Centers for Disease Control and Prevention National Center for Immunization and Respiratory Diseases

Benefit and risk assessment for COVID-19 vaccines

Megan Wallace, DrPH, MPH

Photographs and images included in this presentation are licensed solely for CDC/NCIRD online and presentation use. No rights are implied or extended for use in printing or any use by other CDC CIOs or any external audiences.

Benefit-risk assessment

- Benefits of COVID-19 vaccine by age for primary series
- Incremental benefits of COVID-19 vaccine by age and time since last dose for bivalent booster dose
 - Sensitivity analyses model high and low points in the pandemic
- Benefit-risk assessment for bivalent booster dose
 - Focused on ages 12-17 years and 18-49 years

Methods for benefit assessment

Benefits – Calculated per 1 million primary series or bivalent booster doses

- <u>Hospitalization rates¹</u>: December 2022 COVID-19-associated hospitalization rate among persons aged 5–11, 12–17, 18–49, 50–65, 65+ years, by vaccination status, from COVID-NET
 - Sensitivity analyses model high and low points in the pandemic
- <u>Time horizon²</u>: 6 months
- <u>Vaccine Effectiveness</u>: VE estimates from VISION³ with assumption of waning of effectiveness by 10% each month starting after month 2
 - VE of primary series based on absolute VE for bivalent dose⁴
 - VE of bivalent booster dose based on relative VE by interval from last monovalent dose to bivalent⁵

- ²Period over which benefits of bivalent vaccination accrue
- ³https://www.cdc.gov/mmwr/volumes/71/wr/mm715152e1.htm?s_cid=mm715152e1_w.

⁵Relative VE of bivalent booster dose used in booster dose assessment (5-7 month interval: 38%; 8-10 month interval: 42%; 11+ month interval 45%). Relative VE for ED/UC visit was used for 2-4 month interval (31%) because VE against hospitalization was not available 3

¹https://covid.cdc.gov/covid-data-tracker/#covidnet-hospitalizations-vaccination. Rates among unvaccinated used for primary series assessment. Rates among those vaccinated with monovalent doses only used for bivalent booster dose assessment.

⁴Absolute VE of bivalent booster dose (57%) used as the estimated primary series VE. Absolute VE from the bivalent booster was used as an estimate of primary series VE because current VE of monovalent primary series is unknown.

Monthly age-adjusted rates of COVID-19-associated hospitalization by vaccination status in patients ≥ 18 years, COVID-NET

----- Unvaccinated - - - Primary series ----- Primary series & ≥1 booster ······ Primary series & ≥2 boosters - 🗶 Vaccinated, no bivalent booster

Estimated COVID-19-associated hospitalizations prevented over 6 months for every million mRNA COVID-19 primary series given

COVID-19-associated hospitalizations prevented over 6 months per million doses by age group Based on hospitalization rates from December 2022

Estimated COVID-19 hospitalizations prevented over 6 months for every million mRNA COVID-19 primary series and bivalent booster doses¹

COVID-19-associated hospitalizations prevented over 6 months per million primary series or bivalent booster by age group Based on hospitalization rates from December 2022

1. Calculated assuming booster dose given ≥11 months from last monovalent vaccine dose

Estimated COVID-19 hospitalizations prevented over 6 months for every million bivalent mRNA COVID-19 booster doses, by age group and dose interval¹

COVID-19-associated hospitalizations prevented over 6 months per million doses given in 2 – 4 month interval. 5 – 7 month interval. 8 – 10 month interval. ≥11 month interval Based on hospitalization rates from December 2022 12 – 17 years 18 – 49 years 50 – 64 years \geq 65 years 500 1000 2500 1500 2000 3000 0

¹Interval refers to the time between the most recent monovalent dose and a bivalent dose.

