

## Economics of Preventing Respiratory Syncytial Virus Lower Respiratory Tract Infections (RSV-LRTI) among US Infants with Nirsevimab

A SUMMARY REPORT COMPARING MODELS FROM:

**Sanofi AND** University of Michigan and CDC

#### Ismael R. Ortega-Sanchez, PhD NCIRD/CDC ACIP Meeting, February 23, 2023

**Disclaimer**: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention. 46

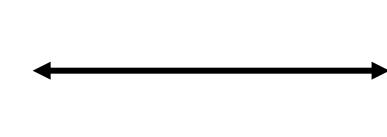
#### Conflict of interest

- Sanofi model: Alexia Kieffer et al., [complete authors list and affiliations, upon request ]
  - Sanofi manufactures nirsevimab
  - Evidera (San Francisco, London) was funded by Sanofi

- UM-CDC model: David W Hutton et al. from Univ Michigan, ..., Ismael R Ortega-Sanchez et al. from CDC [complete authors list and affiliations, upon request ]
  - All authors: No conflicts of interest

### Overview

#### **Policy questions:**


- Should one dose of nirsevimab be recommended
  - a) at birth for all infants born during October to March *and*
  - b) for all infants born during April through September and <8 months of age when entering first RSV season?
- Should nirsevimab be recommended for children <20 months of age entering their second RSV season who remain at increased risk of severe disease?

### **Economic analysis**

**Question**: Is the use of nirsevimab against RSV LRTI in all infants <8 months entering their first RSV season or born during season (and in high-risk children <20 months entering the 2<sup>nd</sup> season) *cost-effective*?

#### Comparator

Standard of care (SoC) Infants in first season (and high-risk in 2<sup>nd</sup> season)

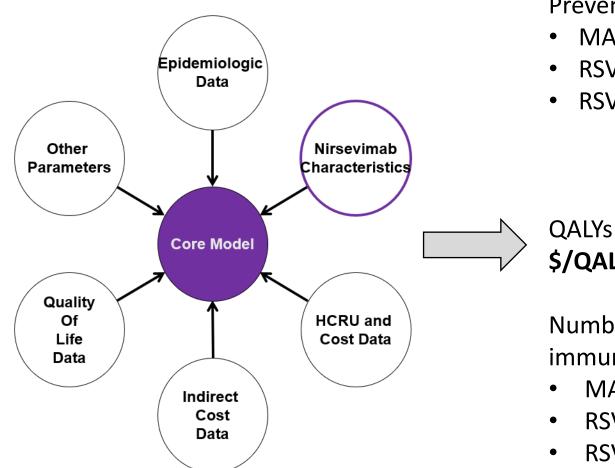


#### Intervention

Giving nirsevimab to infants in first season (and high-risk in 2<sup>nd</sup> season)

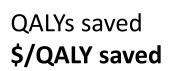
**Base-case scenario:** What is the incremental *cost-effectiveness* of using nirsevimab in all infants <8 months entering their first RSV season or born during season (and in high-risk children <20 months entering second season) relative to "Standard of Care"?

Standard of Care (SoC) = Palivizumab only for infants eligible as per AAP recommendations, and no immunization for all other pre-term and term infants


## Focus on key features for model comparison

- Modeling approach
  - Targeted population(s)
  - Perspective (healthcare vs. societal)
  - Intervention strategies and comparators
- Inputs for RSV disease burden, nirsevimab efficacy, and costs
  - Incidence of RSV disease, rates of outcomes
  - Direct and indirect costs of RSV disease
  - Intervention: efficacy, duration of protection, safety and program costs
- Assumptions
  - Strong, influential assumptions

## Modeling design and assumptions


|                                                                                                                        | Sanofi                   | UM-CDC   |
|------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|
| Static analytical decision-making models                                                                               | $\checkmark$             | ✓        |
| Sensitivity analyses (and probabilistic simulation)                                                                    | $\checkmark(\checkmark)$ | ✓        |
| Hypothetical population: All infants < 8 months (high risk children 8-19 months)                                       | $\checkmark(\checkmark)$ | √(√)     |
| Time Frame: First year after a dose of nirsevimab<br>(2 <sup>nd</sup> season, 2nd dose for high-risk 8-19 months only) | √<br>(√)                 | √<br>(√) |
| Analytic Horizon: two years or seasons (for temporary disability) and<br>Life Expectancy (for premature mortality)     | $\checkmark$             | √<br>√   |
| Discount rate: 3%                                                                                                      | $\checkmark$             | ✓        |
| Year of economic outcomes measured: 2022                                                                               | $\checkmark$             | ✓        |
| Societal perspective (and healthcare perspective)                                                                      | $\checkmark(\checkmark)$ | √(√)     |

