



nonwhite females was also omitted for certain
areas for which it was considered that the amount
of data involved was too small to “produce reli-
able results. The criterion adopted was that if,
for any geographic subdivision, the number of
reported deaths at all ages for the 3-year
period 1959-61 for either nonwhite males or non-
white females (or bth) was less than 2,000,
both life tables for nonwhites were omitted from
publication. Following this criterion, life tables
for nonwhites were not published for the States
of Alaska, Arizona, Colorado, Connecticut, Dela-
ware, Idaho, Iowa, Kansas, Maine, Massachusetts,
Minnesota, Montana, Nebraska, Nevada, New
Hampshtie, Nlew Mexico, ATorthDakota, Oregon,
Rhode Island, South Dakota, Utah, Vermont,
Washington, West Virginia, Wisconsin, and Wy-
oming, for nonmetropolitan counties of the New
England division, and for metropolitan counties
of the Mountain division. In only two instances
(the States of Arizona and West Virginia) was
the number of nonwhite deaths less than 2,000
for one sex (females in both cases) and not for
the other. If the same criterion had been applied
to the life tables for white persons, publication
of the tables for white males and white females
in Alaska and Hawaii would have been omitted.

In most of the life tables that were published
for geographic divisions and States, special ad-
jushnents; were made at certain ages to correct
.or mitigate anomalous behavior of the life-table
values, that ‘may be attributed to the small num-
bers involved. After each life table intended for
publication had been calculated and printed out,
the ~X values for individual years of age (in-
cluding subdivisions of the first year of life)
were examined, and certain tests of consistency
applied. The position was taken that all the other
life-table functions are completely determined by
the q ~-values, and no tests need to be applied
to them.

It was considered that, for each life table,
the q ~ values should decrease from age O to
about age 10 or 11 and then increase to the
early twenties. They should increase again
from about age 30 to the end of the table. Strict
increase in mortality rates with increasing age
was not required between ages 20 and 30, because
a slight dip in the mortality curve in this age
range (due to motor-vehicle-accident deaths)

12

is a feature of many of the life tables. Abrupt
age-to-age changes in qXvalues (indicated by
large second differences) were also examined,

For each set of four life tables (by color
and sex) for a given geographic area, it was
considered that the qX value for females at
each age should be less than the corresponding
value for males of the same color, with the possi-
ble exception of ages 90-95. (At ages 96 and
over, the qx values were the same in all the life
tables, being those of the Union Civil War vet-
erans’ mortality experience.) Moreover, in every
such set of four life tables, the qx value for the
white population at each age should be less than
the corresponding value for the nonwhite popu-
lation of the same sex, up to about age 70. If
the values for nonwhite persons do become lower

at about age 70 or later, they should remain
lower. In other words, corresponding mortality
curves for white and nonwhite persons should
not be permitted to cross and recross a number
of times. The criterion based on comparison of
corresponding mortali~ rates for white and non-
white persons was not applied, however, to life
tables for Hawaii, California, and the Pacific
division, where the nonwhite population is com-
posed predominantly of ethnic groups having
mortality rates closely comparable to those of
the white population.

In every instance in which an adjustment was
thought necessary, it was effected by redistribut-
ing by age the deaths in two or more adjacent age
groups, so that the total deaths remained un-
changed. In using this type of adjustment, the
intention was to change the local shape of the
mortality ctirve, while preserving the overall
mortality level. In most cases, the redistribution
by age was made in proportion to the deaths of
the corresponding age intervals for a “standard”
life table. For the most part, the life table for
the United States for the same classification by
race and sex was taken as the “standard, ”
In a few cases involving State life tables, the
corresponding life table for the geographic divi-
sion containing the given State was used instead.
In general, an effort was made to extend the ad-
just ment over the smallest possible number of
ages consistent with achieving the results de-
sired. In a few recalcitrant cases, redistribution
on the basis of a “standard” life table failed to



Table 5. Number of Statea life tables in which special adjustments were made, by
color, sex, and selected age intervals: United States, 1959-61

Age interval (between exact ages)

o-2------------------------------------------------------
2-5------------------------------------------------------
5-20 -----------------------------------------------------
20-50 ----------------------------------------------------
5o-95----------------------------------------------------

I 95-lo5---------------------------------------------------

Number of life tables in
which special

adjustments were madeb

14 4 6
36 3: 22
13 11 16 :$
8 10 3
4. 1: 12
1 : 0 0

I
1

Total numbers of life tables published ------------------- 51 51 25 25

aIncluding the District of Columbia.

bIn some instances the age interval involved in a single redistribution of deaths
by age included parts of two or more of the age intervals shown in the table. Thus
the sum of the entries in any column, in general, somewhat exceeds the total number
of separate redistributions tide. “ -

remove the observed anomalies, and redistri-
bution of deaths by age in a more arbitrary
manner was resorted to.