Monthly age-adjusted rates of COVID-19-associated hospitalization by vaccination status in patients 12 – 17 years, COVID-NET

Estimated COVID-19 hospitalizations prevented over 6 months for every million bivalent mRNA COVID-19 booster doses, 12 – 17-year-olds

COVID-19-associated hospitalizations prevented over 6 months per million

doses by low, recent, and high incidence¹

¹Low incidence scenario uses hospitalization rate from March 2022, recent incidence scenario uses hospitalization rate from December 2022, and high incidence scenario uses hospitalization rate from July 2022

²Interval refers to the time between the most recent monovalent dose and a bivalent dose.

Dosing intervals for monovalent booster and bivalent booster, by age group

- Among adolescents who received a monovalent booster, nearly half received the monovalent booster at an interval <8 months after their primary series</p>
- Over 90% of adolescents received a bivalent booster ≥8 months after their previous dose

Interval between completion of the primary series

Interval between completion of the <u>most recent</u> <u>monovalent dose</u>* and <u>bivalent booster</u>

* Primary series or monovalent booster

Myocarditis and COVID-19 vaccines

- Limited data to inform myocarditis risk after bivalent COVID-19 vaccine booster dose
 - Preliminary VSD myocarditis rates following **bivalent booster dose** in adolescent and young adult males **lower** than first monovalent boosters, but limited by small numbers of doses administered
- Myocarditis risk lower with longer time between doses
 - Rates of myocarditis lower with extended interval between dose 1 and dose 2 for primary series¹
 - Longer interval between doses for bivalent boosters, compared to monovalent boosters, may also impact myocarditis rates
- Most individuals with myocarditis/pericarditis have fully recovered at follow-up²
- The risk of adverse cardiac outcomes were 1.8 5.6 times higher after SARS-CoV-2 infection than after mRNA COVID-19 vaccination among males ages 12-17 years³

¹<u>https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2022-02-04/11-COVID-Moulia-508.pdf</u> ²<u>https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2022-02-04/04-COVID-Kracalic-11</u> 508.pdf ³<u>https://www.cdc.gov/mmwr/volumes/71/wr/mm7114e1.htm?s_cid=mm7114e1_w</u>

VSD incidence rates of verified myocarditis or pericarditis in the 0-7 days after Pfizer-BioNTech vaccination in people 12 – 39 years¹

		Dose 2 P Pfizer	rimary Series -BioNTech	1 st Monovalent Booster Dose Pfizer-BioNTech			Bivalent Booster Dose Pfizer-BioNTech			
Age & Sex	Cases	Dose 2 Total	Incidence rate/ million doses (95% CI)	Cases	1 st Booster Total	Incidence rate/ million doses (95% CI)	Cases	Bivalent Booster Total	Incidence rate/ million doses (95% CI)	
12-17 Years Males Females	45 6	308,046 311,247	146.1 (106.6 – 195.5) 19.3 (7.1 – 42.0)	14 2	129,487 139,118	108.1 (59.1 – 181.4) 14.4 (1.7 – 51.9)	0 0	48,066 49,725	0.0 (0.0 - 62.3) 0.0 (0.0 - 60.2)	
18-29 Years Males Females	27 2	331,889 400,321	81.4 (53.6 – 118.4) 5.0 (0.6 – 18.0)	7 1	166,973 240,226	41.9 (16.9 – 86.4) 4.2 (0.1 – 23.2)	1 0	50,687 80,211	19.7 (0.5 – 53.1) 0.0 (0.0 – 37.3)	
30-39 Years Males Females	5 3	341,527 410,713	14.6 (4.8 – 34.2) 7.3 (1.5 – 21.3)	3 1	197,554 268,412	15.2 (3.1 – 44.4) 3.7 (0.1 – 20.8)	0 0	82,191 115,014	0.0 (0.0 - 36.4) 0.0 (0.0 - 26.0)	

¹ Primary series and 1st monovalent booster data through August 20, 2022, bivalent booster data through January 29, 2023; Source: Kristin Goddard, Kayla E. Hanson, Ned Lewis, et al. <u>Incidence of Myocarditis/Pericarditis Following mRNA COVID-19 Vaccination Among Children and Younger Adults in the United States</u>. Ann Intern Med. [Epub 4 October 2022]. doi:<u>10.7326/M22-2274</u>