#### Inputs and main outcomes



#### Prevention of:

- MA RSV LRTI
- RSV LRTI hospitalizations
- RSV-associated deaths



## J J J J

Sanofi

 $\checkmark$ 

 $\checkmark$ 

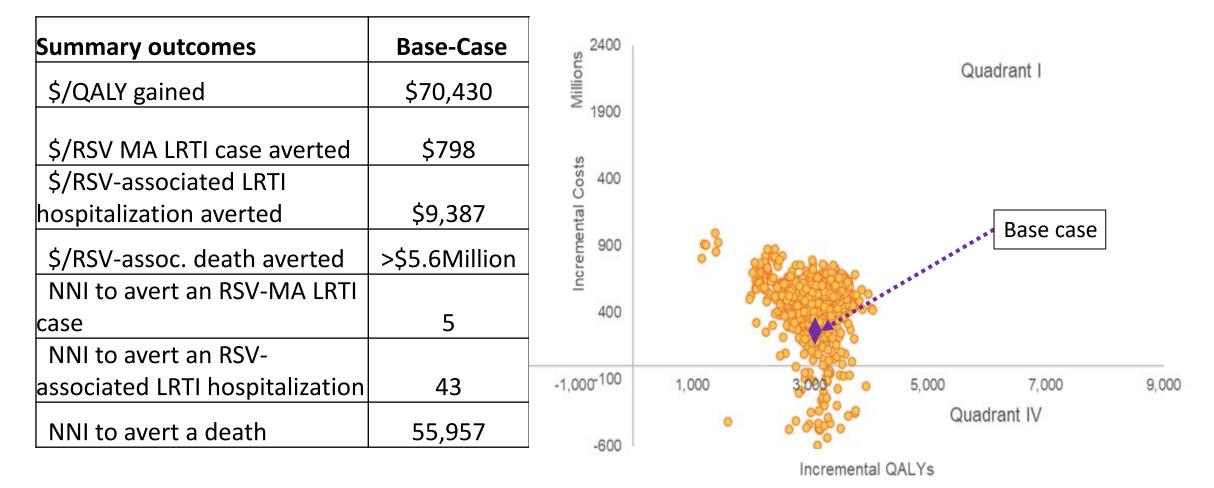
 $\checkmark$ 

**UM-CDC** 

 $\checkmark$ 

 $\checkmark$ 

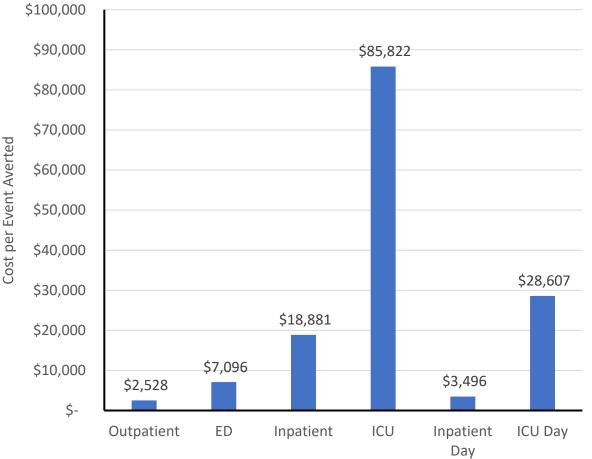
 $\checkmark$ 


Number needed to

immunize (NNI) to avert an:

- MA RSV LRTI
- RSV LRTI hospitalization
- RSV-associated death

| ✓ | $\checkmark$ |
|---|--------------|
| ✓ | $\checkmark$ |
| ✓ | $\checkmark$ |