When inappropriate redistributionby ageof
the deaths in certain age intervals had beende-
tided on, it was necessary to make the corre-
sponding changes in the life-tablefunctions. when
an age interval involvedin the redistribution was
under age 2, the adjusted number of deaths was
substituted for tbe original ~DXin formula (1).
If age 2, 3, or 4wasinvolved, unadjusted value
of mXwas calculated by (3) or (4),as appro-

priate,and an adjustedqX was then given by

(2), If a 5-year age interval was involved, the
original~m~”p was replaced by an adjusted value
calculated by (5). The corresponding adjusted
value of ~qXwas then calculated by (15), using
for ~fx the corresponding value obtained from
the life table for the United States for the same
classification by color and sex. After making all
such corrections, stages (ii)and (iii) oftheproc-
ess of constructing the life table, as described
earlier, were repeated with the correctedvalues.

Table S, which relates only to the life tables
for States (including the District of Columbia)
gives some idea of the number of special ad-
justments made. Fairly numerous special ad-
justments were made also in the life tables for
the nine geographic divisionsandtheir metropoli-
tan and nonmetropolitan subdivisions; these are
not reflected in the table.

The life tables for the total population of a
State are also not included because, for the sake
of consistency, all redistributions of deaths in
any of the fourcomponentpartswereincorporated
into the table for the total population. Thus, many
special “adjustments in the life tables for the total
population of aStatewould nothave been made if
these tables had been considered by themselves.

More adjustments were required in the age
interval 2-5 years than in any other. This is be-
cause deaths by single years of agewere usedat
ages .2, 3, and 4 (in completed years), and these
numbers are small and subjectto severe statis-
tical fluctuations. Only’12 out of 51 Statelife

tablesfor white males, and only11 outof51 for
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white females, did not require special adjust-
ments at some ages. All 25 of the published
State life tables for nonwhite males, and all but
one (New York) of those for nonwhite females,
required some special adjustments.

Because of the method of adjustment used
(redistribution of deaths by age over two or more
adjacent age intervals), it was not possible to
make a change in one of the age intervals by
which deaths were tabulated without affecting

neighboring ones. In some instances a single
redistribution of deaths affected parts of two or
more of the age classifications shown in table
5. Therefore, the total of any column in the
table sIightly exceeds the number of single
redistributions made. In only one instance
(white maIes in Hawaii) was it necessary to
include deaths at ages above 95 in a redis-
tribution.



MATHEMATICALAPPENDIX

Donald R. Schuette, Ph. D., Associate Pvofessov, School of Business, University of Wisconsin

INTRODUCTION
As pointed out in the main text of this re-

port, itisconceivable”(though unlikely inpractice)
that a set of values of5m:0p might be such that
the system of linear equations consisting of
equations (11), (12), and (13) has not a unique
solution, but either no solution or a multiplicity
of solutions. It is also conceivable that in some
cases the iterative procedure described by equa-
tions (16) and (17) might fail to converge (even
though there is a unique solution). It would be
desirable, therefore, to know that if certain con-
ditions are satisfied by the observed values
of ~mfop there will always be a unique solution,
and that if certain further conditions are satisfied,
the iterative procedure must converge to a defi-
nite set of limiting values.

Such conditions are derived in this appendix.
It should be emphasized, however, that while the
respective conditions to be described guarantee
(1) uniqueness of the solution and (2) convergence
of the iterative process, it is considered unlikely
that the central death rates for any actual popu-
lation would give rise to either nonuniqueness
or nonconvergence, even if the conditions are
not satisfied.

On the other hand, it should perhaps be
pointed out that there could be a situation. in
which there was a unique solution, but for
practical reasons this solution would have to
be rejected or modified. For example, it is
mathematically possible for the values of
@~~>t’15/. . ., t105 obtained by solving the sys-
tem of equations to be such that the use of Beers’

interpolation coefficients would give IX < tX+ ~
at some age x.

