Screening for haemochromatosis- evolution of data over 20 years

Professor Martin Delatycki

Murdoch Children's Research Institute

Victorian Clinical Genetics Services

Important problem	Yes	Suitable test	?
Acceptable treatment	Yes	Acceptable to population	?
Facilities for diagnosis and treatment	Can be	Agreed policy on who to treat	?
Recognized latent stage	Yes	Cost of case finding balanced v total expenditure	?
Natural history understood		Continuous process of case finding	Can be

Mi-Iron- A randomized patient-blinded study of true versus sham reduction of body iron in HFE related haemochromatosis with moderate iron overload

Sim Y Ong, Lyle C Gurrin, Lara Dolling, Jeanette Dixon, Amanda J Nicoll, Michelle Wolthuizen, Erica M Wood, Gregory J Anderson, Grant A Ramm, Katrina J Allen, John K Olynyk, Darrell Crawford, Louise E Ramm, Paul Gow, Simon Durant, Lawrie W Powell, Martin B Delatycki

Reduction of body iron in HFE-related haemochromatosis and moderate iron overload (Mi-Iron): a multicentre, participant-blinded, randomised controlled trial

Sim Y Ong, Lyle C Gurrin, Lara Dolling, Jeanette Dixon, Amanda J Nicoll, Michelle Wolthuizen, Erica M Wood, Gregory J Anderson, Grant A Ramm, Katrina J Allen, John K Olynyk, Darrell Crawford, Louise E Ramm, Paul Gow, Simon Durrant, Lawrie W Powell, Martin B Delatycki

Summarv

Background The iron overload disorder hereditary haemochromatosis is most commonly caused by HFE p.Cys282Tyr Lancet Haematol 2017; homozygosity. In the absence of results from any randomised trials, current evidence is insufficient to determine 4: e607-14 whether individuals with hereditary haemochromatosis and moderately elevated serum ferritin, should undergo iron reduction treatment. This trial aimed to establish whether serum ferritin normalisation in this population improved symptoms and surrogate biomarkers. Australia (SY Ong MBBS

See Comment page e569 Murdoch Children's Resear Institute, Melbourne, VIC

⋺`⊾

Do people with HH and SF >300 μ g/L but less than 1000 μ g/L need treatment?

- >1 million people in each of US and Europe and >85,000 Australians have or will get SF> 300µg/L but < 1000µg/L due to HFE p.C282Y homozygosity or p.C282Y/p.H63D compound heterozygosity
- Increasing number of commentators advising not to treat HH if SF less than 1000µg/L

To undertake a randomised patient-blinded trial of erythrocytapheresis compared to sham erythrocytapheresis (using plasmapheresis) in individuals who have serum ferritin (SF) > $300\mu g/L$ but < $1000\mu g/L$ (defined here as moderate iron overload) due to HFE p.C282Y homozygosity and to compare the prevalence of symptoms and objective markers of disease in the two treatment arms

Erythrocytapheresis

- Blood removed
- Spun
- RBCs discarded
- Plasma returned to subject
- Plasmapheresis- opposite
- One treatment removes ~3x RBCs cf venesection
- Reduced hypovolaemia SE cf venesection because of saline replacement
- Anticoagulant can cause SE due to ↓ Ca⁺⁺ (citrate reaction)

Inclusion

- 1. HFE p.C282Y homozygous
- 2. Aged 18 years or older
- 3. SF above the upper limit of the normal range ($300\mu g/L$) but less than $1000\mu g/L$ with a raised TS (>ULN for testing laboratory)

Exclusion

- 1. HH due to other genotypes
- 2. Normal SF, SF >1000 μ g/L or raised SF in the setting of normal TS
- 3. Other major risk factor(s) for liver toxicity including positivity for hepatitis B or C, excess alcohol consumption (>60g/day in males and 40g/day in females), body mass index >35 (which places the individual at high risk for steatohepatitis)
- 4. Current or recent venesection for HH (within two years)
- 5. Pregnant

- Fatigue- Modified Fatigue Impact Scale (primary outcome measure)
- **QoL-** SF36 version 2
- Depression and anxiety symptoms- Hospital Anxiety and Depression Scale
- Arthritis- Arthritis Impact Measurement Scale 2 short form
- Liver wellbeing- Hepascore, Fibrometer, Transient elastography- Fibroscan
- Oxidative stress- F2 isoprostanes

SF and TS

SF	Baseline (µg/L)	End of Treatment (µg/L)
Control (n=44)	509.7 ± 23.7	478.9 ± 25.4
Treatment (n=50)	518.8 ± 24.6	203.9 ± 10.0