#### Sanofi model: Base case estimates for all infants <7 months in Season 1, nirsevimab cost \$500/dose & PSA



**Probabilistic sensitivity analysis (PSA)** <sup>53</sup>

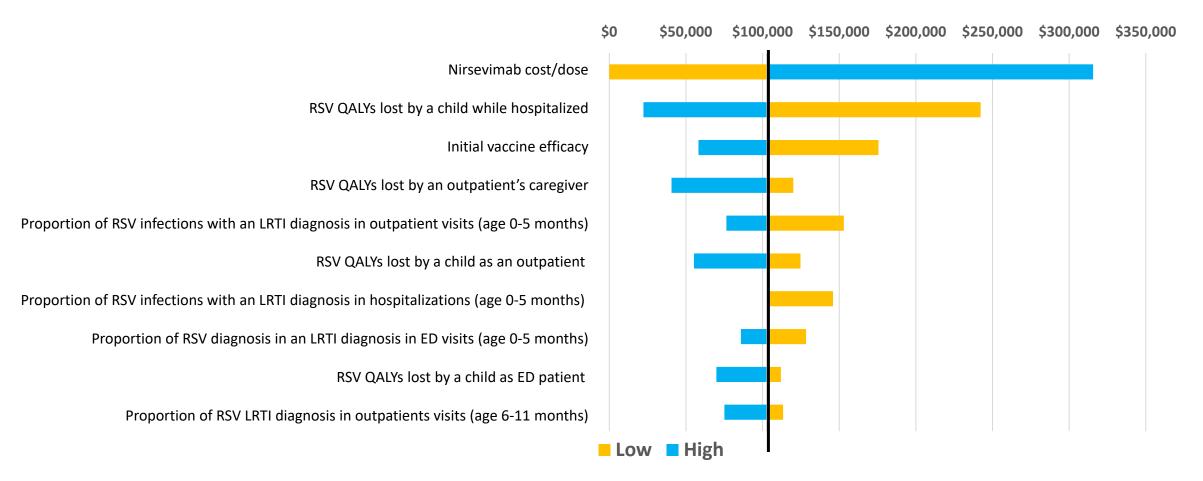
# UM-CDC: Base case estimates for all infants <8 months, Season 1, nirsevimab cost \$300/dose

| Summary outcomes              | Base-Case |
|-------------------------------|-----------|
| \$/QALY gained                | \$102,805 |
| \$/RSV-MA LRTI case averted   | \$2,100   |
| \$/RSV-associated             |           |
| LRTI hospitalization averted  | \$18,881  |
| \$/RSV-assoc. death averted   | n/r       |
| NNI avert an RSV-MA LRTI      |           |
| case                          | 14        |
| NNI avert an RSV-assoc. LRTI  |           |
| hospitalization               | 130       |
| NNI avert an RSV-assoc. death | n/r       |