CONDITIONSFOR UNIQUENESS
OF THE SOLUTION

In this part of the appendix the system
of 20 linear equations in the 20 unknowns,

[lo ‘ Q15’ “ “ “, @105J
defined by equations (1 1),

(12), and (13) will be examined for conditions
under which the system is nonsingular, i.e.,
conditions under which the set of values for the
unknowns that satisfies the equations is unique.

Equation (13), ~m~op ~Lx= ~dx, when ~Lx is

replaced by its equivalent in terms of
PQ4PQ5, . . ., ~05, and ~dx is replaced by PX– !X+~,

becomes the equations

(Al) sm~p [-1.808303(4+ 4.446995!5 + 2.623337!10

-.300185115 + .037251!20+ .000905~251

= t5– {10,

(A2) sm~~p [.449328!4 – .790687P5 + 2.848458!10 ‘.

+.2.779262 Q15 – .328328Q20 + .041967125]

= tlo – 415,

and

(A3) ~m~”p [.0368qx _lo – .3104px_5 + 2.7736~x

+ 2.7736tX+5 - .31044X +10 + .0368P ]
X+15

=tx–tx+5

for x=15,20 ,. ... 90.
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It will be convenient to divide ~~ these equa-
tions by the appropriate value of ~m~”p and then
rearrange so that terms involving unknowns
appear on the left side and all known quantities
including Qa and 05 are on the right side. The
resulting equations with ax ‘op are as fol-= l/5mX
lows:

(A4) (ti~ + 2.623337)e10-.300185 ~1~+ .037251~20

+ .000905!25

= (CY5–4.446995) t5+l.808303e4,

(A5) (– alo + 2.848458)c10+ (alo+ 2.779262)(15

—.328328020+ .041967e25

= .79068705- .449328t4 ,

(A6) –.3104t10+ (2.7736– ~l~)tl~ + (2.7736+ a15)c20

– .3104c25+ .0368!30= -.0368 [5,
and

(A7) .0368tX_10–.3104tX_5 + (2.7736– aX)tX

+ (2.7736 + ~x)ex +5 – .3104!X+ ~0+ .0368tx+15=0

for x=20, 25, . . .,90.

Equations (11)’and (12) may be rearranged
respectively as

(AS) — ~Pg5~95+ elOO= o

(A9) “+ ~lo5– 5p100~loo = o.

Equations (A4) to (A9) inclusive comprise
the system of 20 linear equations to be examined.
As previously indicated, the values of ~p95 and
~ploo based upon Union Civil War veterans’
mortality experience may be regarded as given.

10Here the assumption is made that there is no value OF
POP _ 0 The procedure described in the m~n

x for which ~mx – .
part of this report could not be applied, witbout some modifi-

cation, to a set of central death rates that }vere not all posi-
tive. For, in view of (13), ~mfop.=O implies Sdx = O and

-therefore (X+5 = !X . Th~s, in turn, implies that

Qx-l-l = !x+2 =! x+3 =! X+4 = tx. It is not difficult to show

however, that Beers’ lnt erpolation coefficients could give

such a result only if [x were a constant (independent of x),

}vhich \vould mean that no deaths occurred at any age.

In fact, the values which were actually used
were SP95= .120378690 and ~P1oo = .062156908.
Hence the only nonnumerical quantities other
than the unknowns which appear on the left side
of the equations are the quantities ax = l/5m~0p ,

x= 5,..., 90. The latter, of course, vary
among the various tables, and their values will
determine whether or not the set of solution
values of the unknowns is unique. Hence, in what
follows it will be natural to expect that the con-
ditions for a unique solution to the system of
equations will depend upon the values of

ax>x= 5,10,...,90.
Now, as indicated earlier, a system of n

linear equations in n unknowns is nonsingular
if and only if the determinant of the coefficients
of the unknowns does not equal zero.1 t Hence,
one way of proving nonsingularity would be
to compute the value of the 20 x 20 determi-
nant of coefficients and obtain a nonzero value.
But, because there is really a different system
of equations and hence a different determinant
for each of the various national and subnational
tables, a more general approach would be
preferred. Such an approach is available in
the form” of a theorem concerning homogeneous
linear equations.

A system of n homogeneous linear equations
in n unknowns WI, W2,.,., Wn is a system of the
form

allwl+ a12w2 + . ..+ alnwn =0

W+, ..+a
‘+a222a21 1

W=o
2n n

. . ----- . . . . . . . .,,

a “lW1+ a “2W2 +,,.+ annwn= o.