VSD incidence rates of verified myocarditis or pericarditis in the 0–7 days after Moderna vaccination in people ages 18–39 years¹

	Dose 2 primary series Moderna			1	st monovalent Mode	booster dose rna	Bivalent booster dose Moderna		
Age/sex	Cases	Dose 2 total	Incidence rate/ million doses (95% CI)	Cases	1 st booster total	Incidence rate/ million doses (95% CI)	Cases	Bivalent booster total	Incidence rate/ million doses (95% CI)
18–29 years Males Females	19 0	195,809 243,560	97.0 (58.4 – 151.5) 0.0 (0.0 – 12.3)	7 1	109,337 156,707	64.0 (25.7 – 131.9) 6.4 (0.2 – 35.6)	0 0	18,499 29,561	0.0 (0.0–161.9) 0.0 (0.0–101.3)
30–39 years Males Females	8 1	216,583 259,780	36.9 (15.9 – 72.8) 3.9 (0.1 – 21.4)	1 2	149,468 191,765	6.7 (0.2 – 37.3) 10.4 (1.3 – 37.7)	0 0	35,318 47,620	0.0 (0.0–84.8) 0.0 (0.0–62.9)

¹ Primary series and 1st monovalent booster data through August 20, 2022, bivalent booster data through January 29, 2023; source: Goddard K, et al. <u>Incidence of Myocarditis/Pericarditis</u> Following mRNA COVID-19 Vaccination Among Children and Younger Adults in the United States. Ann Intern Med. 2022;175:1169-1771. Estimated COVID-19 hospitalizations prevented vs. potential myocarditis cases for every million bivalent mRNA COVID-19 booster doses: 12 – 17-year-olds

 Per million doses in 12 – 17-year-olds over 6 months¹

 31 – 136 hospitalizations prevented

 9 – 40 ICU admissions prevented

 0 – 1 death prevented

0 myocarditis² cases in 48,066 males with a bivalent booster
 0 myocarditis² cases in 49,725 females with a bivalent booster

¹Ranges presented for benefits are based on the high and low incidence scenarios presented on slides 7 and 8 ²Based on preliminary Pfizer-BioNTech bivalent booster safety data from VSD (incident rate/million doses): **0 (95% CI: 0-62)** in males and **0 (95% CI: 0-60)** in females Estimated COVID-19 hospitalizations prevented vs. potential myocarditis cases for every million bivalent mRNA COVID-19 booster doses: 12 – 17-year-olds Accounting for potential incidental SARS-CoV-2 infections among hospitalized patients¹

Per million doses in 12 – 17-year-olds over 6 months²

5 – 22 ICU admissions prevented

0 – 1 death prevented

0 myocarditis³ cases in 48,066 males with a bivalent booster
 0 myocarditis³ cases in 49,725 females with a bivalent booster

¹Results were adjusted to account for potential incidental findings of SARS-CoV-2 infection by multiplying the estimated hospitalizations, ICU admissions, and deaths prevented by the estimated percent of COVID-NET hospitalizations that are likely due to COVID-19 among 12 – 17-year-olds during on Omicron BA.5 predominant period (55%)

² Ranges presented for benefits are based on the high and low incidence scenarios presented on slides 7 and 8

³ Based on preliminary Pfizer-BioNTech bivalent booster safety data from VSD (incident rate/million doses): 0 (95% CI: 0-62) in males and 0 (95% CI: 0-60) in females

Estimated COVID-19 hospitalizations prevented vs. potential myocarditis cases for every million bivalent mRNA COVID-19 booster doses: 18 – 49-year-olds

0 myocarditis² cases in 272,406 **females** with a bivalent booster

¹Ranges presented for benefits are based on the high and low incidence scenarios presented on slide 7

²Based on preliminary bivalent booster safety data from VSD among persons ages 18-39 years. Among Pfizer-BioNTech recipients, rates per million doses were: **20 (95% CI: 1–53)** in males ages 18–29 years; **0 (95% CI: 0–37)** in females ages 18–29 years; **0 (95% CI: 0–36)** in males ages 30–39 years and **0 (95% CI: 0–26)** in females ages 30–39 years. Among Moderna recipients, rates per million doses were: **0 (95% CI: 0–162)** in males ages 18–29 years; **0 (95% CI: 0–101)** in females ages 18–29 years; **0 (95% CI: 0–85)** in males ages 30–39 years and **0 (95% CI: 0–63)** in females ages 30–39 years.