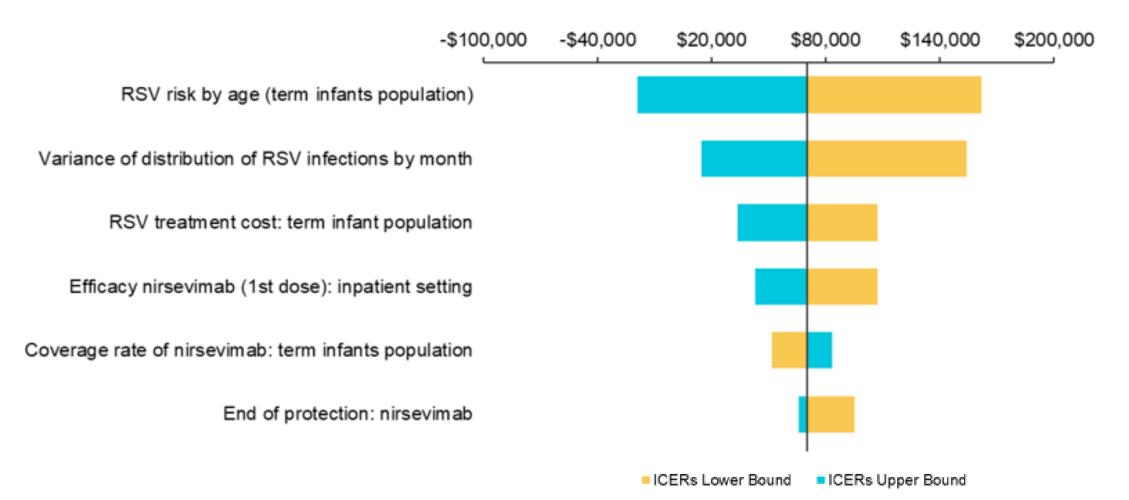


#### Cost per type of health outcome prevented

Assuming 100% uptake in nirsevimab group n/r = not reported


## Sanofi and UM-CDC models comparison: Selected outcome ratios for nirsevimab

|                                                      | UM-CDC model<br>Price per dose \$300 | Sanofi model<br>Price per dose \$500 |
|------------------------------------------------------|--------------------------------------|--------------------------------------|
| \$ / QALY gained                                     |                                      |                                      |
| nirsevimab Season 1, infants                         | \$102,805                            | \$70,430                             |
| nirsevimab Season 2, high risk infants               | \$842,139 <sup>b</sup>               | \$823,131ª                           |
| nirsevimab Seasons 1 & 2 combined                    | n/r                                  | \$62,589                             |
| nirsevimab vs palivizumab, Season 2 PEP <sup>c</sup> | n/r                                  | dominant                             |
| \$ / hospitalization averted                         |                                      |                                      |
| nirsevimab Season 1                                  | \$18,881                             | \$9,387                              |
| nirsevimab Seasons 1 & 2 combined                    | n/r                                  | \$8,316                              |


- a. Pre-term infants only
- b. High risk <19 months old infants (preterm + PEP) receiving a 2<sup>nd</sup> dose of nirsevimab in October
- c. PEP= palivizumab eligible population

n/r = not reported

#### **UM-CDC model**: One-way Sensitivity Analyses (Season 1 only) Base case: \$102,805/QALY saved, nirsevimab cost \$300/dose



**Sanofi model:** One-way Sensitivity Analyses (Season 1 only) Base case: \$70,430/QALY saved, nirsevimab cost \$500/dose



## Sanofi and UM-CDC models comparison: Selected influential inputs

#### • RSV-hospitalization rate

Sanofi: Age and term-specific hospitalization rates reported in McLaurin (2016)<sup>a</sup> UM-CDC: From RSV-associated hospitalization rates<sup>b</sup> among children aged ≤2 years

#### • Unitary medical cost of RSV hospitalization

Sanofi: Cost varies by term at birth and by whether Intensive Care Unit or Mechanical Ventilator were needed as reported in McLaurin (2016)<sup>b</sup>

UM-CDC: Unit cost was a weighted average by term at birth and age as reported in Bowser (2022)<sup>c</sup>

#### • RSV season & intervention period

Sanofi: MA RSV season based on Rainisch (2020)<sup>d</sup> but intervention ends in February UM-CDC: RSV-season and intervention period based on CDC surveillance data (2016-2019)<sup>c</sup>

#### • Initial efficacy & waning

Sanofi: Constant first 5 months as in trials, linear decay from month 6 to month 10

UM-CDC: Sigmoid decay up to 10 months; average residual protection in first 5 months equals constant efficacy from trials

a McLaurin et al. J Perinatol. 2016;36(11):990-996

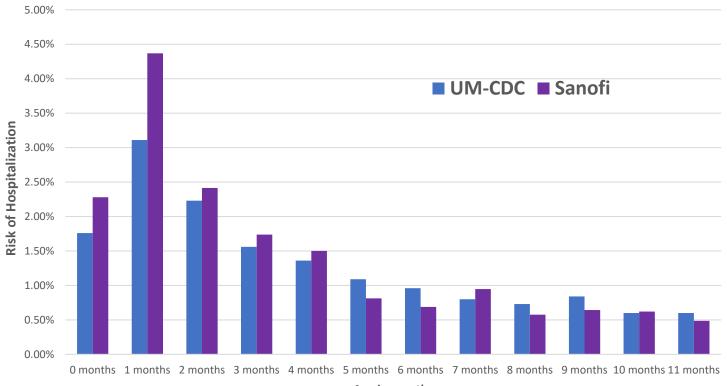
- b CDC unpublished data from the New Vaccine Surveillance Network (NVSN) (December 2016 to September 2020)
- c Bowser et al., J Infect Dis. 2022 Aug 15; 226(Suppl 2): S225–S235
- d Rainisch et al. Vaccine. 2020;38(2):251-257