In other words, a homogeneous system is one
in which all the constants on the right sides of
the equations have the value zero. Clearly wl=o,
W2=0, . . . . Wn= O is an obvious solution to this
system, the so-called trivial solution. The
theorem in question is that a set of n homo-
geneous linear equations in n unknowns has a
solution other than the trivial solution if, and
only if, the determinant of coefficients vanishes .12

llThe reader may consult as a reference on this point

Browne, Edward T., Introduction to the Theory of De ferminanl~

and MatAces, The University of North Carolina Press, Chapsl
Hill, 1958 (p. 57).

121bid,, Corollary 23.4, p. 61,



If it can be shown that the homogeneous
system corresponding to equations (A4) to (A9)
inclusive, i.e., the system obtained when the
right hand sides of equations (A4), (A5), and
(A6) are replaced by zero, has only the trivial
solution, then from the above-mentioned theorem
it may be concluded that the determinant of
coefficients is nonzero. But since the deter-
minant of coefficients is the same for the original
system of equations as it is for the corresponding
homogeneous system, the nonsingularity of the
original system will then have been established.

Accordingly, let Zlo, Z15,..., Z105 be values
of the unknowns satisfying the homogeneous sys -
tem corresponding to equations (A4) to (A9) in-
clusive, Then

(AlO) (a5+ 2.623337)z10- .300185z15+ .037251z20

+ .000905225= o

(All) (– ale+ 2.848458)z10 + (alo+2.779262)z15

—.328328z20 + .041967z25= O

(A12) - .3104zIO+ (2.7736- a15)z15+ (2.7736 +a15)z20

- .3104z25+ .0368z30 = O

(A13) .0368z10- ,3104z15+ (2.7736– CY20)Z20

+ (2.7736 + a20)Z25 – .3104z30

+ .0368235= o

. . . . . . . . . . . . . . . .

(A14) .0368z80 - .3104285+ (2.7736 – CC90)Z90

+ (2.7736 + a90)z95 -.31042100

+ “0368Z105= o

(A15) – ~P95z95+ Zloo = O

(AI6) – ~P1oo 2100 + Z105 = 0.

Multiplying equation (A1O) by ZIO, equation (All)
by Z15 and so on down to equation (A16), which
is multiplied by Z105, and adding produce, after

considerable ]-earrangement, a result of the form
S = O where

(A17) S= 1.2741365(z10+ 215)2+ 1.222636(z15+ 220)2

+ 1.2316[(z20 + 225)2+ (Z25+Z30)2+...(Z90+Z95)2]

+ .215389345(z95– Z100)2+.031078454(ZIOO–Z105)2

+ .1365745(z10- 220)2 + .1342165(z15– 225)2

+ .1368[(z20– 230)2+ (225–235)2+ ...(z85–z95)2]

.0184[(z90+ 2100)2+ (Z95 + Z105 )2]

+ .0188525(z10+225)2+ .0184[(z15+ 230)2

+. . .(280+ 295)21

+ 1.1937735Z10*+ .129873z152+ .0275895z202

+ .0021312252

+ .0184z852+ .1368z902+ 1.153010655z952

+ .735132201zI002 + .950521546z1052

+Q

where

(A18) Q= ~ ~lo(zlo – 215) 2 + ~ a15(z15 – 220)2 +.. .

La (z
2 90 90- 295)2

2(a5- *(la
‘+ ‘1O

+ CYlo)+ z la15 ~ 10- ~ 15)

+ . . . *(La = +a90)+’z9:( + a90).’90 * 85

It is perhaps well to repeat at this point

that what is to be shown is that for S to have value

‘ero~ ‘lo’ ’15’ “ “ “‘ ’105 all must equal zero. But,

because S is a weighted sum of squares of a num-
ber of real quantities, .S can have value zero only
when all of the quantities to be squared al-e them-
selves zero, provided all of the coefficients
(weights) are positive. Inasmuch as all the coeffi-
cients of terms in. S which do not involve
ax, x= 5,10,...,90, are positive, the desired
result is obtained whenever the ax are such
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that all of the coefficients of the terms in Q
are positive.

It is perhaps obvious that one way for all the
coefficients of Q to be positive is that the value
of ~m~opincrease with age. For if ~m~p<~~y~

for all X, then ax > ax+~ and $aX– +crX+5>0for aJ.1

x. For x = 5 all that is actually required is
that + ~m~”p < ~mf~p, because then 2~5 > alo and

as – $ alO>O. l-Ience a rirst result is the following:

Theorem Al: The s ystern of linear equations
defined by equations (11), (12), and (13) has
one and only one solution for the unknowns
F~~? ~15J- . . ,t~05 if ~m~op < ~m~$p5 for x = 10,

15, . . . . 90, and ~ ~m~”p < ~mfjp.