Estimated COVID-19 hospitalizations prevented vs. potential myocarditis cases for every million bivalent mRNA COVID-19 booster doses: 18 – 49-year-olds Accounting for potential incidental SARS-CoV-2 infections among hospitalized patients¹

Per million doses in 18 – 49-year-olds over 6 months²

81 – 259 hospitalizations prevented

15 – 48 ICU admissions prevented

3 – 8 deaths prevented

1 myocarditis³ case in 186,695 **males** with a bivalent booster **0** myocarditis³ cases in 272,406 **females** with a bivalent booster

¹ Results were adjusted to account for potential incidental findings of SARS-CoV-2 infection by multiplying the estimated hospitalizations, ICU admissions, and deaths prevented by the estimated percent of COVID-NET hospitalizations that are likely due to COVID-19 among 18 – 49-year-olds during on Omicron BA.5 predominant period (69%) ² Ranges presented for benefits are based on the high and low incidence scenarios presented on slides 7 and 8 ³Based on preliminary bivalent booster safety data from VSD among persons ages 18-39 years. Among Pfizer-BioNTech recipients, rates per million doses were: **20 (95% CI: 1–53)** in males ages 18–29 years; 0 (95% CI: 0– 37) in females ages 18–29 years; 0 (95% CI: 0–36) in males ages 30–39 years and 0 (95% CI: 0–26) in females ages 30–39 years. Among Moderna recipients, rates per million doses were: 0 (95% CI: 0–162) in males ages 18–29 years; 0 (95% CI: 0–101) in females ages 18–29 years; 0 (95% CI: 0–85) in males ages 30–39 years and

0 (95% CI: 0–63) in females ages 30–39 years.

Limitations

- Benefits of vaccination may continue to accrue beyond time horizon used
- Stable hospitalization rates were assumed for the duration of the time horizon
- Underlying complexity of vaccine histories and previous infections could not be accounted for
- COVID-NET hospitalization rates include hospitalizations for which COVID-19 was not a primary reason for admission
- Current COVID-19 epidemiology, including hospitalization rates used in assessment, reflects impact of both prior vaccination and prior infection
 - Cannot account for possible future increases in COVID-19 hospitalization rates or new variant
- Myocarditis rates following bivalent booster dose are uncertain. Studies are underway to assess the long-term impact of vaccine-associated myocarditis

Summary of benefit-risk balance for bivalent mRNA COVID-19 vaccination

- Benefits continue to outweigh risks for primary series vaccination in all age groups
- Benefits of bivalent booster dose vary by age, time since last dose, and COVID-19 incidence
- Risk of myocarditis after COVID-19 vaccines likely **reduced** by **longer interval** since last dose
 - Additional data can better define risk after bivalent vaccines, but current data encouraging
- Changes in COVID-19 hospitalization rates would impact the benefit assessment
- Additional benefits of COVID-19 vaccines unable to be quantified in benefit-risk assessment
 - Likely prevention of post-COVID conditions, possible reduction in transmission, increased confidence in social interactions
- Benefit risk assessment will continue to be monitored as new data are available
- Receipt of primary series continues to be important in all ages
- Boosters remain an important option to improve protection against severe COVID-19, especially for higher-risk populations

Acknowledgements

- VEaP Team
 - Dani Moulia
 - Sara Oliver
 - Evelyn Twentyman
 - Katherine Fleming-Dutra
 - Ruth Link-Gelles
- COVID-NET
 - Chris Taylor
- ISO
 - Eric Weintraub
 - Tom Shimabukuro

Thank you

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Photographs and images included in this presentation are licensed solely for CDC/NCIRD online and presentation use. No rights are implied or extended for use in printing or any use by other CDC CIOs or any external audiences.