#### Sanofi and UM-CDC models comparison: Differences in key inputs

|                                                            | UM-CDC                                         | Sanofi                                                        |
|------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|
| Risk of RSV hospitalization (Infants <12<br>months of age) | 1.30%<br>(0.60% - 3.11%)ª                      | 1.42%<br>(0.49% - 4.37%) <sup>b</sup>                         |
| Medical costs per RSV hospitalization                      | \$11,487<br>(\$11,042 - \$11,993) <sup>c</sup> | \$18,790 – \$28,812<br>(age- and term dependent) <sup>d</sup> |
| Medical costs per RSV outpatient visit                     | \$82<br>(\$46 - \$118) <sup>c</sup>            | \$153<br>(no variation reported)                              |

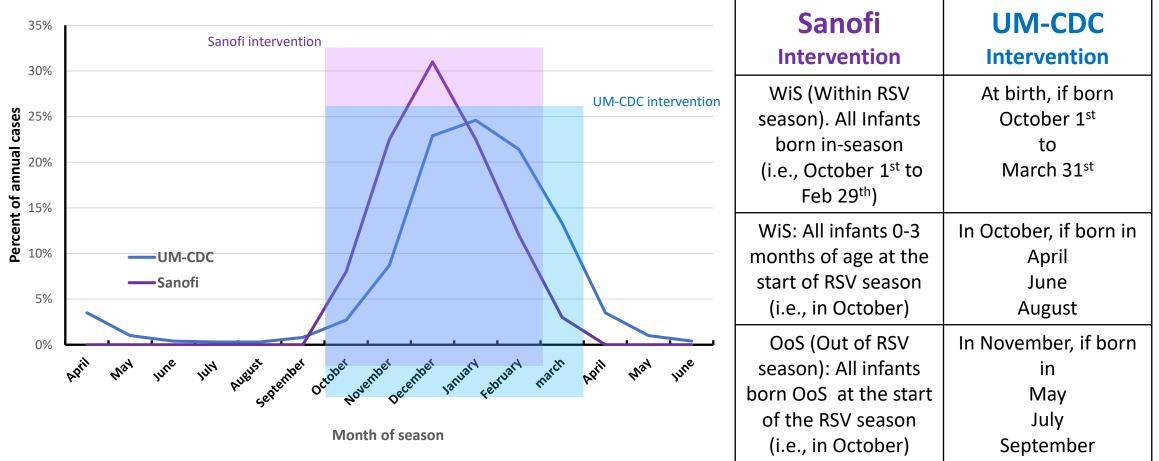
a Data from CDC-funded New Vaccine Surveillance Network (NVSN) (December 2016 to September 2020) (range values are the lowest and highest within the first 11 months of age)

b Weighted average term-specific populations shares (range values are the lowest and highest within the first 11 months of age)


c Adapted from Bowser et al., J Infect Dis. 2022 Aug 15; 226(Suppl 2): S225–S235 (A systematic review study funded by Sanofi)

d Costs in the base-case varied by age, term at birth and by whether Intensive Care Unit or Mechanical Ventilator were needed while hospitalized using percentages as wights; data reported in McLaurin (2016)

#### Sanofi and UM-CDC models comparison: Base-case risk of RSV-related hospitalization by age


UM-CDC model: Laboratoryconfirmed RSV-associated hospitalization rates from New Vaccine Surveillance Network (NVSN) data for children under 2 years of age (December 2016 to September 2020)

Sanofi model: Age and termspecific weighted average of hospitalization rates in infants using reported rates in McLaurin (2016)



Age in months

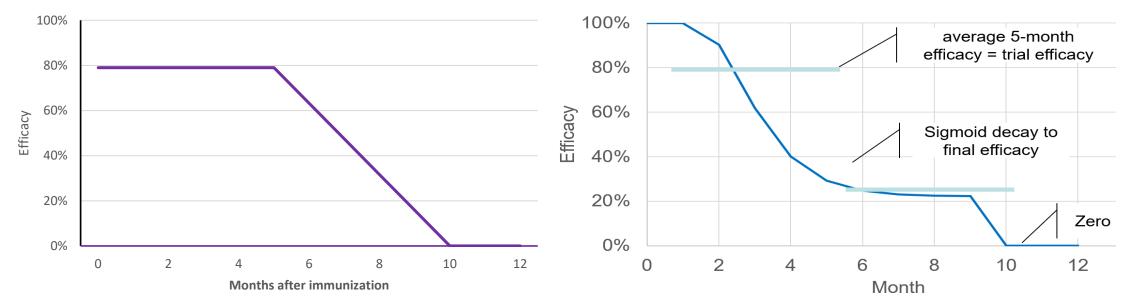
### Sanofi and UM-CDC models comparison: RSV-season and intervention\*



\* RSV-season and Intervention period in UM-CDC model are based on NREVVS seasonality (2016-2019).