Unfortunately, the conditions of Theorem Al
are inadequate for many tables because of the
fact that in a number of instances ~m~op > ~m~~5.

This is quite common for male tables at x = 20

because of the impact of deaths due to motor-
vehicle accidents. Hence, conditions on CYXvalues
which encompass more situations must be sought.

Suppose there is an age u such that ~mf~p5<

POP but ~m~op > ~m~T5 .
5mu Then au _s >au and the
coefficient of z: in ~ is positive, but ~U< au+ ~
and the coefficient of Z:+ ~ is negative. However,
a way to circumvent this difficulty is to rearrange
the term with the negative coefficient and two
others of Q as follows:

+au(zu-zu+5)2+z: (+au_5 -;~u)

+Z:+5 (;cY”-+au+5 )

.
- ~u Zu zu+5++~u_5z: +(~u —;a”+5 )2:+5

(A19) = ~au ( uzf - 2ZU ZU+5+ Q–1zf+5)

+ Z:+5 (au– +au+5– * auu–l) .

The last expression is obtained from the pre-
ceding by adding and subtracting a quanti~ in-
volving ~ and a quantity involving ~–1 where u
at this point is an unspecified positive number.
The last expression (A19) is of course equal to

(A20) ~cru(~u –=zU+5)2+ z: (~au_5 – $auW)

-Aauo–l -Aa ).+ z:+5 (au * 2 U+5

The question now is whether or not it is possible
to assign a value to w such that the coefficients
of z: and z:+ ~ in (A20) are both positive, For
the coefficient of z ~ to be positive it is necessary
that aU_ ~>auu, or

(A21) ~< au-5

au

For the coefficient of z~+5 to be positive
necessary that

(1-~w–1)au>+au+5,

or

(A22) ~> au
2a”–fxu+5

it is

That both of the inequalities (A21) and (A22)
are satisfied means that

(A23) au <w <~,
2cru-au+5 au

In other words a value of u can be found for
which the coefficients of z: and z~45 in (A20)
are both positive, provided

(A24) z= “u < ~
u-au+5 au

Inequality (A24) is equivalent

(A25) & + ~ <2,
~u-5 ffu

or

5m:25 + #:”p(A26) _
pop

_ <2

5mu 5mu+5

—.-

.

to

Thus a second result is the following:

Theorem A2: The system of linear equa-
tions defined by equations (11), (12), and (13) has
one and only one solution for the unknowns

’10$ [15’ . . . ~ ~lo5 if L mp”p < ~mfjp and
255

POP < MpopSmx ~ X+5, X= lo, 15,. . .,90 with the excep-
tion of one age u, 15~ u= 85, for which ~~”p>~m~~~
provided

ThUS, a ratio of 5mf0p/5m~$~ greater than

unity can be tolerated provided the corresponding

18



ratio at the preceding age is sufficiently less
than unity so that their sum is less than 2. In

.
a very similar manner one can obtain a corre-
sponding result in terms of a ratio ~m~Op/ ~m~f ~

and the following ratio. That res~dt may be
stated as follows:

Theorem A3: The system of linear equa-
tions defined by equations (11), (12), and (13) has
one and only one solution for the unknowns
r
lo1~15’”’”’!lo5

if 1 mPOP < ~m~~p
~5 5

and
MPOP < MPOP

~ ~+5, X=1O,15,.. .,90with the excep-
!io~ of one age U, 10~u ~ 80,for “which

~m~op > ~m~]p5

provided
pop

~mu
pop

—+5 + <2.
~m~+P5

&u +10

As an example the 1959-61 U.S. life table
for white males is a case which is not covered
by Theorem Al but is covered by either Theorem
A2 or Theorem A3. The following values are from,
that table.

x MPOP
5x

mp 0 ‘/5m~+p5
5x

15 0.0012371 0.7367

20 0.0016793 1.1282

25 0.0014885 0.8616

30 0.0017275

In this case the sums of both pairs of succes-
sive ratios are less than 2 (although one of them
is 1.9898). It may well, be that for some other
table only one or the other of the sums is less
than 2, in which case the uniqueness of the solu-
tion to the system of equations is established by
appeal to only one of Theorems A2 and A3.