Mean difference in change for two groups: p <0.0001

TS	Baseline	End of Treatment
	(%)	(%)
Control (n=44)	63.1 ± 2.7	61.7 ± 2.7
Treatment (n=50)	63.7 ± 2.3	45.4 ± 2.3

Mean difference in change for two groups : p < 0.01

Modified Fatigue Impact Scale

	N	ΔControl	ΔTreatment	Adjusted Mean	р-
				Difference	value
MFIS Total	93	-1.35 (1.74)	-6.82 (1.61)	-6.25 (2.46)	0.01
MFIS: Cognitive	94	-0.80 (0.83)	-3.90 (0.78)	-3.60 (1.16)	<0.01
MFIS: Physical	93	-0.60 (0.89)	-2.34 (0.83)	-1.93 (1.29)	0.14
MFIS: Psychosocial	94	-0.07 (0.23)	-0.58 (0.22)	-0.54 (0.33)	0.10

- No significant change in SF36v2, HADS
- Significant improvement in AIMS2-SF affect (p<0.03)
- Significant improvements in hepascore (p<0.05) and plasma F₂ isoprostanes (p<0.05)

How successful was blinding?

"Do you think your iron level was reduced?"

	Control (n=44)	Treatment (n=50)	p-value
Yes	10 (22.7%)	10 (20%)	
No	6 (13.6%)	9 (18%)	
Not sure	28 (63.6%)	29 (58%)	0.603
Missing	0 (0%)	2 (4%)	

- 13/14 patient reported outcome comparisons improved in treatment group more than controls (p=0.01)
- All significant changes were where treatment group improved more than controls
- No changes that were greater in the controls were significant

- Well blinded study
- Significant improvement in the treatment group in the MFIS total score and cognitive component and affect component of the arthritis scale
- No change in overall SF36v2 (MCS & PCS) or HADS
- Significant improvement in hepascore and isoprostanes

- Treatment of raised SF is generally safe
- Data from this study indicates clinical benefit
- All with raised SF should have normalisation of body iron as indicated by normal SF

Haemscreen

Aims

W Use of community genetic screening to prevent *HFE*-associated hereditary haemochromatosis

M B Delatycki*, KJ Allen*, A E Nisselle, V Collins, S Metcalfe, D du Sart, J Halliday, M A Aitken, I Macciocca, V Hill, A Wakefield, A Ritchie, A A Gason, A J Nicoll, L W Powell, R Williamson

Lancet 2005; 366: 314-16 Published online April 26, 2005 DOI 10.1016/S0140-6736(05) These authors contributed equally to this work Murdoch Children's Research Institute, Parkville, Australia (M B Delatycki FRACP.

- screen 10,000 individuals in their workplace for HFE p.C282Y
- assess whether a "worried well" population results
- assess consent in the setting of one to many education
- minimise illness due to hemochromatosis

- 11,923 attended (11,841 eligible), 11,306 screened (53.1% female) = 95.5% uptake
- 51 p.C282Y homozygotes
- No change in SF36, STAI from pre screening to post result in p.C282Y homozygotes
- All with raised iron took steps to normalise iron indices

ironXS

- Is screening for HH in late high school students acceptable and feasible?
- HaemScreen- about 10% of eligible individuals had screening
- School is an ideal place to:
 - teach students about genetic health
 - reach a high percentage of the population with relative ease
 - empower young people to control future health

Results...

- 17,638 offered, 5757 had screening (uptake 32.6%)
- 28 p.C282Y homozygotes identified
- No change in SF36, STAI from pre screening to post result in p.C282Y homozygotes

- De Graaff et al Appl Health Econ Health Policy 2017
- Modelled screening by genotype and by TS
- Both cost effective for males, TS screening cost effective for females
- BUT costs for genotyping excessive

Requirements for an Acceptable Screening Program- Wilson and Jungner, Year- 2020

Important problem	Yes	Suitable test	Yes
Acceptable treatment	Yes	Acceptable to population	Yes
Facilities for diagnosis and treatment	Can be	Agreed policy on who to treat	Yes
Recognized latent stage	Yes	Cost of case finding balanced v total expenditure	Yes
Natural history understood	Yes	Continuous process of case finding	Can be

Conclusion

- The case for screening for hemochromatosis is increasingly strong. There is much more data on:
 - Natural history, especially from UKB
 - Treatment response: RCT in moderate iron overload
 - Response to screening
- When and how?
 - Opportunistic through primary health care, people having genomic testing for another reason
 - Stand alone- high school, home testing (akin to bowel cancer screening)
 - At time of reproductive carrier screening
 - Secondary prevention clinical screening re arthritis/osteoporosis, chronic pain, diabetes, etc