Intervention period in Sanofi model ends in February (a month short from end of MA RSV season, Rainisch et al., Vaccine. 2020;38(2):251-257. Technical appendix) <sup>61</sup>

## Sanofi and UM-CDC: Initial nirsevimab efficacy and uptake


|                                           | UM-CDC                     | Sanofi                        |
|-------------------------------------------|----------------------------|-------------------------------|
| Initial efficacy against MA RSV LRTI:     | 80.0                       | 79.0                          |
| Inpatient and outpatient (%) <sup>a</sup> | (68.5 – 86.1) <sup>a</sup> | (68.5 – 86.1) <sup>a, b</sup> |

a MELODY trial and Phase 2b recommended dose

b Assumed non-inferiority with palivizumab, Hammitt et al., N Engl J Med. 2022;386(9):837-846

## Sanofi and UM-CDC: Assumption on duration of nirsevimab

| Sanofi | Initial efficacy against MA LRTI = A constant<br>protection over 5 months,<br>Then, a linear decay of efficacy from month 6<br>to month 10<br>No residual protection after 10 months | UM-CDC | Initial efficacy against LRTI = Average 5 months<br>efficacy equals to trial estimates<br>Sigmoid decay up to 10 months<br>and then 0% afterwards;<br>Calibrated such that the first 5 months efficacy<br>equals trial estimates |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



## UM-CDC model: comparison of base case & selected scenarios

| Scenario                                                                    | UM-CDC    |
|-----------------------------------------------------------------------------|-----------|
| Nirsevimab cost per \$500/dose (1 <sup>st</sup> season) <sup>c</sup>        | \$244,677 |
| Intervention period October to February                                     | \$107,963 |
| Base case <sup>a</sup> (Nirsevimab cost \$300/dose, 1 <sup>st</sup> season) | \$102,805 |
| Prevention of All MA RSV visits (LRTI and URTI) <sup>b</sup>                | \$45,092  |
| Nirsevimab cost per \$200/dose (1 <sup>st</sup> season) <sup>c</sup>        | \$31,869  |

a Base-case nirsevimab cost \$300 per dose, immunization is for only the 1st season

b LRTI=Lower respiratory tract infection, URTI= Upper respiratory tract infection

c Cost per QALY saved estimated by varying nirsevimab cost per dose from \$200 (low) to \$500 (high), immunization is for only the

1<sup>st</sup> season

### Limitations

- Factors not considered that may result in overestimating the ICER (underestimating the cost-effectiveness) of nirsevimab immunization
  - In base-case: both models assumed
    - No protection against URTI
    - No protection against asymptomatic/unattended LRTI
  - Neither model included RSV-related costs incurred after discharge from an RSV-associated hospitalization or emergency department visit:
    - Productivity losses incurred by caregivers after discharge
  - Both models assumed no indirect effects of nirsevimab immunization (i.e., no protection against RSV transmission)

### Conclusion

- Differences in key inputs among Sanofi and UM-CDC models explain differences in results:
  - Nirsevimab cost per dose
  - Seasonality and intervention period
  - Duration of nirservimab efficacy
  - Hospitalization rates
  - Medical costs
- Base-case in both models:
  - Nirsevimab would significantly reduce RSV disease burden in infants
    - Data from clinical trials support impact estimates on disease reduction
  - Economic value of using nirsevimab in infants could be *cost-effective* or *costly* 
    - Reasonable nirsevimab price and duration of protection combined with careful design of seasonal interventions would determine the *cost-effectiveness* value of routine prophylaxis among infants ≤7 months of age entering their first RSV season, and those born during the RSV season

## Acknowledgements

From NCIRD/CDC

- Jamison Pike
- Jefferson Jones
- Meredith McMorrow
- Mila M. Prill
- Katherine E. Fleming-Dutra
- Michael Melgar

Also:

• Maternal/Pediatric RSV working group members



## **End of Summary**

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