It should be noted that the conditions of
these three theorems are by no means exhaus-
tive of those under which a unique solution to
the system of equations exists’. For example
~m~p > ~m~$p~could be permitted more than once

in a single table provided that the occurrences
were not too close together. Hence, if a table
is encountered which satisfies the conditions of

neither of Theorems AZ and A3, it by no means
follows that a unique solution to the system of
equations does not exist. A case in which there
is not a unique solution would be rare indeed.

CONVERGENCEOF THE ITERATIVE
PROCESS

This section is concerned with finding con-
ditions under which the iterative process for
determining. life-table values defined by equa-
tions (16) and (17) converges.

The problem of convergence may be attacked
in a number of ways. Letting a superscript
r denote as before the life-table values obtained
at the rth iteration, one may express equation
(16) in the form

(Bl) ~f:=&_L
qr pop ~

5x
Sm ~

and equation (17) (for r > 1) in the form

(B2) 1‘f;=+–_
r—1

5qx 5mx

By subtracting equation (132) from (Bl), one
obtains

(B3) &_ 5 1 1—. —. —
5q:

Sq; – 1
&:”p 5m:–1 ‘

Using equation (Bl) and (Bl) with r replaced
by r – 1 one also has that I

5 5(B4) —–—= ‘fx’– ~f:–1
59: ‘q;–l

From the latter two equations it is seen that
convergence of the process in the sense that
values of ~qj tend toward equality with increasing
r is equivalent to the condition that valu’es of
f’

5x similarly tend toward equality, and both
of these are in turn equivalent to” the condition
that values of sm~ approach ~m~”p. In what fol-
lows convergence will be examined from the
point of view of values of sm~ approaching sm~op

as the number of iterations increases. First
it will be shown that the iterative process does
converge provided certain relationships hold
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throughout the process, and then there will be
determined conditions with respect to the values
of +x ‘opwhich guarantee that those relationships
do in fact hold. .

defined as

It may be noted that if C; approaches zero as
r increases, then a; approaches ax and m’
approaches ~myp, provided sd~ does not appro;c{
zero.

Since equation (17) is equivalent to

(B6) (a; –l + ~f:)~d;–l = 5/;–1,

or

(B7) ~L;–l = 5!; –1 – ~f: (5d;-1),

it follows that

(B8) 6:-I = 5[:-1 – (ax+5f:) 5d;–1 .

Also equation (Bl) may be written as

The last equation may be rearranged as

Assuming that ax+ ~fxr z 5 and employing a well
known inequality for real numbers, one obtains

+(ax +5fxr –5)[P: -P; –11,

Next, let q, denote the maximum value of
l~j–e[–ll for x = 10, 15,...,95, and assume
that the maximum occurs at age y+s< Then

(ay + ~fJ)qrSlej-ll+ (my+ ~fJ-5)l[J – !J-ll

<It;–ll+ (ay+5f; _5)q
r’

Hence, if we assume that ctY+ ~fj >5,

(B14) Tr < ~ IC;–ll<+ max lt;-1~,
X=5, 10,,..,9O

Inequality (B14) is the first of two inequali-
ties which together will show the convergence
of the process. To obtain the second, one uses
equations (B7) and (B9) to produce

(B15) e;= 5L; - 5L’.-1+ ~f: (5d; - ~d:–l)

– 5 (4: - !:–1),

Then by way of equations (8), (9), and (10) it
follows that

(B16) C:= (2.623337– ~f:) (!;O- !;;l)

– ,300185 (~;~- [:5-1)

•t-.037251(!;.- {;O-1,

+ .000905 (f;5- t;; 1),

(B17) *;O= (5f1; – 2.151542)(c;O– 4{0–1)

+ (2.779262- ~f;o) (![5 - [[5–1)

– .328328 (Q:o- [;; l)

+ .041967 (t;~ - !;5–1),

20



for X= 15,20,.,., 90. It should be noted that

“4
and t~ are assumed to be constant for all

iterations, and that t: - Cj–l and Q: – t ‘–1 are5
therefore equal to zero. If 1< ~f~<4, then ,

I,f[o- 2.151S42\ + 12.779262- ~f:ol<3.07 and

15f;- 2.22641+ I2.7736- ~f~I<3, with the follow-
ing three inequalities then resulting:

(B19) It; I< 1.97vr, Ic;olc 3.44T,, and Icj I< 3.7oq,,

and the latter holding for x = 15,20,...,90.Hence
one may conclude that

(B20) max Ie; l < 3.70qr .
X=5, 10, . . ..9O

Combining (B14) and (B20) produces the in-
equality

(B21) max IC;]< .74 max Ic;-’l,
X=5,1O, . ...90 X=5,10, . . ..9O

which shows that c; approaches zero as r in-
creases and that the process converges, provided
the three assumptions which have been made, (a)
~d~ does not approach zero, (b) ax + ~f~ >5,

and (c) 1 < ~fj < 4, do in fact hold for any life
table under consideration.

To determine conditions such that the three
assumptions hold, let r be replaced by r + 1 in
equation (B7). Solving for ~f~+lthen produces

(B22) ~fxr+l= 51;-5L; ,
dr

5x

from which one may obtain, using equation (10),
that

(B23) 5f:+1= 2.5 +

– .03685d;_10+ .27365d;_5– .2736~d;+5+ .0368~dxr+10

d’
5x

Dividing numerator and denominator of the second
term on the right by t; produces

(B24) ~fxr+l= 2.5+

-.0368 ~q;_10 1
1 1

. _+ .2736~q:_5
l–5q:_10 l-5q:_5 l–5q;-5

~q;

21

–.2736(1-5q;)5q;+5 + .0368(1–5q;)(1– ~q;+5)5q:+10
+ . .

qr .
5x

The la~er two equations are valid for
x= 15, 20, . . .,90, with the understanding that 5q~5

and ~q~OOhave values constant for all r based on
Union Civil War veterans’ mortality experience.
For x=5 and x=10 the corresponding results using
equations (8) and (9), respectively, are

(B25)
[
1.808303q41_ -.138692~q;

l–q4

—.262029(1-Sq:)5q;0

+ .038156(1- Sq:)(1- 5q:O)~q;5

+ .000905(1-~q:)

(1– Sq;o)(1– 5q;5)Sq:o1
f‘+1=2.5+

55
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and

(B26)
[

1–.449328 q4.~ _

l–q4 1– ~qg

+.341359 ~q; L

1–5q;

— .007099~q;o–.286361(1–~q;o)5q:5

+ .041967(l–5q:O)

(1- ‘) 15q15 5q;o
f ‘+1=2.5+5 10

q’5 10

What one would like to conclude is that ifat

the rth iteration 1< sf~ <4 and ax + ~fj ~ 5,

then the same is true at the (r+ l)st iteration,

provided certain conditions hold among the values

of ax. Then, if the two conditions hold at the

first iteration, it would follow by mathemati-

cal induction that they hold at all iterations, the

proof of convergence thereby being established

provided the proper conditions among the ax

hold. A similar but somewhat more complicated

result will now be obtained.

Suppose there are numbers sf~ and ~f~ such

that 1& ~fxL < ~f~ ~ 4 and ax + sf~ >5. Suppse

th iteration s f ~ <5 Xalso that at the r f’ < f“

for X= 5,10,..., 90.Then, from equation (B1)5 i;

follows that

(B27) 5
< Sq: <

5
L’

ax + Sf; ‘x + 5fx

(B28)
ax+5f~—5 ax + Sfx” — 5

< l–5q: < ,
ax + Sf; ax + sf~

and

ax + sf~
L

(B29) 1<<—
ax + 5fx

u
ax+5fx -5 1– ~q: ax+5f$-5

Employing these three inequalities in con-

nection with equations (B24), (B25), and (B26),

one may obtain inequalities of the form

(B30) ~f;+l >2.5- @ (X),

and

(B31) 5f;+1 <2.5 + ~ (X),

for X= 5,10,..., 90, where @(x) and + (x) are given

by

@ (5) = .262029
C?5+ 5f5u - 5

+ ,138692,

‘1O + Sfl’

@ (10)= .0898656%
a5 + sf~

(alo+ ~ f:)

P4 a5+5f~-5

alo + Sf:o -5
+ .286361 + .007099,

a15 + 5f:5

+(x)= .0368 ‘ax-5 + 5f;_5)(dx+ ,f:)

(ax-lo + sfxL_lo - 5)(ax_5 + sf;_5-5)

‘-5
+ .2736 ax + 5fx

ax+5 + 5f:+5 ‘

for x= 15,20,. . .,85,

(cr85+ ~f~5) (a90
@ (90)=.0368

(a80 + sf~o -5) (a85 + 5fJ5 -5)

+ ~f9:)

+ .054725q95(a90+ Sf:o - 5),

a5+5f:–5
# (5)= .3616606 ~ (a5 + ~ f:) + .038156

P4 a15+ ~f~5

f“–5
+ .000905

a5+5 5
-,138692,

azo + s f;.

u
alo + .5flo alo + ~fl: –5

4 (lo)= .341359 + .041967
+5f:–5

L
a5 a20+ 5f20

- .007099,
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u
ax+ f ax -f-~fxu— 5

# (X)= .2736 5 x . + .0368 .’

for x =

# (85)=

$ (90)=

~x-5+5f:_5-5
L

~x+lo+5fx+lo

15,20,. . ., 80,

u

.2736
a85 ‘.5f85

+ .00736 ~q95(a85+ ~f:’-s))
a~o + Sf:o– 5

’90
+ Sf;o

.2736

a85
+ ~f:5 –5

+ .00736 (1- 5q95)59100(a,O + 5f:0 - 5).

The inductive step will be complete
if the values of @ (x) and + (x) are such that
~fxL < 5f;+1 < ~f: . This will certainly be the

case if 5fxLS 2.5– @ (x) and
equivalently

(B32) @ (X) <2.5 – Sf; ,

and

(B33) # (X) < Sf: - 2.5.

The foregoing observations

2.5+ +(x)< sf~, or

lead to a theorem—
which may be-stated as follows:

Theorem: If there exist numbers 5fXL and

~fx”, x=5, lo, ..., 90, such that(i) 1< sf~ < sf~ s 4,

(ii) ax + ~fXL > 5, (iii) @ (x) <2.5 -5fxL,

and (iv) @ (x) < sf~ – 2.5, then the iterative proc-
ess converges.

Proof: If values of sf~ and ~fxu exist which
satisfy the four inequalities, then @(x) >0 and

# (x) >0 “and ~f~ < 2.5 < ~fxu. Hence

~f: < ~f; < Sf: because ~ f; = 2.5. “Also if

f L < ~ fj cs f: then from inequalities (B30) and
~B;l) and conditions (iii) and (iv) it follows that
Sf; < fr+l ‘c Sf;. Hence by mathematical in-

duction ~n; has that s fXL< sf~ <5f~ for all posi-
tive integers r, and consequently lc5fxrc4 and

ax + ~f~ >5 for all r.

All that remains to be shown is that, ~d~

does uot approach zero as r increases. However

By virtue of inequalities (B27) and (B28) one
may conclude, therefore, that

[
ax_5 + 5f~_5 -5

\ 5

( L ) u’
ax—5 + 5fx–5 ~x+5fx

which shows that the limiting value of ~d; as
“ --

r increases is at least as large as the expression
on the right side of inequality (B33) and is there-

fore not zero, under the hypotheses of this
theorem.

A way of using the theorem to show that
the iterative process does converge for a partic-

Ldar table is to proceed as follows: First, set

Sfxu= 4 for all x. Second, set s f; = 1 for those
ages x for which ax > 4. If 2.5 < ax < 4, set

fL such that ax + s f$ >5. For example one5x

might try initially Sf$ = 5.1– ax. (If ax S 2.5,
POP > 4 then the theorem is of no valuei.e., Smx — . ,

in showing convergence of the process, even

though the process may actually converge. ) Third,
compute @(x) and 4 (x) for ali ages x. If the
values of @(x) and # (x) obtained satisfy the in-
equalities @(x) < 2.5 –5f~ and # (x) < sfy – 2.5,

then convergence is proved. If the inequalities

are not satisfied, the values chosen for f L

and s f; may” be changed and revised values5 o;

@ (x) and 4 (x) obtained. In particular the values
of sf~ at ages 85 and 90 very likely need to be
increased. For example for the life table
for United States white males with ~fxu= 4 for

all ages x and sf~ =1 for x= 5, 10,...,85 and
L

5f90
= 1.,7 (ago = 3.41), one finds that the values

of @(x) and x (x) which are obtained satisfy the .

inequalities d (x) S 2.S – s f ~ and + (x) ~ s f$-2.5

except at age 90 where ~ (90) = 1.71.
However after changing 5f~5 to 1.8, one ob-

tains a revised value for +(90) of 1.02. The
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values of @(80), @(go), and Y(75) also change, but However, as stated previously, inability to find
only slightly. At this stage both of the inequalities values of ~fxLand ~fxuwhich satisf y the hypotheses
are satisfied at all ages and convergence has been of the theorem by no means implies that the
proved. process does not converge. It appears unlikely

Thus, a way of establishing that the iterative that a table can be found for which the pfocess
process does converge is provided by the theorem. does not converge.

000
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